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Abstract. We construct noninteractive statistical zero-knowledge
(NISZK) proof systems for a variety of standard approximation prob-
lems on lattices, such as the shortest independent vectors problem and
the complement of the shortest vector problem. Prior proof systems for
lattice problems were either interactive or leaked knowledge (or both).

Our systems are the first known NISZK proofs for any cryptograph-
ically useful problems that are not related to integer factorization. In
addition, they are proofs of knowledge, have reasonable complexity, and
generally admit efficient prover algorithms (given appropriate auxiliary
input). In some cases, they even imply the first known interactive statisti-
cal zero-knowledge proofs for certain cryptographically important lattice
problems.

We also construct an NISZK proof for a special kind of disjunction
(i.e., OR gate) related to the shortest vector problem. This may serve as
a useful tool in potential constructions of noninteractive (computational)
zero knowledge proofs for NP based on lattice assumptions.

1 Introduction

A central idea in computer science is an interactive proof system, which allows a
(possibly unbounded) prover to convince a computationally-limited verifier that
a given statement is true [7, 29, 30]. The beautiful notion of zero knowledge,
introduced by Goldwasser, Micali, and Rackoff [29], even allows the prover to
convince the verifier while revealing nothing more than the truth of the state-
ment.

Many of the well-known results about zero knowledge, e.g., that NP (and
even all of IP) has zero-knowledge proofs [10, 24], refer to computational zero
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knowledge, where security holds only against a bounded cheating verifier (typ-
ically under some complexity assumption). Yet there has also been a rich line
of research concerning proof1 systems in which the zero-knowledge property is
statistical. The advantages of such systems include security against even un-
bounded cheating verifiers, usually without any need for unproved assumptions.
Much is now known about the class SZK of problems possessing statistical zero-
knowledge proofs; for example, it does not contain NP unless the polynomial-time
hierarchy collapses [2, 20], it is closed under complement and union [38], it has
natural complete (promise) problems [28, 42], and it is insensitive to whether
the zero-knowledge condition is defined for arbitrary malicious verifiers, or only
for honest ones [26].

Removing interaction. Zero-knowledge proofs inherently derive their power from
interaction [25]. In spite of this, Blum, Feldman, and Micali [14] showed how
to construct meaningful noninteractive zero-knowledge proofs (consisting of a
single message from the prover to the verifier) if the parties simply share ac-
cess to a uniformly random string. Furthermore, noninteractive computational
zero-knowledge proofs exist for all of NP under plausible cryptographic assump-
tions [13, 14, 19, 31].

Just as with interactive proofs (and for the same reasons), it is also inter-
esting to consider noninteractive proofs where the zero-knowledge condition is
statistical. Compared with SZK, much less is known about the class NISZK of
problems admitting such proofs. Clearly, NISZK is a (possibly proper) subset of
SZK. It is also known to have complete (promise) problems [17, 27], but unlike
SZK, it is not known whether NISZK is closed under complement or disjunction
(OR).2 Some conditional results are also known, e.g., NISZK = SZK if and only if
NISZK is closed under complement [27] (though it seems far from clear whether
this condition is true or not).

Applying NISZK proofs. In cryptographic schemes, the benefits of NISZK proofs
are manifold: they involve a minimal number of messages, they remain secure
under parallel and concurrent composition, and they provide a very strong level
of security against unbounded cheating provers and verifiers alike, typically with-
out relying on any complexity assumptions. However, the only concrete problems
of cryptographic utility known to be in NISZK are all related in some way to
integer factorization, i.e., variants of quadratic residuosity [14, 15, 16] and the
language of “quasi-safe” prime products [21].3

Another important consideration in applying proof systems (both interactive
and noninterative) is the complexity of the prover. Generally speaking, it is not
1 In this work, we will be concerned exclusively with proof systems (as opposed to

argument systems, in which a cheating prover is computationally bounded).
2 An earlier version of [17] claimed that NISZK was closed under complement and

disjunction, but the claims have since been retracted.
3 The language of graphs having trivial automorphism group is in NISZK, as are the

(NISZK-complete) “image density” [17] and “entropy approximation” [27] problems,
but these problems do not seem to have any immediate applications to cryptographic
schemes.
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enough simply to have a proof system; one also needs to be able to implement
the prover efficiently given a suitable witness or auxiliary input. For interactive
SZK, several proof systems for specific problems (e.g., those of [29, 36]) admit
efficient provers, and it was recently shown that every language in SZK ∩ NP
has an efficient prover [37]. For noninteractive statistical zero knowledge, prover
efficiency is not understood so well: while the systems relating to quadratic
residuosity [14, 15, 16] have efficient provers, the language of quasi-safe prime
products [21] is known to have an efficient prover only if interaction is allowed
in one component of the proof.

1.1 Lattices and Proof Systems

Ever since the foundationalworkofAjtai [4] on constructing hard-on-averagecryp-
tographic functions fromworst-case assumptions relating to lattices, therehasbeen
significant interest in characterizing the complexity of lattice problems. Proof sys-
tems have provided an excellent means of making progress in this endeavor. We
review some recent results below, after introducing the basic notions.

