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Abstract. Modern Graphics Processing Units (GPU) have reached a
dimension with respect to performance and gate count exceeding conven-
tional Central Processing Units (CPU) by far. Many modern computer
systems include – beside a CPU – such a powerful GPU which runs idle
most of the time and might be used as cheap and instantly available
co-processor for general purpose applications.

In this contribution, we focus on the efficient realisation of the com-
putationally expensive operations in asymmetric cryptosystems on such
off-the-shelf GPUs. More precisely, we present improved and novel imple-
mentations employing GPUs as accelerator for RSA and DSA cryptosys-
tems as well as for Elliptic Curve Cryptography (ECC). Using a recent
Nvidia 8800GTS graphics card, we are able to compute 813 modular ex-
ponentiations per second for RSA or DSA-based systems with 1024 bit
integers. Moreover, our design for ECC over the prime field P-224 even
achieves the throughput of 1412 point multiplications per second.

Keywords: Asymmetric Cryptosystems, Graphics Processing Unit,
RSA, DSA, ECC.

1 Introduction

For the last twenty years graphics hardware manufacturers have focused on pro-
ducing fast Graphics Processing Units (GPUs), specifically for the gaming com-
munity. This has more recently led to devices which outperform general purpose
Central Processing Units (CPUs) for specific applications, particularly when
comparing the MIPS (million instructions per second) benchmarks. Hence, a re-
search community has been established to use the immense power of GPUs for
general purpose computations (GPGPU). In the last two years, prior limitations
of the graphics application programming interfaces (API) have been removed by
GPU manufacturers by introducing unified processing units in graphics cards.
They support a general purpose instruction set by a native driver interface and
framework.

In the field of asymmetric cryptography, the security of all practical cryptosys-
tems rely on hard computational problems strongly dependant on the choice of
parameters. But with rising parameter sizes (often in the range of 1024–4096
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bits), however, computations become more and more challenging for the under-
lying processor. For modern hardware, the computation of a single cryptographic
operation is not critical, however in a many-to-one communication scenario, like
a central server in a company’s data processing centre, it may be confronted with
hundreds or thousands of simultaneous connections and corresponding crypto-
graphic operations. As a result, the most common current solution are cryp-
tographic accelerator cards. Due to the limited market, their price tags are
often in the range of several thousands euros or US dollars. The question at
hand is whether commodity GPUs can be used as high-performance public-key
accelerators.

In this work, we will present novel implementations of cryptosystems based on
modular exponentiations and elliptic curve operations on recent graphics hard-
ware. To the best of our knowledge, this is the first publication making use of
the CUDA framework for GPGPU processing of asymmetric cryptosystems. We
will start with implementing the extremely wide-spread Rivest Shamir Adleman
(RSA) cryptosystem [30]. The same implementation based on modular expo-
nentiation for large integers can be used to implement the Digital Signature
Algorithm (DSA), which has been published by the US National Institute of
Standards and Technology (NIST) [25]. Recently, DSA has been adopted to el-
liptic curve groups in the ANSI X9.62 standard [2]. The implementation of this
variant, called ECDSA, is the second major goal of this work.

2 Previous Work

Lately, the research community has started to explore techniques to accelerate
cryptographic algorithms using the GPU. For example, various authors looked
at the feasibility of the current industry standard for symmetric cryptography,
the Advanced Encryption Standard (AES) [21,31,18,9]. Only two groups, namely
Moss et al. and Fleissner, have aimed for the efficient implementation of mod-
ular exponentiation on the GPU [24,14]. Their results were not promising, as
they were limited by the legacy GPU architecture and interface (cf. the next
section). To the best of our knowledge there are neither publications about the
implementation of these systems on modern, GPGPU-capable hardware nor on
the implementation of elliptic curve based systems.

We aim to fill this gap by implementing the core operations for both systems
efficiently on modern graphics hardware, creating the foundation for the use of
GPUs as accelerators for public key cryptography. We will use Nvidia’s current
flagship GPU series, the G80 generation, together with its new GPGPU interface
CUDA.

3 Using GPUs for General-Purpose Applications

The following section will give an overview over traditional GPU computing,
followed by a more in-depth introduction to Nvidia’s general purpose interface
CUDA.
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3.1 Traditional GPU Computing

Roughly, the graphics pipeline consist of the stages transform & light, assemble
primitives, rasterise and shade. First GPUs had all functions needed to im-
plement the graphics pipeline hardwired, but over time more and more stages
became programmable by introducing specialised processors, e.g. vertex and frag-
ment processors that made the transform & light and shading stages, respec-
tively, more flexible.

When processing power increased massively while prices kept falling, the re-
search community thought of ways to use these resources for computationally
intense tasks. However, as the processors’ capabilities were very limited and
the API of the graphics driver was specifically built to implement the graphics
pipeline, a lot of overhead needed to be taken into account. For example, all
data had to be encoded in textures which are two dimensional arrays of pixels
storing colour values for red, green, blue and an additional alpha channel used
for transparency. Additionally, textures are read-only objects, which forced the
programmers to compute one step of an algorithm, store the result in the frame
buffer, and start the next step using a texture reference to the newly produced
pixels. This technique is known as ping-ponging. Most GPUs did only provide in-
structions to manipulate floating point numbers, forcing GPGPU programmers
to map integers onto the available mantissa and find ways to emulate bit-logical
functions, e.g., by using look-up tables.

