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Abstract. Asset tracking is a critical problem in modern data centers
with modular and easily movable servers. This paper studies a wireless
asset tracking solution built using wireless USB (WUSB) radios that are
expected to ubiquitous in future servers. This paper builds on our pre-
vious work on direct ranging using WUSB radios and studies algorithms
for data center wide localization of all rack mounted servers. The results
show that it is possible achieve very low error rates in localization in
spite of very stringent constraints (i.e., each server being just 1.8” high)
by exploiting the properties of the data center environment.
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1 Introduction

Data centers form the backbone of modern commerce and continue to grow both
in terms of number of servers and number of servers per unit volume of data
center space. Modern data centers sport rows upon rows of “racks”, each with
certain number of standard size “slots” where various “assets” (servers, routers,
switches, storage bricks, etc.) can be inserted. Fig. [[l shows a typical row of a
data center. Tracking these assets has repeatedly been cited as among the top 5
issues facing I'T administrators in large data centers and other IT environments.
As assets become easier to move — by virtue of smaller sizes, modular struc-
ture, hot plug-in/plug-out capabilities — they indeed tend to change locations
more frequently. There are several reasons for assets to move around: (a) re-
placement of old/problematic equipment and/or addition of new equipment and
resulting reorganization, (b) manual reorganization of assets to handle evolving
needs and applications, (¢) reorganization driven by power and thermal issues
which keep becoming more and more severe, (d) removal followed by reinser-
tion for miscellaneous reasons including SW patching, etc. One whole, the assets
don’t necessarily move very much, but in a large data center, even a limited
movement could become very cumbersome to manage manually. In particular,
trivial solutions such as those requiring personnel to log each moved asset in a
spreadsheet /database have not worked well in the past. Several vendors includ-
ing Sun and HP have devised new solutions, which points to the importance of
the problem.
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Fig. 1. Racks in a data center Fig. 2. Schematic Rack Layout

From the survey paper [I] on indoor positioning techniques, it can be con-
cluded that techniques based on wireless local area network (WLAN) are per-
haps reasonable to locate racks in the data center, but too crude for locating
servers. Techniques based on surface acoustic wave (SAW) can provide good
accuracy but would require a network of SAW sensors to be deployed and man-
aged. Ultra wideband (UWB) based solutions can provide good accuracy, but
any external infrastructure would add to cost and management issues. In this
paper, a wireless universal serial bus(WUSB) based solution is exploited that
uses UWB radios integrated into the server and does not rely on any external
infrastructure. HP has developed a solution based on an array of passive RFID
tags attached to each server [2]. The solution requires one radio frequency iden-
tification (RFID) reader per server which communicates with the rack level data
collector. Each RFID reader has a directional antenna mounted on a motorized
rack and each rack has a sensor controller aware of its position. Although an
accuracy exceeding 98% is claimed for this system, the complexity and cost of
the system are expected to be prohibitive.

In this paper we explore an automated asset tracking solution by exploiting
the WUSB that is expected to replace wired USB in the near future. The basic
assumption is that WUSB radios will be integrated with various assets and
could form a sort of mesh fabric which can be exploited for a variety of low-
bandwidth applications including asset tracking. There are many reasons why
such an approach is attractive:

1. WUSB uses UWB radio as its physical layer which is known to have excellent
localization properties.

2. Given its role as a wired USB replacement, WUSB radio cost should come
down rapidly, which makes the solution inexpensive.

3. Since WUSB radios are assumed to be integrated in each server, such a solu-
tion does not require any external infrastructure. Additional infrastructure
is usually highly undesirable from an IT personnel’s perspective.

In this paper we focus on “plugged-in” assets that have our integrated solution
implemented. The assets don’t necessarily have to be “booted up” or even pow-
ered, just plugged in. To allow for this, we propose to implement asset localization
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in a server’s baseboard management controller (BMC), which is supposed to be
always operational irrespective of the state of the server.

The most challenging aspect of the data center localization problem is the
need for very high accuracy localization. The typical “one meter” accuracies
that localization methods can typically achieve with significant effort are about 2
orders of magnitude worse than what we need in this application. Furthermore,
we would like to do this without any additional infrastructure. The outline of
the paper is as follows. In section 2] we present the configuration of modern data
centers and discuss how a wireless USB based scheme can walk through the entire
data center and localize individual plugged in assets. In section Bl we propose the
method of maximum likelihood identification (MLI) for localization of servers
and show that the performance of proposed method far exceeds the performance
of traditional hyperbolic positioning (HBP). The novelty of the MLI solution is
the exploitation of geometric properties of the data center environment to obtain
high accuracy localization. The performance of MLI is analyzed in sectiondl The
simulation results show that it is possible to achieve good accuracy in a data
center environment using MLI. Section [ concludes the discussion.