An n-dimensional lattice in R
n is a periodic “grid” of points consisting of

all integer linear combinations of some set of linearly independent vectors B =
{b1, . . . ,bn} ⊂ R

n, called a basis of the lattice. Two of the central computational
problems on lattices are the shortest vector problem SVP and the closest vector
problem CVP. The goal of SVP is to find a (nonzero) lattice point whose length
is minimal, given an arbitrary basis of the lattice. The goal of CVP, given an
arbitrary basis and some target point t ∈ R

n, is to find a lattice point closest to
t. Another problem, whose importance to cryptography was first highlighted in
Ajtai’s work [4], is the shortest independent vectors problem SIVP. Here the goal
(given a basis) is to find n linearly independent lattice vectors, the longest of
which is as short as possible. All of these problems are known to be NP-complete
in the worst case (in the case of SVP, under randomized reductions) [3, 12, 44],
so we do not expect to obtain NISZK (or even SZK) proof systems for them.

In this work, we are primarily concerned with the natural approximation ver-
sions of lattice problems, phrased as promise (or “gap”) problems with some
approximation factor γ ≥ 1. For example, the goal of GapSVPγ is to accept
any basis for which the shortest nonzero lattice vector has length at most 1,
and to reject those for which it has length at least γ. One typically views the
approximation factor as a function γ(n) of the dimension of the lattice; prob-
lems become easier (or at least no harder) for increasing values of γ. Known
polynomial-time algorithms for lattice problems obtain approximation factors
γ(n) that are only slightly subexponential in n [5, 6, 33, 43]. Moreover, obtain-
ing a γ(n) = poly(n) approximation requires exponential time and space using
known algorithms [5, 6, 11]. Therefore, lattice problems appear quite difficult to
approximate to within even moderately-large factors.

Proof systems. We now review several proof systems for the above-described
lattice problems and their complements. Every known system falls into one of
two categories: interactive proofs that generally exhibit some form of statistical
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zero knowledge, or noninteractive proofs that are not zero knowledge (unless, of
course, the associated lattice problems are trivial).

First of all, it is apparent that GapSVPγ , GapCVPγ , and GapSIVPγ have trivial
NP proof systems for any γ ≥ 1. (E.g., for GapSVPγ one can simply give a nonzero
lattice vector of length at most 1.) Of course, the proofs clearly leak knowledge.

Goldreich and Goldwasser [23] initiated the study of interactive proof systems
for lattice problems, showing that the complement problems coGapSVPγ and
coGapCVPγ have AM proof systems for γ(n) = O(

√
n/ logn) factors. In other

words, there are interactive proofs that all nonzero vectors in a given lattice are
long, and that a given point in R

n is far from a given lattice.4 Moreover, the
protocols are perfect zero knowledge for honest verifiers, but they are not known
to have efficient provers. Aharonov and Regev [1] showed that for slightly looser
γ(n) = O(

√
n) factors, the same two problems are even in NP. In other words, for

such γ the interactive proofs of [23] can be replaced by a noninteractive witness,
albeit one that leaks knowledge. Building upon [1, 23], Guruswami, Micciancio,
and Regev [32] showed analogous AM and NP proof systems for coGapSIVPγ .

Micciancio and Vadhan [36] gave (malicious verifier) SZK proofs with efficient
provers for GapSVPγ and GapCVPγ , where γ(n) = O(

√
n/ logn). To our knowl-

edge, there is no known zero-knowledge proof system for the cryptographically
important GapSIVPγ problem (even an interactive one), except by a reduction
to coGapSVP using so-called “transference theorems” for lattices [8]. This reduc-
tion introduces an extra n factor in the approximation, resulting in fairly loose
γ(n) = O(n1.5/

√
log n) factors. The same applies for the covering radius prob-

lem GapCRP [32], where the goal is to estimate the maximum distance from the
lattice over all points in R

n, and for the GapGSMP problem of approximating
the Gram-Schmidt minimum of a lattice.

1.2 Our Results

We construct (without any assumption) noninteractive statistical zero-knowledge
proof systems for a variety of lattice problems, for reasonably small approxima-
tion factors γ(n). These are the first known NISZK proofs for lattice problems,
and more generally, for any cryptographically useful problem not related to in-
teger factorization. In addition, they are proofs of knowledge, have reasonable
communication and verifier complexity, and admit efficient provers. They also
imply the first known interactive statistical zero-knowledge proofs for certain
lattice problems. Specifically, we construct the following:

– NISZK proofs (with efficient provers) for the GapSIVPγ , GapCRPγ , and
GapGSMPγ problems, for any factor γ(n) = ω(

√
n log n).5

4 Because GapSVPγ and GapCVPγ are in NP∩coAM for γ(n) = O(
√

n/ log n), the main
conclusion of [23] is that these problems are not NP-hard, unless the polynomial-time
hierarchy collapses.

5 Recall that a function g(n) = ω(f(n)) if g(n) grows faster than c · f(n) for every
constant c > 0.
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In particular, this implies the first known (even interactive) SZK proof sys-
tems for these problems with approximation factors tighter than n1.5/

√
log n.

– An NISZK proof for coGapSVPγ for any factor γ(n) ≥ 20
√

n. This is essen-
tially the best we could hope for (up to constant factors) given the state of
the art, because coGapSVPγ is not even known to be in NP for any factor
γ(n) <

√
n.

For this proof system, we are able to give an efficient prover for γ(n) =
ω(n ·

√
log n) factors, and an efficient quantum prover for slightly tighter

γ(n) = O(n/
√

log n) factors. (The prover’s advice and the proof itself are still
entirely classical; only the algorithm for generating the proof is quantum.)

– An NISZK proof for a special disjunction problem of two or more coGapSVPγ

instances. As we describe in more detail below, this system may serve as an
important ingredient in an eventual construction of noninteractive (computa-
tional) zero knowledge proofs for all of NP under lattice-related assumptions.