These limitations have been the main motivation for the key GPU manufac-
turers ATI/AMD and Nvidia to create APIs specifically for the GPGPU com-
munity and modify their hardware for better support: ATI’s solution is called
Close To the Metal (CTM) [1], while Nvidia presented the Compute Unified
Device Architecture (CUDA), a radically new design that makes GPU program-
ming and GPGPU switch places: The underlying hardware of the G80 series is
an accumulation of scalar common purpose processing units (“unified” design)
and quite a bit of “glue” hardware to efficiently map the graphics pipeline to
this new design. GPGPU applications however directly map to the target hard-
ware and thus graphics hardware can be programmed without any graphics API
whatsoever.

3.2 Programming GPUs Using Nvidia’s CUDA Framework

In general, the GPU’s immense computation power mainly relies on its inherent
parallel architecture. For this, the CUDA framework introduces the thread as
smallest unit of parallelism, i.e., a small piece of concurrent code with associated
state. However, when compared to threads on microprocessors, GPU threads
have much lower resource usage and lower creation and switching cost. Note
that GPUs are only effective when running a high number of such threads. A
group of threads that is executed physically in parallel is called warp. All threads
in one warp are executed in a single instruction multiple data (SIMD) fashion.
If one or more thread(s) in the same warp need to execute different instructions,
e.g., in case of a data-dependent jump, their execution will be serialised and the
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threads are called divergent. As the next level of parallelism, a (thread) block
is a group of threads that can communicate with each other and synchronise
their execution. The maximum number of threads per block is limited by the
hardware. Finally, a group of blocks that have same dimensionality and execute
the same CUDA program logically in parallel is called grid.

To allow optimal performance for different access patterns, CUDA implements
a hierarchical memory model, contrasting the flat model normally assumed on
computers. Host (PC) and device (GPU) have their own memory areas, called
host memory and device memory, respectively. CUDA supplies optimised func-
tions to transfer data between these separate spaces.

Each thread possesses its own register file, which can be read and written.
Additionally, it can access its own copy of so-called local memory. All threads
in the same grid can access the same on-chip read- and writable shared mem-
ory region. To prevent hazards resulting from concurrent execution of threads
synchronisation mechanisms must be used. Shared memory is organised in groups
called banks that can be accessed in parallel. All threads can access a read- and
writable memory space called global memory and read-only regions called
constant memory and texture memory. The second last is optimised for
one-dimensional locality of accesses, while the last is most effective when being
used with two-dimensional arrays (matrices). Note that the texture and constant
memories are the only regions that are cached. Thus, all accesses to the off-chip
regions global and local memory have a high access latency, resulting in penalties
when being used too frequently.

The hardware consists of a number of so-called multiprocessors that are build
from SIMD processors, on-chip memory and caches. Clearly, one processor ex-
ecutes a particular thread, the same warp being run on the multiprocessor at
the same time. One or more blocks are mapped to each multiprocessor, sharing
its resources (registers and shared memory) and get executed on a time-sliced
basis. When a particular block has finished its execution, the scheduler starts
the next block of the grid until all blocks have been run.

Design Criteria for GPU Implementations. To achieve optimal perfor-
mance using CUDA, algorithms must be designed to run in a multitude of par-
allel threads and take advantage of the presented hierarchical memory model. In
the following, we enumerate the key criteria necessary for gaining the most out
of the GPU by loosely following the CUDA programming guide [27] and a talk
given by Mark Harris of Nvidia [17].

A. Maximise use of available processing power
A1. Maximise independent parallelism in the algorithm to enable easy

partitioning in threads and blocks.
A2. Keep resource usage low to allow concurrent execution of as many

threads as possible, i.e., use only a small number of registers per thread
and shared memory per block.

A3. Maximise arithmetic intensity, i.e., match the arithmetic to band-
width ratio to the GPU design philosophy: GPUs spend their transistors
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on ALUs, not caches. Bearing this in mind allows to hide memory ac-
cess latency by the use of independent computations (latency hiding).
Examples include using arithmetic instructions with high throughput as
well as re-computing values instead of saving them for later use.

A4. Avoid divergent threads in the same warp.

B. Maximise use of available memory bandwidth
B1. Avoid memory transfers between host and device by shifting

more computations from the host to the GPU.
B2. Use shared memory instead of global memory for variables.
B3. Use constant or texture memory instead of global memory for

constants.
B4. Coalesce global memory accesses, i.e., choose access patterns that

allow to combine several accesses in the same warp to one, wider access.
B5. Avoid bank conflicts when utilising shared memory, i.e., choose pat-

terns that result in the access of different banks per warp.
B6. Match access patterns for constant and texture memory to the cache

design.

CUDA Limitations. Although CUDA programs are written in the C language
together with extensions to support the memory model, allow synchronisation
and special intrinsics to access faster assembler instructions, it also contains a
number of limitations that negatively affect efficient implementation of public
key cryptography primitives. Examples are the lack for additions/subtractions
with carry as well as the missing support for inline assembler instructions1.

4 Modular Arithmetic on GPUs

In the following section we will give different ways do realise modular arith-
metic on a GPU efficiently, keeping the aforementioned criteria in mind. For the
RSA cryptosystem we need to implement arithmetic modulo N , where N is the
product of two large primes p and q: N = p · q. The arithmetic of both DSA
systems, however, is based on the prime field GF (p) as the lowest-level building
block. Note that the DSA systems both use a fixed – in terms of sessions or
key generations – prime p, thus allowing to choose special primes at build time
that have advantageous properties when reducing modulo p. For example, the
US National Institute of Standards and Technology (NIST) proposes a set of
generalised Mersenne primes in the Digital Signature Standard (DSS) [25, Ap-
pendix 6]. As the RSA modulus N is the product of the two secret primes p and
q that will be chosen secretly for each new key pair, we cannot optimise for the
modulus in this case.
1 Nvidia published their own (abstract) assembler language PTX [28], however as

of CUDA version 1.0 one kernel cannot contain code both generated from the C
language and PTX.
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Modular Addition and Subtraction. In general, addition s ≡ a + b mod m
of two operands a and b, where 0 ≤ a, b < m, is straightforward, as the result of
the plain addition operation a + b always satisfies 0 ≤ a + b < 2m and therefore
needs at maximum one subtraction of m to fulfil 0 ≤ s < m. Due to the SIMD
design, we require algorithms that have a uniform control flow in all cases and
compute both a + b and a + b − m and decide afterwards which is the correctly
reduced result, cf. Criterion A4. Subtraction d ≡ a − b mod m can be treated
similarly: we compute both a − b and a − b + m and use a sign test at the end
to derive the correctly reduced result.

