Addenda and Errata

There were few misprints in the original version which are listed here. There is also an important simplification made later on for the calculation of the K-theory of real projective spaces or bundles (IV.6), which is important in the solution of the vector field problem on the sphere by Adams. This simplification (which applies also to the equivariant case) is included in the following paper of the author
KAROUBI M. : Equivariant K-theory of real vector spaces and real projective spaces. Topology and its applications, 122 (2002) 531-546.

In (XIV; -4)	says: $[X, 0]$, it should say: $[X, O]$
In (10; 4)	says: $X \in U_{i} \cap U_{j} \cap U_{r} \cap U_{s}$, it should say: $x \in U_{i} \cap U_{j} \cap U_{r} \cap U_{s}$
In ($10 ;-1$)	says: $\alpha: E \rightarrow E^{\prime}$, it should say: $\alpha: E \rightarrow F$
In (11; 9)	$\begin{aligned} & \text { says: }\left(h_{s}(x)\right)^{-1} h^{r}(x) g_{i}^{r}(x) \\ & \text { it should say: }\left(h_{s}(x)\right)^{-1} h_{r}(x) g_{i}^{r}(x) \end{aligned}$
In ($11 ;-6$)	says: The associated, it should say: the associated
In (11; - 1)	$\text { says: }\left.\left.E_{j}\right\|_{U_{i} \cap U_{j}} \xrightarrow{\left.\hat{\lambda}_{i}\right\|_{U_{i} \cap U_{j}}} F_{j}\right\|_{U_{i} \cap U_{j}},$ it should say: $\left.\left.E_{j}\right\|_{U_{i} \cap U_{j}} \xrightarrow{\hat{\lambda}_{j} \mid U_{i} \cap U_{j}} F_{j}\right\|_{U_{i} \cap U_{j}}$
In (12; 4)	says: $g_{h i}(x)=\lambda_{j}(x)^{-1} \lambda_{i}(x)$, it should say: $g_{j i}(x)=\lambda_{j}(x)^{-1} \lambda_{i}(x)$
In ($23 ;-14$)	says: $s(x)=\sum_{\alpha \in I} \alpha_{i}(x) s_{i}^{\prime}(x)$, it should say: $s(x)=\sum_{\alpha \in I} \alpha_{i}(x) s_{i}(x)$

e-4 Addenda and Errata
 it should say:

In $(30 ;-2) \quad$ says: in 6.9 is,
it should say: in 6.10 is
In $(31 ; 5) \quad$ says: given in 6.10 ,
it should say: given in 6.9
In $(37 ;-5) \quad$ says: $\xi_{f}=\operatorname{Im} p$,
it should say: $\xi_{g}=\operatorname{Im} p$
In $(40 ; 13) \quad$ says: $=(1-p-p+2 q p)$,
it should say: $=(1-p-q+2 q p)$
In $(53 ;-20) \quad$ says: $\widehat{E \oplus F}$,
it should say: $\widehat{E \oplus F}$
In $(57 ; 16) \quad$ says: $\operatorname{Ker}\left[K(X) \rightarrow H^{0}(X ; \mathbb{Z})\right.$,
it should say: $\operatorname{Ker}\left[K(X) \rightarrow H^{0}(X ; \mathbb{Z})\right]$
In $(59 ; 17) \quad$ says: $\approx[X, 0]^{\prime}$,
it should say: $\approx[X, O]^{\prime}$
In $(62 ; 9) \quad$ says: $d\left(E, F, \alpha^{-1}\right)$,
it should say: $d\left(F, E, \alpha^{-1}\right)$
In $(65 ; 7) \quad$ says: $f(\sigma(t))=\sigma^{\prime}(t)$,
it should say: $\tilde{f}(\sigma(t))=\sigma^{\prime}(t)$
In $(70 ; 13)$
says: $\tilde{K}(X / Y) \longrightarrow K(X) \longrightarrow$,
it should say: $K(X / Y) \longrightarrow K(X) \longrightarrow$

In $(95 ; 17)$ says: in I.1.29,
it should say: in 1.29
In $(97 ;-9) \quad$ says: $\left.D\right|_{Y}$ is an automorphism of $\left.E\right|_{Y}$, it should say: $\left.D\right|_{X^{\prime}}$ is an automorphism of $\left.E\right|_{X^{\prime}}$
In $(102 ; 7) \quad$ says: $=\left(v, \partial_{v}(w) \cdot d_{v}(\lambda)\right)$,
it should say: $=\left(v, \partial_{v}(w), d_{v}(\lambda)\right)$
In $(102 ; 13) \quad$ says: $K_{\mathbb{C}}\left(B^{2}, S^{2}\right)$,
it should say: of $K_{\mathbb{C}}\left(B^{2}, S^{1}\right)$
In $(112 ; 10) \quad$ says: $K^{-n}\left(X \times B^{2}, X \times S^{-1} \cup Y \times B^{2}\right)$, it should say: $K^{-n}\left(X \times B^{2}, X \times S^{1} \cup Y \times B^{2}\right)$