Our systems are also proofs of knowledge of a full-rank set of relatively “short”
vectors in the given lattice. This is an important property in some of the appli-
cations to lattice-based cryptography we envision, described next.

Applications

Public key infrastructure. It is widely recognized that in public-key infrastruc-
tures, a user who presents her public key to a certification authority should also
prove knowledge of a corresponding secret key (lest she present an “invalid” key,
or one that actually belongs to some other user). A recent work of Gentry, Peik-
ert, and Vaikuntanathan [22] constructed a variety of cryptographic schemes (in-
cluding “hash-and-sign” signatures and identity-based encryption) in which the
secret key can be any full-rank set of suitably “short” vectors in a public lattice.
Our NISZK proof systems provide a reasonably efficient and statistically-secure
way to prove knowledge of such secret keys. Implementing this idea requires some
care, however, due to the exact nature of the knowledge guarantee and the fact
that we are dealing with proof systems for promise problems.

To be more specific, a user generates a public key containing some basis B of
a lattice Λ, and acts as the prover in the GapSIVPγ system for (say) γ ≈ √

n. In
order to satisfy the completeness hypothesis, an honest user needs to generate
B along with a full-rank set of lattice vectors all having length at most ≈ 1. The
statistical zero-knowledge condition ensures that nothing about the user’s secret
key is leaked to the authority. Now consider a potentially malicious user. By the
soundness condition, we are guaranteed only that Λ contains a full-rank set of
lattice vectors all of length at most γ (otherwise the user will not be able to give
a convincing proof). Under this guarantee, our knowledge extractor is able to
extract a full-rank set of lattice vectors of somewhat larger length ≈ γ ·√n ≈ n.
Therefore, the extracted secret key vectors may be somewhat longer than the
honestly-generated ones. Fortunately, the schemes of [22] are parameterized by
a value L, so that they behave identically on any secret key consisting of vectors
of length at most L. Letting L be a bound on the length of the extracted vectors
ensures that the proof of knowledge is useful in the broader context, e.g., to a



Noninteractive Statistical Zero-Knowledge Proofs for Lattice Problems 541

simulator that needs to generate valid signatures under the presented public key.
We also remark that our NISZK proofs can be made more compact in size when
applied to the hard-on-average integer lattices used in [22] and related works,
by dealing only with integer vectors rather than high-precision real vectors.

NICZK for all of NP?. Our proof systems may also be useful in constructing
noninteractive computational zero-knowledge proof systems for all of NP based
on the hardness of lattice problems. We outline a direction that follows the
general approach of Blum, De Santis, Micali, and Persiano [13], who constructed
an NICZK for the NP-complete language 3SAT under the quadratic residuosity
assumption.

In [13], the common input is a 3SAT formula, and the auxiliary input to
the prover is a satisfying assignment. The prover first chooses N , a product of
two distinct primes. He associates, in a certain way, each true literal with a
quadratic nonresidue from Z

∗
N , and each false literal with a quadratic residue.

He proves in zero knowledge that (a) for each variable, either it or its negation
is associated with a quadratic residue (thus, a variable and its negation cannot
both be assigned true), and (b) for each clause, at least one of its three literals
is associated with a quadratic nonresidue (thus, each clause is true under the
implicit truth assignment). Thus, the entire proof involves zero-knowledge proofs
of a disjunction of quadratic residuosity instances (for case (a)) and a disjunction
of quadratic nonresiduosity instances (for case (b)).

We can replicate much of the above structure using lattices. Briefly, the mod-
ulus N translates to a suitably-chosen lattice Λ having large minimum distance,
a quadratic nonresidue translates to a superlattice Λi of Λ also having large min-
imum distance, and a quadratic residue translates to a superlattice having small
minimum distance. It then suffices to show in zero knowledge that (a) for each
variable, the lattice associated to either it or its negation (or both) has small
minimum distance, and (b) for each clause, the lattice associated to one of the
variables in the clause has large minimum distance. In Section 3.2, we show how
to implement part (b) by constructing an NISZK proof for a special disjunction
of coGapSVP instances. However, we do not know how to prove noninteractively
that one or more lattices has small minimum distance, i.e., a disjunction of
GapSVP instances (see Section 1.3 for discussion). This seems to be the main
technical barrier for obtaining NICZK for all of NP under lattice assumptions.

Finally, our NISZK proofs immediately imply statistically-secure zaps, as de-
fined by Dwork and Naor [18], for the same problems. Zaps have a number of
applications in general, and we suspect that they may find equally important
applications in lattice-based cryptography.

Techniques. The main conceptual tool for achieving zero knowledge in our
proof systems is a lattice quantity called the smoothing parameter, introduced by
Micciancio and Regev [35] (following related work of Regev [40]). The smoothing
parameter was introduced for the purpose of obtaining worst-case to average-case
reductions for lattice problems, but more generally, it provides a way to generate
an (almost-)uniform random variable related to an arbitrary given lattice.
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In more detail, let Λ ⊂ R
n be a lattice, and imagine “blurring” all the points of

Λ according to a Gaussian distribution. With enough blur, the discrete structure
of the lattice is entirely destroyed, and the resulting picture is (almost) uniformly-
spread over R

n. Technically, this intuitive description corresponds to choosing a
noise vector e from a Gaussian distribution (centered at the origin) and reducing
e modulo any basis B of the lattice. (The value e mod B is the unique point
t ∈ P(B) = {

∑
i cibi : ∀ i, ci ∈ [0, 1)} such that t − e ∈ Λ; it can be computed

efficiently given e and B.) Informally, the smoothing parameter of the lattice is
the amount of noise needed to obtain a nearly uniform distribution over P(B)
via this process.