Modular Multiplication. Multi-precision modular multiplication r ≡ a·b mod
m is usually the most critical operation in common asymmetric cryptosystems. In
a straightforward approach to compute r, we derive a double-sized product r′ =
ab first and reduce afterwards by multi-precision division. Besides the quadratic
complexity of standard multiplication, division is known to be very costly and
should be avoided whenever possible. Thus, we will discuss several multiplication
strategies to identify an optimal method for implementation on GPUs.

4.1 Modular Multiplication Using Montgomery’s Technique

In 1985 Peter L. Montgomery proposed an algorithm [23] to remove the costly
division operation from the modular reduction. Koç et al. [6] give a survey of
different implementation options. As all multi-precision Montgomery multiplica-
tion algorithms feature no inherent parallelism except the possibility to pipeline,
we do not consider them optimal for our platform and implement the method
with the lowest temporary space requirement of n+2 words, coarsely integrated
operand scanning (CIOS), as a reference solution only (cf. to Algorithm 1).

4.2 Modular Multiplication in Residue Number Systems (RNS)

As an alternative approach to conventional base-2w arithmetic, we can represent
integers based on the idea of the Chinese Remainder Theorem, by encoding an
integer x as a tuple formed from its residues xi modulo n relatively prime w-bit
moduli mi, where |x|mi denotes x mod mi:

〈x〉A = 〈x0, x1, . . . , xn−1〉A = 〈|x|m0 , |x|m1 , . . . , |x|mn−1〉A (1)

Here, the ordered set of relatively prime moduli (m0, m1, . . . , mn−1), gcd
(mi, mj) = 1 for all i �= j, is called base and denoted by A. The product of
all moduli, A =

∏n−1
i=0 mi is called dynamic range of A, i.e., the number of val-

ues that can be uniquely represented in A. In other words, all numbers in A get
implicitly reduced modulo A. Such a representation in RNS has the advantage
that addition, subtraction and multiplication can be computed independently for
all residues:

〈x〉A ◦ 〈y〉A=〈|x0 ◦ y0|m0 , |x1 ◦ y1|m1 , . . . , |xn−1 ◦ yn−1|mn−1〉A, ◦∈{+, −, ·} (2)
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Algorithm 1. Montgomery Multiplication for Multi-Precision Integers
(CIOS Method) [6]
Require: Modulus M and radix R = 2wn s.t. R > M and gcd(R, M) = 1; M ′

0 =
(−M−1 mod R) mod 2w , two unsigned integers 0 ≤ A, B < M in Montgomery
form, i.e. X = (Xn−1Xn−2 . . . X0)2w for X ∈ {A, B, M}.

Ensure: The product C = ABR−1 (mod M), 0 ≤ C < M , in Montgomery form.
1: T ← 0
2: for i from 0 to n − 1 do
3: c ← 0
4: for j from 0 to n − 1 do {Multiplication}
5: (c, Tj) ← Aj · Bi + Tj + c
6: end for
7: (Tn+1, Tn) ← Tn + c

8: m ← T0 · M ′
0 mod 2w {Reduction}

9: (c, T0) ← m · M0 + T0

10: for j from 1 to n − 1 do
11: (c, Tj−1) ← m · Mj + Tj + c
12: end for
13: Tn−1 ← Tn + c
14: Tn ← Tn+1 + c
15: end for
16: return (Tn−1Tn−2 . . . T0)2w

which allows carry-free computations2 and multiplication without partial prod-
ucts. However, some information involving the whole number x cannot be easily
computed. For instance, sign and overflow detection and comparison of mag-
nitude are hard, resulting from the fact that residue number systems are no
weighted representation. Furthermore, division and as a result reduction mod-
ulo an arbitrary modulus M �= A is not as easy as in other representations.

But similar to the basic idea of Montgomery multiplication, one can create a
modular multiplication method for input values in RNS representation as shown
in Algorithm 2, which involves a second base B = (m̃0, m̃1, . . . , m̃n−1) with
corresponding dynamic range B. It computes a value v = XY + fM that is
equivalent to 0 mod A and XY mod M . Thus, we can safely divide by A, i.e.,
multiply by its inverse modulo B, to compute the output XY A−1 (mod M).
Note that the needed reduction modulo A to compute f is free in A.

All steps of the algorithm can be efficiently computed in parallel. However, a
method to convert between both bases, a base extension mechanism, is needed.
We take three different options into account: the method based on a Mixed
Radix System (MRS) according to Szabó and Tanaka [37], as well as CRT-based
methods due to Shenoy and Kumaresan [33], Kawamura et al. [20] and Bajard et
al. [3]. We present a brief introduction of these methods, but for more detailed
information about base extensions, please see the recent survey at [5].

2 Inner-RNS operations still contain carries.
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Algorithm 2. Modular Multiplication Algorithm for Residue Number Sys-
tems [20]
Require: Modulus M , two RNS bases A and B composed of n distinct moduli mi

each, gcd(A,B) = gcd(A,M) = 1 and B > A > 4M .
Two factors X and Y , 0 ≤ X, Y < 2M , encoded in both bases and in Montgomery
form, i.e. 〈X〉A∪B and 〈Y 〉A∪B, X = xA (mod M) and Y = yA (mod M).