In $(137 ;-9) \quad$ says: $f \cdot \rho(\lambda)=\rho(\lambda) \cdot f$,
it should say: $f \cdot \rho(\lambda)=\rho^{\prime}(\lambda) \cdot f$
In $(155 ;-1) \quad$ says: $i e_{1}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$,
it should say: $i e_{1}=\left(\begin{array}{rr}0 & i \\ -i & 0\end{array}\right)$
$\operatorname{In}(175 ; 14) \quad$ says: $\widetilde{K}_{\mathbb{R}}\left(P_{2}(\mathbb{C}) \approx \mathbb{Z}\right.$,
it should say: $\widetilde{K}_{\mathbb{R}}\left(P_{2}(\mathbb{C})\right) \approx \mathbb{Z}$
In $(179 ;-16) \quad$ says: Atiyah ([6]; cf. also 7.14,
it should say: Atiyah [6]; (cf. also 7.14)
In $(182 ;-9) \quad$ says: $K^{q-1}\left(P_{S} \times \mathbb{R}\right)^{n} \oplus K^{q-1}\left(P_{T} \times \mathbb{R}\right)^{n} \longrightarrow$

$$
K^{q-1}\left(P_{S \cap Y} \times \mathbb{R}\right)^{n} \xrightarrow{\Delta} K^{2}\left(P_{S \cup Y}\right)^{n}
$$

it should say: $K^{q-1}\left(P_{S} \times \mathbb{R}\right) \oplus K^{q-1}\left(P_{T} \times \mathbb{R}\right) \longrightarrow$

$$
K^{q-1}\left(P_{S \cap Y} \times \mathbb{R}\right) \xrightarrow{\Delta} K^{2}\left(P_{S \cup Y}\right)
$$

In $(184 ; 3) \quad$ says: Since $\left(D_{x, v}\right)^{2}=Q_{x}(v)$,
it should say: Since $\left(\Delta_{x, v}\right)^{2}=Q_{x}(v)$
In $(209 ;-13) \quad$ says: ${ }^{t}\left(\widetilde{\rho}_{x}(v)\right)=\rho_{x}(v)$,
it should say: ${ }^{t}\left(\widetilde{\rho}_{x}(v)\right)=\widetilde{\rho}_{x}(v)$
In $(210 ; 12) \quad$ says: $-v\left(\lambda v+w^{\prime}\right) v^{-1}=\lambda v+w$ since v and w^{\prime}, it should say: $-v\left(\lambda v+v^{\prime}\right) v^{-1}=\lambda v+v^{\prime}$ since v and v^{\prime}

In $(211 ;-6) \quad$ says: $\left(C(V) \times{ }_{X} C(V) \rightarrow C(V)\right.$,
it should say: $C(V) \times{ }_{X} C(V) \rightarrow C(V)$
In $(211 ;-2)$ says: map $V \times_{X} E$,
it should say: $\operatorname{map} V \times_{X} E \rightarrow E$
In $(212 ;-1) \quad$ says: resp. $\left(\beta \in H^{1}(X ; \operatorname{Spin}(n))\right.$,
it should say: resp. $\left(\beta \in H^{1}(X ; \operatorname{Spin}(n))\right)$

In $(214 ; 5) \quad$ sa	says: $Z^{2}(X ; \mathbb{Z} / 2)$, it should say: $H^{2}(X ; \mathbb{Z} / 2)$
In $(214 ; 5) \quad$ sa	says: of $H^{2}(X, \mathbb{Z} / 2)$, it should say: of $H^{2}(X ; \mathbb{Z} / 2)$
$\begin{array}{ll}\text { In }(215 ;-1) & \text { sa } \\ & \text { it }\end{array}$	says: a principle bundle, it should say: a principal bundle
In $(216 ;-6) \quad$ sa	says: $\left(\widetilde{\tau}^{\prime}(1), \bar{\gamma}(1)\right.$, or, it should say: $\left(\widetilde{\tau}^{\prime}(1), \bar{\gamma}(1)\right)$, or
In $(221 ; 10) \quad$ sa	says: $+\left(\lambda_{p+1}\right)^{2}+\cdots+\left(\lambda_{p+2}\right)^{2}$, it should say: $+\left(\lambda_{p+1}\right)^{2}+\cdots+\left(\lambda_{p+q}\right)^{2}$
In $(225 ; 6) \quad$ sa	says: where V, it should say: where \dot{V}
In (235;-2)	says: such that $Y_{Y \subset \bigcup} \bigcup U_{i}$, it should say: such that $Y \subset \bigcup U_{i}$
In $(243 ; 10) \quad$ sa	says: in the homermorphism, it should say: in the homeomorphism
In $(243 ;-9) \quad$ sa	says: $+\eta^{\prime} \sin \theta_{1} \sin \theta_{1}$, it should say: $+\eta^{\prime} \sin \theta_{2} \sin \theta_{1}$
$\begin{array}{ll}\text { In }(247 ; 7) & \text { sa } \\ & \text { it }\end{array}$	says: and let u, it should say: and let \widetilde{u}
In (247; -9) ${ }^{\text {sa }}$	says: $\pi_{1}\left(S^{+}(W \oplus 1),\left.S^{+}(W \oplus 1)\right\|_{Y} \cup S(W) \rightarrow\right.$, it should say: $\pi_{1}\left(S^{+}(W \oplus 1),\left.S^{+}(W \oplus 1)\right\|_{Y} \cup S(W)\right) \rightarrow$
In (247; -6) ${ }^{\text {sa }}$	says: $K_{r}^{\xi \oplus n, n}\left(P(W \oplus 1),\left.P(W \oplus 1)\right\|_{Y} \cup P(W)\right.$, it should say: $K_{r}^{\xi \oplus n, n}\left(P(W \oplus 1),\left.P(W \oplus 1)\right\|_{Y} \cup P(W)\right)$,
In (306; column $2 ;-16$) says: $Z_{\wedge} T, Z_{\wedge} T$ it should say: $Z_{\wedge} T, Z_{\vee} T$	
$\text { In }(306 ; \text { column } 1 ; 20)$; 20) says: $\begin{gathered}S(Z) \\ S^{\prime}(Z)\end{gathered}$,
	it should say: $\begin{gathered}S^{\prime}(Z) \\ S(Z)\end{gathered}$