Our NISZK proofs all share a common structure regardless of the specific
lattice problem in question. It is actually most instructive to first consider the
zero-knowledge simulator, and then build the prover and verifier around it. In
fact, we have already described how the simulator works: given a basis B, it
simply chooses a Gaussian noise vector e′ and computes t′ = e′ mod B. The
vector t′ ∈ P(B) is the simulated common random “string,” and e′ is the simu-
lated proof.6 In the real proof system, the random string is a uniformly random
t ∈ P(B), and the prover (suppose for now that it is unbounded) generates a
proof e by sampling from the Gaussian distribution conditioned on the event
e = t mod B. The verifier simply checks that indeed t − e ∈ Λ and that e is
“short enough.”

For statistical zero knowledge, suppose that YES instances of the lattice
problem have small smoothing parameter. Then the simulated random string
t′ = e′ mod B is (nearly) uniform, just as t is in the real system; moreover,
the distribution of the simulated proof e′ conditioned on t′ is the exactly the
same as the distribution of the real proof e. For completeness, we use the fact
(proved in [35]) that a real proof e generated in the specified way is indeed
relatively short. Finally, for soundness, we require that in NO instances, a sig-
nificant fraction of random strings t ∈ P(B) are simply too far away from the
lattice to admit any short enough proof e. (The soundness error can of course
be attentuated by composing several independent proofs in parallel.)

The two competing requirements for YES and NO instances (for zero knowl-
edge and soundness, respectively) determine the resulting approximation factor
for the particular lattice problem. For the GapSIVP, GapCRP, and GapGSMP
problems, the factor is ≈

√
n, but for technical reasons it turns out to be only

≈ n for the coGapSVP problem. To obtain tighter O(
√

n) factors, we design a
system that can be seen as a zero-knowledge analogue of the NP proof system
of Aharonov and Regev [1]. Our prover simply gives many independent proofs
ei (as above) in parallel, for uniform and independent ti ∈ P(B). The verifier,
rather than simply checking the lengths of the individual eis, instead performs
an “eigenvalue test” on the entire collection. Although the eigenvalue test and
its purpose (soundness) are exactly the same as in [1], we use it in a technically

6 A random binary string can be used to represent a uniformly random t′ ∈ P(B) ⊂ R
n

by its n coefficients ci ∈ [0, 1) relative to the given basis B, to any desired level of
precision.
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different way: whereas in [1] it bounds a certain quantity computed by the veri-
fier (which leaks knowledge, but guarantees rejection), here it bounds the volume
of “bad” random strings that could potentially allow for false proofs.

We now turn to the issue of prover efficiency. Recall that the prover must
choose a Gaussian noise vector e conditioned on the event that e = t mod
B. Such conditional distributions, called discrete Gaussians over lattices, have
played a key role in several recent results in complexity theory and cryptography,
e.g., [1, 35, 39, 41]. The recent work of [22] demonstrated an algorithm that can
use any suitably “short” basis of the lattice as advice for efficiently sampling
from a discrete Gaussian. Applying this algorithm immediately yields efficient
provers for the tightest γ(n) = ω(

√
n logn) factors for GapSIVP and related

problems, and γ(n) = ω(n ·
√

log n) factors for coGapSVP. We also describe
a quantum sampling algorithm (using different advice) that yields an efficient
quantum prover for coGapSVP, for slightly tighter γ(n) = O(n/

√
log n) factors.

Finally, we add that all of our proof systems easily generalize to arbitrary �p

norms for p ≥ 2, under essentially the same approximation factors γ(n). The
proof systems themselves actually remain exactly the same; their analysis in �p

norms relies upon general facts about discrete Gaussians due to Peikert [39].

1.3 Open Questions

Recall that SZK is closed under complement and union [38] and that every
langauge in SZK ∩ NP has a statistical zero-knowledge proof with an efficient
prover [37]. Whether NISZK has analogous properties is a difficult open problem
with many potential consequences. Our work raises versions of these questions
for specific problems, which may help to shed some light on the general case.

We have shown that coGapSVPγ has NISZK proofs for certain γ(n) = poly(n)
factors; does its complement GapSVPγ have such proofs as well? As described
above, we suspect that a positive answer to this question, combined with our
proofs for the special coGapSVP disjunction problem, could lead to noninter-
active (computational) zero knowledge proofs for all of NP under worst-case
lattice assumptions. In addition, because the closest vector problem GapCVP
and its complement coGapCVP both admit SZK proofs, it is an interesting ques-
tion whether they also admit NISZK proofs. The chief technical difficulty in
addressing any of these questions seems to be that a short (or close) lattice vec-
tor guarantees nothing useful about the smoothing parameter of the lattice (or
its dual). Therefore it is unclear how the simulator could generate a uniformly
random string together with a meaningful proof.

The factors γ(n) for which we can demonstrate efficient provers are in some
cases looser than those for which we know of inefficient provers. The gap be-
tween these factors is solely a consequence of our limited ability to sample from
discrete Gaussians. Is there some succinct (possibly quantum) advice that per-
mits efficient sampling from a discrete Gaussian with a parameter close to the
smoothing parameter of the lattice (or close to the tightest known bound on the
smoothing parameter)? More generally, does every problem in NISZK∩NP have
an NISZK proof with an efficient prover?
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Finally, although we construct an NISZK proof for a problem that is struc-
turally similar to the disjunction (OR) of many coGapSVP instances, there are
additional technical constraints on the problem. It would be interesting to see if
these constraints could be relaxed or lifted entirely.