Ensure: The product C = XY A−1 (mod M), 0 ≤ C < 2M , in both bases and
Montgomery form.

1: 〈u〉A∪B ← 〈X〉A∪B · 〈Y 〉A∪B
2: 〈f〉A ← 〈u〉A · 〈−M−1〉A
3: 〈f〉A∪B ← BaseExtend(〈f〉A)
4: 〈v〉B ← 〈u〉B + 〈f〉B · 〈M〉B {〈v〉A = 0 by construction}
5: 〈w〉B ← 〈v〉B · 〈A−1〉B
6: 〈w〉A∪B ← BaseExtend(〈w〉B)
7: return 〈w〉A∪B

4.3 Base Extension Using a Mixed Radix System (MRS)

The classical way to compute base extensions is due to Szabó and Tanaka [37].
Let (m0, . . . , mn−1) be the MRS base associated to A. Then, each integer x can
be represented in a mixed radix system as

x = x′
0 + x′

1m0 + x′
2m0m1 + · · · + x′

n−1m0 . . . mn−2. (3)

The MRS digits x′
i can be derived from the residues xi by a recursive strategy:

where m−1
(i,j) are the pre-computed inverses of mj modulo mi. To convert x from

x′
0 = x0 (mod m0) (4)

x′
1 = (x1 − x′

0)m
−1
(1,0) (mod m1)

...
x′

n−1 = (· · · ((xn − x′
0)m

−1
(n−1,0)

− x′
1)m

−1
(n−1,1)

− · · · − x′
n−2)m

−1
(n−1,n−2)

(mod mn−1)

this representation to a target RNS base, we could reduce Equation (3) by each
target modulus m̃k, involving pre-computed constants c̃(k,i) =

∣
∣
∣
∏i−1

l=0 ml

∣
∣
∣
m̃k

. But

instead of creating a table for all c̃k, a recursive approach is more efficient in our
situation, eliminating the need for table-lookups [4], and allowing to compute all
residues in the target base in parallel:

|x|m̃k
=

∣
∣(. . . ((x′

n−1mn−2+x′
n−2)mn−3+x′

n−3)mn−4+ · · · + x′
1)m0 + x0

∣
∣
m̃k

(5)

4.4 Base Extension Using the Chinese Remainder Theorem (CRT)

Recall the definition of the CRT and adopt it to the source base A with dynamic
range A:

x =
n−1∑

k=0

Âk

∣
∣
∣
∣
xk

Âk

∣
∣
∣
∣
mk

− αA, α < n (6)
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where Âk = A/mk and α is an integer s.t. 0 ≤ x < A. Note that α is strictly
upper-bounded by n. When reducing this equation with an arbitrary target
modulus, say m̃i, we yield

|x|m̃i
=

∣
∣
∣
∣
∣

n−1∑

k=0

∣
∣
∣Âk

∣
∣
∣
m̃i

δk − |αA|m̃i

∣
∣
∣
∣
∣
m̃i

, δk =
∣
∣
∣xk · Âk

−1
∣
∣
∣
mk

(7)

where
∣
∣
∣Âk

∣
∣
∣
m̃i

,
∣
∣
∣Âk

−1
∣
∣
∣
mk

and |A|m̃i
are pre-computed constants. Note that the δk

do not depend on the target modulus and can thus be reused in the computation
of a different target residue.

This is an efficient way to compute all residues modulo the target base, pro-
vided we know the value of α. While involving a couple of look-ups for the con-
stants as well, the instruction flow is highly uniform (cf. Criterion A4) and fits
to our SIMD architecture, i.e., we can use n threads to compute the n residues
of x in the target base in parallel (cf. Criterion A1).

The first technique to compute such an α is due to Shenoy and Kumaresan
[33] and requires a redundant modulus mr ≥ n that is relatively prime to all other
moduli mj and m̃i, i.e., gcd(A, mr) = gcd(B, mr) = 1. Consider Equation 7, set
m̃i = mr and rearrange it to the following:

|α|mr =

∣
∣
∣
∣
∣
|A−1|mr ·

(
n−1∑

k=0

∣
∣
∣Âk

∣
∣
∣
mr

δk − |x|mr

)∣
∣
∣
∣
∣
mr

. (8)

Since α < n ≤ mr it holds that α = |α|mr and thus Equation 8 computes the
exact value of α, involving the additional constant |A−1|mr .

Kawamura et al. propose a different technique that approximates α using
fixed-point computations [20]. Consider Equation 7, rearrange it and divide
by A:

α =
n−1∑

k=0

δk

mk
− |x|m̃i

A
=

⌊
n−1∑

k=0

δk

mk

⌋

. (9)

Next, they approximate α by using truncr(δk) as numerator and 2w as denomi-
nator and adding a properly chosen offset σ, where truncr(δk) sets the last w−r
bits of δk to zero:

α′ =

⌊
n−1∑

k=0

truncr(δk)
2w

+ σ

⌋

=

⌊
1
2r

n−1∑

k=0

⌊
δk/2w−r

⌋
+ σ

⌋

, (10)

Thus, the approximate value α′ can be computed in fixed-point arithmetic as
integer part of the sum of the r most-significant bits of all δk. Provided σ is chosen
correctly, Equation 10 will compute α′ = α, and the resulting base extension will
be exact.

Finally, Bajard et al. follow the most radical approach possible [3]: they allow
an offset of αA ≤ (n − 1)A to occur in Equation 7 and thus do not need to
compute α at all. After the first base extension we have f ′ = f + αA and thus
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w′ = w + αM , i.e., the result w′ will contain a maximum offset of (n − 1)M ,
and thus be equivalent to w mod M . However, this technique needs additional
measures of precaution in the multiplication algorithm, which predominantly
condense in the higher dynamic ranges needed.

4.5 Multiplication Modulo Generalised Mersenne Primes

For some cryptosystems like DSA, arithmetic in an underlying prime field is
required. Taking advantage of the special structure of Mersenne primes, the re-
duction modulo p after a multiplication can be carried out very efficiently. Using
such a method, we can compute r′ using a standard multi-precision multiplica-
tion method first, followed by a reduction algorithm that is specific for the given
prime. In this work, we will use an algorithm to efficiently compute multiplica-
tions modulo P-224, where P-224 is the 224 bit prime proposed by NIST [25].
Algorithm 3 performs the complete reduction for this prime with only two addi-
tions and two subtractions of 224bit integers and a subsequent correction step to
determine the correct value of r ≡ r′ mod p, since −2p ≤ r′ < 3p must be consid-
ered. Note that this final correction step additionally needs the same amount of
computations, as we have to avoid data-dependant branches (cf. Criterion A4).

Algorithm 3. NIST Reduction for P-224 = 2224 − 296 + 1
Require: Double-sized integer r′ = (r′

13, . . . , r
′
2, r

′
1, r

′
0) in base 232 and 0 ≤ r′ < P-2242

Ensure: Single-sized integer r ≡ r′ mod P-224, 0 ≤ r < P-224.
1: Concatenate r′

i to following 224-bit integers tj :

t1 = (r′
6, r

′
5, r

′
4, r

′
3, r

′
2, r

′
1, r

′
0), t2 = (r′

10, r
′
9, r

′
8, r

′
7, 0, 0, 0), t3 = (0, r′

13, r
′
12, r

′
11, 0, 0, 0)

t4 = (0, 0, 0, 0, r′
13, r

′
12, r

′
11), t5 = (r′

13, r
′
12, r

′
11, r

′
10, r

′
9, r

′
8, t7)

2: Compute r′′ = t1 + t2 + t3 − t4 − t5
3: return r = r′′ mod P-224

5 Implementation

In this section we will describe the implementation of two primitive operations
for a variety of cryptosystems: first, we realise modular exponentiation on the
GPU for use with RSA, DSA and similar systems. Second, for ECC-based cryp-
tosystems we present an efficient point multiplication method which is the fun-
damental operation, e.g., for ECDSA or ECDH [16].

5.1 Modular Exponentiation Using the CIOS Method

We implemented the CIOS Method as introduced in Algorithm 1 for sequential
execution since it does not include any inherent parallelism. Fan et al. describe
efficient ways to pipeline such an algorithm for the use on multi-core systems [13].
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This would however need fairly complex coordination and memory techniques
and thus will not be considered further for our implementation, cf. Criteria A4
and B4-B6.

As all modular exponentiations are independent, we let each thread compute
exactly one modular exponentiation in parallel with all others. Resulting from
that, this solution only profits from coarse-grained parallelism. We assume the
computation of distinct exponentiations, each having the same exponent t –
for example RSA signatures using the same key – and thus need to transfer
only the messages Pi for each exponentiation to the device and the result P t

i

(mod N) back to the host. As a result, every thread executes the same control
flow, fulfilling Criterion A4. To accelerate memory transfers between host and
device, we use page-locked host memory and pad each message to a fixed length
that forces the starting address of each message to values that are eligible for
global memory coalescing (cf. Criteria B1 and B4).

For modular exponentiation based on Algorithm 1, we applied the straightfor-
ward binary right-to-left method [35]. During exponentiation, each thread needs
three temporary values of (n+2) words each that get used as input and output of
Algorithm 1 in a round-robin fashion by pointer arithmetic. Thus, 3(n+2) words
are required. This leads to 408bytes and 792bytes for 1024bits and 2048bit pa-
rameters, respectively. Each multiprocessor features 16384bytes of shared mem-
ory, resulting in a maximum number of 
16386/408� = 40 and 
16386/792� = 20
threads per multiprocessor for 1024 and 2048bits, respectively, if we use shared
memory for temporary values. Clearly, both solutions are inefficient when con-
sidering that each multiprocessor is able to execute 768 threads per block in
principle (i.e., we favour Criterion A2 over B2).

Thus, we chose to store the temporary values in global memory. We have to
store the values interleaved so that memory accesses of one word by all threads
in a warp can be combined to one global memory access. Hence, for a given set
of values (A, B, C, . . .) consisting each of n + 2 words X = (x0, x1, . . . , xn+1),
we store all first words (a0, b0, c0, . . .) for all threads in the same block, then all
second words (a1, b1, c1, . . .), and so on (cf. Criterion B4).

Moreover, we have to use nailing techniques, as CUDA does not yet include
add-with-carry instructions. Roughly speaking, nailing reserves one or more of
the high-order bits of each word for the carry that can occur when adding two
numbers. To save register and memory space, however, we store the full word
of w bits per register and use bit shifts and and-masking to extract two nibbles,
each providing sufficient bits for the carry (cf. Criterion A3). This can be thought
of decomposing a 32 bit addition in two 16 bit additions plus the overhead for
carry handling.