2 Preliminaries

For any positive integer n, [n] denotes the set {1, . . . , n}. The function log always
denotes the natural logarithm. We extend any function f(·) to a countable set
A in the following way: f(A) =

∑
x∈A f(x). A positive function ε(·) is negligible

in its parameter if it decreases faster than the inverse of any polynomial, i.e., if
ε(n) = n−ω(1). The statistical distance between two distributions X and Y over
a countable set A is Δ(X, Y ) = 1

2

∑
a∈A |Pr[X = a] − Pr[Y = a]|.

Vectors are written using bold lower-case letters, e.g., x. Matrices are written
using bold capital letters, e.g., X. The ith column vector of X is denoted xi.
We often use matrix notation to denote a set of vectors, i.e., S also represents
the set of its column vectors. We write span(v1,v2, . . .) to denote the linear
space spanned by its arguments. For a set S ⊆ R

n, v ∈ R
n, and c ∈ R, we let

S + x = {y + x : y ∈ S} and cS = {cy : y ∈ S}.
The symbol ‖·‖ denotes the Euclidean norm on R

n. We say that the norm of
a set of vectors is the norm of its longest element: ‖X‖ = maxi‖xi‖. For any
t ∈ R

n and set V ⊆ R
n, the distance from t to V is dist(t, V ) = infv∈V dist(t,v).

2.1 Noninteractive Proof Systems

We consider proof systems for promise problems Π = (ΠYES, ΠNO) where each
instance of the problem is associated with some value of the security parameter
n, and we partition the instances into sets ΠYES

n and ΠNO
n in the natural way.

In general, the value of n might be different from the length of the instance; for
example, the natural security parameter for lattice problems is the dimension n
of the lattice, but the input basis might be represented using many more bits.
In this work, we assume for simplicity that instances of lattice problems have
lengths bounded by some fixed polynomial in the dimension n, and we treat n
as the natural security parameter.

Definition 1 (Noninteractive Proof System). A pair (P, V ) is a noninter-
active proof system for a promise problem Π = (ΠYES, ΠNO) if P is a (possibly
unbounded) probabilistic algorithm, V is a deterministic polynomial-time algo-
rithm, and the following conditions hold for some functions c(n), s(n) : N → [0, 1]
and for all n ∈ N:

– Completeness: For every x ∈ ΠYES
n , Pr[V (x, r, P (x, r)) accepts] ≥ 1 − c(n).

– Soundness: For every x ∈ ΠNO
n , Pr[∃ π : V (x, r, π) accepts] ≤ s(n).

The probabilities are taken over the choice of the random input r and the random
choices of P . The function c(n) is called the completeness error, and the function
s(n) is called the soundness error. For nontriviality, we require c(n) + s(n) ≤
1 − 1/poly(n).
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The random input r is generally chosen uniformly at random from {0, 1}p(n)

for some fixed polynomial p(·). For notiational simplicity, we adopt a model in
which the random input r is chosen from an efficiently-sampleable set Rx that
may depend on the instance x. This is without loss of generality, because given
a random string r′ ∈ {0, 1}p(n), both prover and verifier can generate r ∈ Rx

simply by running the sampling algorithm with randomness r′.
By standard techniques, completeness and soundness errors can be reduced via

parallel repetition. Note that our definition of soundness is non-adaptive, that is,
the NO instance is fixed in advance of the random input r. Certain applications
may require adaptive soundness, in which there do not exist any instance x ∈
ΠNO

n and valid proof π, except with negligible probability over the choice of r.
For proof systems, a simple argument shows that non-adaptive soundness implies
adaptive soundness error 2−p(n) for any desired p(n) = poly(n): let B(n) =
poly(n) be a bound on the length of any instance in ΠNO

n , and compose the
proof system in parallel some poly(n) times to achieve (non-adaptive) soundness
2−p(n)−B(n). Then by a union bound over all x ∈ ΠNO

n , the resulting proof
system has adaptive soundness 2−p(n).

Definition 2 (NISZK). A noninteractive proof system (P, V ) for a promise
problem Π = (ΠYES, ΠNO) is statistical zero knowledge if there exists a prob-
abilistic polynomial-time algorithm S (called a simulator) such that for all x ∈
ΠYES, the statistical distance between S(x) and (r, P (x, r)) is negligible in n:

Δ(S(x) , (r, P (x, r)) ) ≤ negl(n).

The class of promise problems having noninteractive statistical zero knowledge
proof systems is denoted NISZK.

For defining proofs of knowledge, we adapt the general approach advocated by
Bellare and Goldreich [9] to our noninteractive setting. In particular, the defi-
nition is entirely distinct from that of a proof system, and it refers to relations
(not promise problems). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation where
the first entry x of each (x, y) ∈ R is associated with some value of the security
parameter n, and partition the relation into sub-relations Rn in the natural way.
Let Rx = {y : (x, y) ∈ R} and ΠR

n = {x : ∃ y such that (x, y) ∈ Rn}.