5.2 Modular Exponentiation Using Residue Number Systems

Computations in residue number systems yield the advantage of being inherently
parallel. According to Algorithm 2 all steps are computed in one base only, ex-
cept for the first multiplication. Thus, the optimal mapping of computations to
threads is as follows: each thread determines values for one modulus in the two
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bases. As a result, we have coarse-grained (different exponentiations) and fine-
grained parallelism (base size), fulfilling Criterion A1. We call n′ the number of
residues that can be computed in parallel, i.e., the number of threads per en-
cryption. The base extension by Shenoy et al. needs a redundant residue starting
from the first base extension to be able to compute the second base extension.
To reflect this fact, we use two RNS bases A and B, having n moduli each, and
an additional residue mr resulting in n′ = n + 1. For all other cases, it holds
that n′ = n.

Considering the optimal number of bits per modulus, we are faced with w =
32bit integer registers on the target hardware. Thus, to avoid multi-precision
techniques, we can use moduli that are smaller than 2w. The hardware can
compute 24 bit multiplications faster than full 32 bit multiplications. However,
CUDA does not expose an intrinsic to compute the most-significant 16 bits of the
result. Using 16bit moduli would waste registers and memory and increase the
number of memory accesses as well. Thus, we prefer full 32 bit moduli to save
storage resources at the expense of higher computational cost (cf. Criteria A2
and A3).

For Algorithm 1 to work, the dynamic ranges A and B and the modulus M
have to be related according to B > A > 22M , or B > A > (2+n)2M when using
Bajard’s method. For performance reasons, we consider full warps of 32 threads
only, resulting in a slightly reduced size of M . The figures for all possible combi-
nations can be found in Table 6 in the Appendix. For input and output values,
we assume that all initial values will have been already converted to both bases
(and possibly the redundant modulus mr) and that output values will be re-
turned in the same encoding. Note that it would be sufficient to transfer values
in one base only and do a base extension for all input values (cf. Criterion B1,
transferring values in both bases results in a more compact kernel together with
a slightly higher latency). Different from the CIOS method, temporary values
can be kept local for each thread, i.e., every thread stores its assigned residues
in registers. Principally all operations can be performed in parallel on different
residues and – as a result – the plain multiplication algorithm does not need any
synchronisations. However, both properties do not hold for the base extension
algorithms.

Mixed Radix Conversion. Recall that the mixed radix conversion computes
the mixed radix representation from all residues in the source base first and
uses this value to compute the target residues. The second step involves the
computation of n′ residues and can be executed in parallel, i.e., each thread
computes the residue for ’its’ modulus. As a result, we have to store the n MRS
digits in shared memory to make them accessible to all threads (cf. Criteria A1
and B2). The first step however is the main caveat of this algorithm due to
its highly divergent nature as each MRS digit is derived from the residue of
a temporary variable in a different modulus (and thus thread) and depends
on all previously computed digits, clearly breaking Criterion A4 and resulting
in serialisation of executions. Additionally, note that threads having already
computed an MRS digit do not generate any useful output anymore.
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CRT-Based Conversion. The first step for all CRT-based techniques is to com-
pute the δk for each source modulus and can be carried out by one thread for each
value. Second, all n′ threads compute a weighted sum involving δk and a modulus-
dependent constant. Note that all threads need to access all δk and thus δk have to
be stored in shared memory (cf. Criterion B2). Third, α has to be derived, whose
computation is the main difference in the distinguished techniques. α is needed
by all threads later and thus needs to be stored in shared memory as well. After
computing α all threads can proceed with their independent computations.

Bajard’s method does not compute α and consequently needs no further oper-
ations. For Shenoy’s method, the second step above is needed for the redundant
modulus mr as well, which can be done in parallel with all other moduli. Then, a
single thread computes α and writes it to shared memory. The redundant residue
mr comes at the price of an additional thread, however the divergent part needed
to compute α does only contain one addition and one multiplication modulo mr.
Kawamura’s method needs to compute the sum of the r most significant bits of
all δk. While the right-shift of each δk can be done using all threads, the sum over
all shifted values and the offset has to be computed using a single thread. A final
right-shift results in the integer part of the sum, namely α.

Comparison and Selection. Clearly, Bajard’s method is the fastest since it
involves no computation of α. Shenoy’s method only involves a small divergent
part. However, we pay the price of an additional thread for the redundant mod-
ulus, or equivalently decrease the size of M . Kawamura’s technique consists of
a slightly larger divergent part, however it does neither include look-ups nor
further reduces the size of M .

Not all base extension mechanisms can be used for both directions required for
Algorithm 2. For Bajard’s method, consider the consequence of an offset in the sec-
ond base extension: we would compute some w′′ in base A that is not equal to the
w′ in B. As a result, neither 〈w′〉A nor 〈w′′〉B could be computed leading to an in-
valid input for a subsequent execution of Algorithm 2. Thus, their method is only
available for A → B conversions. Shenoy’s method can only be used for the second
base extension as there is no efficient way to carry the redundant residue through
the computation of f modulo A. The technique by Kawamura et al. would in prin-
ciple be available for both conversions. However, the sizes of both bases would be
different to allow proper reduction in the A → B case, thus we exclude this option
fromour consideration.Table 1shows the available and the practical combinations.

Table 1. Base Extension Algorithm Combinations

A → B
MRC (M) Shenoy (S) Kawamura (K) Bajard (B)

B
→

A

MRC (M) • ◦ ◦ •
Shenoy (S) • ◦ ◦ •
Kawamura (K) • ◦ ◦ •
Bajard (B) ◦ ◦ ◦ ◦
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5.3 Point Multiplication Using Generalised Mersenne Primes

For realising the elliptic curve group operation, we chose mixed affine-Jacobian
coordinates [8] to avoid costly inversions in the underlying field and thus con-
centrated on efficient implementation of modular multiplication, the remaining
time critical operation. For this, we used a straightforward schoolbook-type mul-
tiplication combined with the efficient reduction technique for the generalised
Mersenne prime presented in Algorithm 3.