Definition 3 (Noninteractive proof of knowledge). Let R be a binary rela-
tion, let V be a determinstic polynomial time machine, and let κ(n), c(n) : N →
[0, 1] be functions. We say that V is a knowledge verifier for the relation R with
nontriviality error c and knowledge error κ if the following two conditions hold:

1. Nontriviality (with error c): there exists a probabilistic function P such that
for all x ∈ ΠR

n , Pr[V (x, r, P (x, r)) accepts] ≥ 1 − c(n).
2. Validity (with error κ): there exists a probabilistic oracle machine E such

that for for every probabilistic function P ∗ and every x ∈ ΠR
n where

px = Pr[V (x, r, P ∗(x, r)) accepts] > κ(n),

EP ∗
(x) outputs a string from Rx in expected time poly(n)/(px − κ(n)).
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2.2 Lattices

For a matrix B ∈ R
n×n whose columns b1, . . . ,bn are linearly independent, the

n-dimensional lattice7 Λ generated by the basis B is

Λ = L(B) = {Bc =
∑

i∈[n]
ci · bi : c ∈ Z

n}.

The fundamental parallelepiped of B is the half-open set

P(B) = {
∑

i

cibi : 0 ≤ ci < 1, i ∈ [n]}.

For any lattice basis B and point x ∈ R
n, there is a unique vector y ∈ P(B)

such that y − x ∈ L(B). This vector is denoted y = x mod B, and it can be
computed in polynomial time given B and x.

For any (ordered) set S = {s1, . . . , sn} ⊂ R
n of linearly independent vec-

tors, let S̃ = {s̃1, . . . , s̃n} denote its Gram-Schmidt orthogonalization, defined
iteratively in the following way: s̃1 = s1, and for each i = 2, . . . , n, s̃i is the
component of si orthogonal to span(s1, . . . , si−1). Clearly, ‖s̃i‖ ≤ ‖si‖.

Let Cn = {x ∈ R
n : ‖x‖ ≤ 1} be the closed unit ball. The minimum distance

of a lattice Λ, denoted λ1(Λ), is the length of its shortest nonzero element:
λ1(Λ) = min0�=x∈Λ‖x‖. More generally, the ith successive minimum λi(Λ) is the
smallest radius r such that the closed ball rCn contains i linearly independent
vectors in Λ: λi(Λ) = min{r ∈ R : dim span(Λ ∩ rCn) ≥ i}. The Gram-Schmidt
minimum b̃l(Λ) is b̃l(Λ) = minB‖B̃‖ = minB maxi∈[n]‖b̃i‖, where the minimum
is taken over all (ordered) bases B of Λ. The definition is restricted to bases
without loss of generality, because for any (ordered) full-rank set S ⊂ Λ, there
is an (ordered) basis B of Λ such that ‖B̃‖ ≤ ‖S̃‖ (see [34, Lemma 7.1]). The
covering radius μ(Λ) is the smallest radius r such that closed balls rCn centered
at every point of Λ cover all of R

n: μ(Λ) = maxx∈Rn dist(x, Λ).
The dual lattice Λ∗ of Λ, is the set Λ∗ = {x ∈ R

n : ∀ v ∈ Λ, 〈x,v〉 ∈ Z} of
all vectors having integer inner product with all the vectors in Λ. It is routine
to verify that this set is indeed a lattice, and if B is a basis for Λ, then B∗ =
(B−1)T is a basis for Λ∗. It also follows from the symmetry of the definition that
(Λ∗)∗ = Λ.

Lemma 4 ([8]). For any n-dimensional lattice Λ, 1 ≤ 2 · λ1(Λ) · μ(Λ∗) ≤ n.

Lemma 5 ([34, Theorem 7.9]). For any n-dimensional lattice Λ,

b̃l(Λ) ≤ λn(Λ) ≤ 2μ(Λ).

A random point in P(B) is unlikely to be “close” to the lattice, where the notion
of closeness is relative to the covering radius.

7 Technically, this is the definition of a full-rank lattice, which is all we will be con-
cerned with in this work.
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Lemma 6 ([32, Lemma 4.1]). For any lattice Λ = L(B),

Pr
t∈P(B)

[
dist(t, Λ) <

μ(Λ)
2

]
≤ 1

2
,

where the probability is taken over t ∈ P(B) chosen uniformly at ranodm.

We now define some standard approximation problems on lattices, all of which
ask to estimate (to within some factor γ) the value of some geometric lattice
quantity. We define promise (or “gap”) problems Π = (ΠYES, ΠNO), where
the goal is to decide whether the instance belongs to the set ΠYES or the set
ΠNO (these two sets are disjoint, but not necessarily exhaustive; when the input
belongs to neither set, any output is acceptable). In the complement of a promise
problem, ΠYES and ΠNO are simply swapped.

Definition 7 (Lattice Problems). Let γ = γ(n) be an approximation fac-
tor in the dimension n. For any function φ from lattices to the positive re-
als, we define an approximation problem where the input is a basis B of an n-
dimensional lattice. It is a YES instance if φ(L(B)) ≤ 1, and is a NO instance
if φ(L(B)) > γ(n).

In particular, we define the following concrete problems by instantiating φ:

– The Shortest Vector Problem GapSVPγ , for φ = λ1.
– The Shortest Independent Vectors Problem GapSIVPγ, for φ = λn.
– The Gram-Schmidt Minimum Problem GapGSMPγ , for φ = b̃l.
– The Covering Radius Problem GapCRPγ , for φ = μ.

Note that the choice of the quantities 1 and γ above is arbitrary; by scaling the
input instance, they can be replaced by β and β · γ (respectively) for any β > 0
without changing the problem.