As for the CIOS method, there is no intrinsic parallelism except pipelining in
this approach (cf. Criterion A1). Thus, we use one thread per point multiplica-
tion. We assume the use of the same base point P per point multiplication kP
and varying scalars k. Thus, the only input that has to be transferred are the
scalars. Secondly, we transfer the result in projective Jacobian coordinates back
to the host. For efficiency reasons, we encode all coordinates interleaved for each
threads in a block again.

We used shared memory to store all temporary values, nailed to 28 bits to
allow schoolbook multiplication without carry propagation. Thus, we need 8
words per coordinate. Point addition and doubling algorithms were inspired by
libseccure [29]. With this approach shared memory turns out to be the lim-
iting factor. Precisely, we require 111words per point multiplication to store
7 temporary coordinates for point addition and modulo arithmetic, two points
and each scalar. This results in 444 bytes of shared memory and a maximum
of 
16384/444� = 36 threads per multiprocessor. This leaves still room for im-
provements as Criterion A1 is not fulfilled. However, due to internal errors in
the toolchain, we were not (yet) able to compile a solution that uses global mem-
ory for temporary values instead. Note that the left-to-right binary method for
point multiplication demands only one temporary point. However, for the sake
of a homogeneous flow of instructions we compute both possible solutions per
scalar bit and use a small divergent section to decide which of them is the desired
result (cf. Criterion A4).

6 Conclusion

With the previously discussed implementations on GPUs at hand, we finally
need to identify the candidate providing the best performance for modular ex-
ponentiation.

6.1 Results and Applications

Before presenting the benchmarking results of the best algorithm combinations
we show our results regarding the different base extension options for the RNS
method. The benchmarking scheme was the following: first, we did an exhaustive
search for the number of registers per thread that can principally be generated
by the toolchain. Then, we benchmarked all available execution configurations
for these numbers of registers. To make the base extension algorithms compa-
rable, we would have to repeat this for all possible combinations, as shown in
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Table 2. Results for different Base Extension Techniques (RNS Method)

Base Ext. Throughput (1024 bits) Throughput (2048 bits)
A → B B → A [Enc/s] (rel.) [Enc/s] (rel.)

M M 194 (46%) 28 (50%)
B M 267 (63%) 38 (67%)
B K 408 (97%) 55 (98%)
B S 419 (100%) 56 (100%)

Table 1. However to reduce the complexity of benchmarking, it suffices to mea-
sure all possible combinations in the first row and all possible combinations in
the second column to gain figures for all available combinations. The results for
the particular best configuration can be found in Table 2.

Clearly, the mixed radix based approach also used in [24] cannot compete with
CRT-based solutions. Kawamura et al. is slower than the method of Shenoy et
al. , but performs only slightly worse for the 2048bit range. Figure 1 shows the
time over the number of encryptions for the four cases and the 1024bit and
2048bit ranges, respectively.

Both graphs show the characteristic behaviour: Depending on the number of
blocks that are started on the GPU and the respective execution configuration we
get stair-like graphs. Only multiples of the number of warps per multiprocessor
and the number of multiprocessors result in optimal configurations that fully
utilise the GPU. However, depending on the number of registers per thread and
the amount of shared memory used other configurations are possible and lead
to smaller steps in between.

Optimised Implementations. Beside the reference implementation based on
the CIOS algorithm, we selected as best choice the CRT-RNS method based on a
combination of Bajard’s and Shenoy’s methods to compute the first and second
base extension of Algorithm 2, respectively.

The selection of the implementation was primarily motivated to achieve high
throughput rather than a small latency. Hence, due to the latency, not all im-
plementations might be suitable for all practical applications. To reflect this, we
present figures for data throughput as well as the initial latency tmin required at
the beginning of a computation. Note that our results consider optimal configu-
rations of warps per block and blocks per grid only. Table 3 shows the figures for
modular exponentiation with 1024 and 2048bit moduli and elliptic curve point
multiplication using NIST’s P-224 curve.

The throughput is determined from the number of encryptions divided by the
elapsed time. Note that this includes the initial latency tmin at the beginning of
the computations. The corresponding graphs are depicted in Figure 2. Note the
relatively long plateau when using the CIOS technique. It is a direct result from
having coarse-grained parallelism only: the smallest number of encryptions that
can be processed is 128 times higher than for the RNS method. Its high offset
is due to storing temporary values in global memory: memory access latency is
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Fig. 1. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right)
Moduli For Different Base Extension Methods, based on a Nvidia 8800 GTS Graphics
Card

Table 3. Results for Throughput and Minimum Latency tmin on a Nvidia 8800 GTS
Graphics Card

Technique Throughput Latency tmin OPs at tmin

[OPs/s] [ms/OP] [ms]

ModExp-1024 CIOS 813.0 1.2 6930 1024
ModExp-1024 RNS 439.8 2.3 144 4
ModExp-2048 CIOS 104.3 9.6 55184 1536
ModExp-2048 RNS 57.9 17.3 849 4
ECC PointMul-224 1412.6 0.7 305 36

hidden by scheduling independent computations, however the time needed to
fetch/store the first value in each group cannot be hidden.

Clearly, the CIOS method delivers the highest throughput at the price of a
high initial latency. For interactive applications such as online banking using
TLS this will be a major obstacle. However, non-interactive applications like a
certificate authority (CA) might benefit from the raw throughput3. Note that
both applications will share the same secret key for all digital signatures when
using RSA. In case of ECC (ECDSA) however, different exponents were taken
into account.

The residue number system based approach does only feature roughly half
of the throughput but provides a more immediate data response. Thus, this
method seems to be suitable even in interactive applications. Last but not least
elliptic curve cryptography clearly outperforms modular exponentiation based
techniques not only due to the much smaller parameters. With respect to other
hardware and software implementations compared against our results in the next
section, we present an ECC solution which outperforms most hardware devices
and comes close the the performance of recent dual-core microprocessors.