Gaussians on Lattices. Our review of Gaussian measures over lattices follows
the development by prior works [1, 35, 40]. For any s > 0 define the Gaussian
function centered at c with parameter s as:

∀x ∈ R
n, ρs,c(x) = e−π‖x−c‖2/s2

.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted. The
total measure associated to ρs,c is

∫
x∈Rn ρs,c(x) dx = sn, so we can define a con-

tinuous Gaussian distribution centered at c with parameter s by its probability
density function ∀x ∈ R

n, Ds,c(x) = ρs,c(x)/sn.
It is possible to sample from Ds,c efficiently to within any desired level of

precision. For simplicity, we use real numbers in this work and assume that we
can sample from Ds,c exactly; all the arguments can be made rigorous by using
a suitable degree of precision.

For any c ∈ R
n, real s > 0, and lattice Λ, define the discrete Gaussian

distribution over Λ as:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.
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(As above, we may omit the parameters s or c.) Intuitively, DΛ,s,c can be viewed
as a “conditional” distribution, resulting from sampling x ∈ R

n from a Gaussian
centered at c with parameter s, and conditioning on the event x ∈ Λ.

Definition 8 ([35]). For an n-dimensional lattice Λ and positive real ε >
0, the smoothing parameter ηε(Λ) is defined to be the smallest s such that
ρ1/s(Λ∗\{0}) ≤ ε.

The name “smoothing parameter” is due to the following (informally stated) fact:
if a lattice Λ is “blurred” by adding Gaussian noise with parameter s ≥ ηε(Λ)
for some ε > 0, the resulting distribution is ε/2-close to uniform over the entire
space. This is made formal in the following lemma.

Lemma 9 ([35, Lemma 4.1]). For any lattice L(B), ε > 0, s ≥ ηε(L(B)),
and c ∈ R

n, the statistical distance between (Ds,c mod B) and the uniform dis-
tribution over P(B) is at most ε/2.

The smoothing parameter is related to other important lattice quantities.

Lemma 10 ([35, Lemma 3.2]). Let Λ be any n-dimensional lattice, and let
ε(n) = 2−n. Then ηε(Λ) ≤

√
n/λ1(Λ∗).

Lemma 11 ([22, Lemma 3.1]). For any n-dimensional lattice Λ and ε > 0,
we have

ηε(Λ) ≤ b̃l(Λ) ·
√

log(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible function ε(n) for
which ηε(Λ) ≤ b̃l(Λ) · ω(

√
log n).

Note that because b̃l(Λ) ≤ λn(Λ), we also have ηε(Λ) ≤ λn(Λ) · ω(
√

log n); this
is Lemma 3.3 in [35].

The smoothing parameter also influences the behavior of discrete Gaussian
distributions over the lattice. When s ≥ ηε(Λ), the distribution DΛ,s,.c has a
number of nice properties: it is highly concentrated within a radius s

√
n around

its center c, it is not concentrated too heavily in any single direction, and it is
not concentrated too heavily on any fixed hyperplane. We refer to [35, Lemmas
4.2 and 4.4] and [41, Lemma 3.13] for precise statements of these facts.

3 Noninteractive Statistical Zero Knowledge

Here we demonstrate NISZK proofs for several natural lattice problems. Due to
lack of space, we give intuitive proof sketches here and defer complete proofs to
the full version.

We first introduce an intermediate lattice problem (actually, a family of prob-
lems parameterized by a function ε(n)) called SOS, which stands for “smooth-
or-separated.” The SOS problem exactly captures the two properties we need
for our first basic NISZK proof system: in YES instances, the lattice can be
completely smoothed by a Gaussian with parameter 1, and in NO instances,
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a random point is at least
√

n away from the lattice with good probability.
Moreover, the SOS problem is at least as expressive as several standard lattice
problems of interest, by which we mean that there are simple (deterministic)
reductions to SOS from GapSIVPγ , GapCRPγ , GapGSMPγ , and coGapSVPγ (for
appropriate approximation factors γ).

Definition 12 (Smooth-Or-Separated Problem). For any positive function
ε = ε(n), an input to ε-SOSγ is a basis B of an n-dimensional lattice. It is a
YES instance if ηε(L(B)) ≤ 1, and is a NO instance if μ(L(B)) > γ(n).8

The NISZK proof system for SOS is described precisely in Figure 1. For the
moment, we ignore issues of efficiency and assume that the prover is unbounded.
To summarize, the random input is a uniformly random point t ∈ P(B), where
B is the input basis. The prover samples a vector e from a Gaussian (centered at
the origin), conditioned on the event that e is congruent to t modulo the lattice,
i.e., e − t ∈ L(B). In other words, the prover samples from a discrete Gaussian
distribution. The verifier accepts if e and t are indeed congruent modulo L(B),
and if ‖e‖ ≤

√
n.

In the YES case, the smoothing parameter is at most 1. This lets us prove that
the sampled proof e is indeed shorter than

√
n (with overwhelming probability),

ensuring completeness. More interestingly, it means that the simulator can first
choose e from a continuous Gaussian, and then set the random input t = e mod
B. By Lemma 9, this t is almost-uniform in P(B), ensuring zero knowledge.
In the NO case, the covering radius of the lattice is large. By Lemma 6, with
good probability the random vector t ∈ P(B) is simply too far away from the
lattice to admit any short enough e, hence no proof can convince the verifier.
(A complete proof of Theorem 13 below is given in the full version.)

NISZK proof system for SOS

Common Input: A basis B of an n-dimensional lattice Λ = L(B).
Random Input: A vector t ∈ R

n chosen uniformly at random from P(B).
Prover P : Sample v ∼ DΛ,−t, and output e = t + v ∈ R

n as the proof.
Verifier V : Accept if e − t ∈ Λ and if ‖e‖ ≤

√
n, otherwise reject.