3 Also consider the top model of Nvidia’s next series of GPUs, the GeForce 9800GX2,
that can be used in a four-card setup.
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Fig. 2. Results For Modular Exponentiation with about 1024 (left) and 2048 bit (right)
Moduli and Elliptic Curve Point Multiplication on NIST’s P-224 Curve, based on a
Nvidia 8800 GTS Graphics Card

6.2 Comparison with Previous Implementations

Due to the novelty of general purpose computations on GPUs and since directly
comparable results are rare, we will take reference to recent hardware and soft-
ware implementations in literature as well. To give a feeling for the different
GPU generations we include Table 4.

Table 4. Comparison of Nvidia GPU platforms

GPU Shader clock Shaders Fill Rate Mem Bandwidth CUDA
[MHz] [GPixels/s] [GB/s]

7800GTX 13.2 54.4 no
8800GTS 1200 92 24.0 64.0 yes
8800GTX 1350 128 36.8 86.4 yes
9800GX2 1500 2 · 128 76.8 128.0 future

Moss et al. implemented modular exponentiation for 1024bit moduli on
Nvidia’s 7800GTX GPU [24], using the same RNS approach but picking different
base extension mechanisms. The authors present the maximum throughput only
that has been achieved at the cost of an unspecified but high latency. Fleissner’s
recent analysis on modular exponentiation for GPUs is based on 192bit moduli
but relates the GPU performance solely to the CPU of his host system.

Costigan and Scott implemented modular exponentiation on IBM’s Cell plat-
form, i.e., a Sony Playstation 3 and an IBM MPM blade server, both running
at 3.2GHz [10]. We only quote the best figures for the Playstation 3 as they
call the results for the MPM blade preliminary. The Playstation features one
PowerPC core (PPU) and 6 Synergistic Processing Elements (SPUs). Software
results have been attained from ECRYPT’s eBATS project [11]. Here, we picked
a recent Intel Core2 Duo with 2.13GHz clock frequency. Since mostly all figures
for software relate to cycles, we assumed that repeated computations can be
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Table 5. Comparison of our designs to results from literature. The higher throughput
values the better. ModExp-i denotes modular exponentiation using an i-bit modulus.
PointMul-i denotes point multiplication on elliptic curves over Fp, where p is a i-bit
prime. Results that used the Chinese remainder theorem are marked with “CRT”.

Reference Platform & Technique Throughput [ModExps/s] and [PointMuls/s]
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Our Design Nvidia 8800GTS GPU, CIOS algorithm 813.0 104.3
Nvidia 8800GTS GPU, RNS arithmetic 439.8 57.9
Nvidia 8800GTS GPU, ECC NIST-224 1412.6

[24] Moss Nvidia 7800GTX GPU, RNS arithmetic 175.4
[10] Costigan Sony Playstation 3, 1 PPU, 6 SPUs 909.2 401.4
[22] Mentens Xilinx xc2vp30 FPGA 471.7 1724.1 235.8 1000.0 440.5
[32] Schinianakis Xilinx xc2vp125 FPGA, RNS arithmetic 413.9
[36] Suzuki Xilinx xc4fx12 FPGA, using DSPs 584.8 79.4
[26] Nozaki 0.25μm CMOS, 80 MHz, 221k GE 238.1 34.2
[11] eBATS Intel Core2 2.13 GHz 1447.5 300.4 2623.4 a 1868.5a 1494.8a

[15] Gaudry Intel Core2 2.66 GHz 6900b

a Performance for ECDSA operation including additional modular inversion and multiplication operation.
b Special elliptic curve in Montgomery form, non-compliant to ECC standardised by NIST.

performed without interruption on all available cores so that no further cycles
are spent, e.g., on scheduling or other administrative tasks. Note that this is a
very optimistic assumption possibly overrating the performance of microproces-
sors with respect to actual applications. We also compare our work to the very
fast software implementation by [15] on an Intel Core2 system at 2.66GHz but
which uses the special Montgomery and non-standard curve over F2255−19.

To the best of our knowledge, Mentens published the best results for public key
cryptographyonreconfigurablehardwaresofar[22].SheusedaFieldProgrammable
Gate Array (FPGA) of Xilinx’ Virtex-II Pro family, namely the xc2vp30-7FF1152.
Schinianakis et al. implemented elliptic curve cryptography on the same family of
FPGAsbutusingRNSarithmetic for the underlying field [32]. Suzuki implemented
themodular exponentiationonFPGAs taking advantage of the includeddigital sig-
nal processors (DSPs) on a board from Xilinx’ Virtex 4 FX family [36].

Nozaki et al. designed an RSA circuit in 0.25 μm CMOS technology, that needs
221k gate equivalents (GE) [26] and uses RNS arithmetic with Kawamura’s base
extension mechanism.

6.3 Further Work

Elliptic curves in Hessian form feature highly homogeneous formulae to com-
pute all three projective coordinates in point additions [19,34]. However, the
curves standardised by ANSI and NIST cannot be transformed to Hessian form.
Furthermore, point doublings can be converted to point additions by simple co-
ordinate rotations. Thus, it is possible to compute point doublings and additions
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for all three coordinates in parallel. A future study will show the applicability
to graphics hardware.
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Table 6. Modulus Sizes for Modular Multiplication Using RNS

1st Base Ext. 2nd Base Ext. 1024 bit range 2048 bit range

Bajard et al. Shenoy et al. 981 2003
Others 1013 2035

Others Shenoy et al. 990 2014
Others 1022 2046
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