Fig. 1. The noninteractive zero-knowledge proof system for the SOS problem

Theorem 13. For any γ(n) ≥ 2
√

n and any negligible function ε(n), the prob-
lem ε-SOSγ ∈ NISZK via the proof system described in Figure 1. The complete-
ness error of the system is c(n) = 2−n+1 and the soundness error is s(n) = 1/2.

By deterministic reductions to the ε-SOSγ problem, several standard lattice prob-
lems are also in NISZK. The proof of the following corollary is a straightforward
application of Lemmas 4, 5, 10, and 11, and is deferred to the full version.
8 Using techniques from [35], it can be verified that the YES and NO sets are disjoint

whenever γ ≥
√

n and ε(n) ≤ 1/2.
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Corollary 14. For every γ(n) ≥ 1 and any fixed ω(
√

log n) function, there is a
deterministic polynomial-time reduction from each of the following problems to
ε-SOSγ (for some negligible function ε(n)):

– GapSIVPγ′ , GapCRPγ′ , and GapGSMPγ′ for any γ′(n) ≥ 2ω(
√

log n) · γ(n),
– coGapSVPγ′ for any γ′(n) ≥ 2

√
n · γ(n).

In particular, the problems GapSIVPγ′ , GapCRPγ′ , and GapGSMPγ′ for γ′(n) =
ω(

√
n log n) and coGapSVP4n are in NISZK.

We now turn to the knowledge guarantee for the protocol. For a function ε =
ε(n), we define a relation Rε where an instance (for security parameter n) is
a basis B ⊂ R

n×n of a lattice having smoothing parameter ηε bounded by 1
(without loss of generality), and a witness for B is a full-rank set S ⊂ L(B) of
lattice vectors having length at most 2

√
n.

Theorem 15. For any positive ε(n) ≤ 1/3, the verifier described in Figure 1 is
a knowledge verifier for relation Rε with nontriviality error c(n) = 2−n+1 and
knowledge error κ(n) = ε(n)/2.

Now consider the complexity of the prover in the protocol from Figure 1. Note
that the prover has to sample from the discrete Gaussian distribution DΛ,−t
(with parameter 1). For this purpose, we use a recent result of Gentry, Peikert
and Vaikuntanathan [22, Theorem 4.1], which shows how to sample (within
negligible statistical distance) from DL(B),s,t for any s ≥ ‖B̃‖ · ω(

√
log n). The

next corollary immediately follows (proof in the full version).

Corollary 16. The following problems admit NISZK proof systems with efficient
provers: GapSIVPω(

√
n log n), GapCRPω(

√
n log n), and coGapSVPω(n1.5

√
log n).

3.1 Tighter Factors for coGapSVP

For coGapSVP, Corollaries 14 and 16 give NISZK proof systems only for γ(n) ≥
4n; with an efficient prover, the factor γ(n) = ω(n1.5 log n) is looser still.

Here we give a more sophisticated NISZK proof specifically for coGapSVP. The
proof of the next theorem is given in the full version.

Theorem 17. For any γ(n) ≥ 20
√

n, the problem coGapSVPγ is in NISZK, via
the proof system described in Figure 2.

Furthermore, for any γ(n) ≥ ω(n
√

log n), the prover can be implemented ef-
ficiently with an appropriate succinct witness. For any γ(n) ≥ n/

√
log n, the

prover can be implemented efficiently as a quantum algorithm with a succinct
classical witness.

3.2 NISZK for a Special Disjunction Language

Here we consider a special language that is structurally similar to the disjunction
of many coGapSVPγ instances. For simplicity, we abuse notation and identify
lattices with their arbitrary bases in problem instances.
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NISZK proof system for coGapSVP

Common Input: A basis B of an n-dimensional lattice Λ = L(B). Let N =
10n3 log n.

Random Input: Vectors t1, . . . , tN ∈ P(B∗) chosen independently and uni-
formly at random from P(B∗), defining the matrix T ∈ (P(B∗))N ⊂ R

n×N .
Prover P : For each i ∈ [N ], choose vi ∼ DΛ∗,−ti , and let ei = ti +vi. The proof

is the matrix E ∈ R
n×N .

Verifier V : Accept if both of the following conditions hold, otherwise reject:
1. ei − ti ∈ Λ∗ for all i ∈ [N ], and
2. All the eigenvalues of the n × n positive semidefinite matrix EET are at

most 3N .

Fig. 2. The noninteractive zero-knowledge proof system for coGapSVP

Definition 18. For a prime q, an input to OR-coGapSVPk
q,γ is an n-dimensional

lattice Λ such that λ1(Λ) > γ(n), and k superlattices Λj ⊃ Λ for j ∈ [k] such
that the quotient groups Λ∗/Λ∗

j are all isomorphic to the additive group G = Zq.
It is a YES instance if λ1(Λi) > γ(n) for some i ∈ [k], and is a NO instance

if λ1(Λi) ≤ 1 for every i ∈ [k].

Theorem 19 below relates to the OR-coGapSVP2
q,γ problem; it generalizes to

any k > 2 with moderate changes (mainly, the
√

q factors in the statement of
Theorem 19 become q(k−1)/k factors).

Theorem 19. For prime q ≥ 100 and γ(n) ≥ 40
√

qn, OR-coGapSVP2
q,γ is in

NISZK.
Furthermore, if γ(n) ≥ 40

√
q ·ω(n

√
log n), then the prover can be implemented

efficiently with appropriate succinct witnesses.
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