2 Configuration and Assumptions

The geometric aspects of server arrangement in a data center are crucial to our
solution; hence are described briefly here. The racks, as shown in Fig. [l are 78”
high, 23-25” wide and 26-30” deep and are arranged in rows. The rack rows are
arranged in pairs so that the servers in successive odd-even row pairs face one
another. This creates alternating hot and cold aisles (backs and fronts of servers)
and helps make cooling more efficient. The width of these hot and cold aisles
is generally different and needs to be accounted for. Fig. 2 shows a simplified
top view of this arrangement where the wider aisles are the cold aisles (fronts of
servers). The Fig. Blalso establishes a coordinate system that we will be using in
our analysis. The z-axis denotes the row index and the y-axis denotes the rack
position in the row. The z-axis (not shown in the figure) is along the height of
the rack. For example,(0, 1, 1) denotes that the server is in row 0, rack 1 and at
position 1 in the rack. The positions in the rack are labeled as 1,2, ..)N starting
from top of the rack.

In this paper, we focus on the popular “rack mount” servers that go directly
into the racks as shown in Fig. [l Obviously, the server thickness decides how
many servers can fit in a rack. The standard measure of thickness is “U” (about
1.8”). Consequently, a single rack can take up to 42 1U “assets”. The increasingly
popular “Blade servers” go vertically in chassis that in turn fit into racks will be
addressed in future work.

It is assumed that each plugged asset has an integrated WUSB radio accessible
from the management controller in the pre boot or post boot environments. We
assume that each rack has at least 2 plugged in servers and the racks are arranged
in a rectangular pattern — localization with geometries other than a rectangle is
beyond the scope of the current paper.
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We use a domain dependent medium access (MAC) protocol for localization
based on Wimedia [3] where MAC domain is referred as a Piconet and the master
of Piconet is called a Piconet Controller (PNC). The PNC guarantees access to
the medium on a TDMA basis and up to 255 slaves are allowed in the protocol
and slaves are allowed to interact with each other in the contention access period.

We assume that there are at least 3 servers with known locations. The WUSB
radios of these servers are assumed to be manually configured and these servers
are prohibited from being moved around. (If even the BMC of one of these
servers fails, it is possible to “elect” a suitable substitute from other already
localized servers — however, this is just a matter of detail that we omit here.) In
particular two known servers in rack(0,0) and one in rack(0,1) is considered. One
of the known server in rack(0,1) is hard coded to be the PNC. All other radios,
when turned on, are in the listening mode. We assume that every WUSB radio
could operate in a range of power between a minimum and maximum value. The
PNC starts with minimum power and gradually increases it (up to the maximum
power) so that it can reach a few servers around it in the same or adjacent rack.

For a distance estimate between two nodes time of arrival(ToA), time differ-
ence of arrival or receiver strength may be used [4]. The fundamental mechanism
that we used for for distance estimation is the ToA of the strongest signal. Here,
we briefly summarize our previous results on achievable ranging accuracy [5].
The results show that it is possible to achieve accuracies of 0.05-0.65 meter with
direct ranging [B]. In any case, such accuracies are far from adequate for our
purposes; therefore, we need additional mechanisms to reduce the error substan-
tially. These mechanisms include bias estimation, multiple measurements, ex-
ploitation of geometry and effective estimation procedures. In particular, based
on a large number of measurements, we found that the standard deviation of
ToA determined distance to be less than 0.32 meters in all cases (i.e., variance
less than 0.1 m?). We also found that the variance is largely independent of
the distance for the range of values that we are interested in (a few meters).
In particular, we conservatively assume the worst case variance of 0.2 (double
the maximum observed in our experiments). Consequently, we expect the errors
from our simulation results to be significantly overstated than those expected
from real measurements.

2.1 Localizing Multiple Nodes

In this section we discuss how we can systematically all nodes in a data center
starting with the known location of a few servers. There are in fact two distinct
phases here: (a) cold start, and (b) steady state. The cold start localization
phase occurs initially when none of the servers other than the known ones have
their locations known. It may also be invoked by the operator on major changes
or perhaps automatically once per day (or more frequently) to ensure that no
changes are missed. The steady state phase involves localization of one (or at
most a few) servers when the presence of new radios is detected or some radios
are removed or shut down.
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The cold-start localization starts with localization of unknown servers in rack
(0,0). For rack (0,0) localization, two servers at known locations (known servers)
in rack (0,0) and one known server in rack (0,1) is used as reference nodes.
During rack(0,0) localization, all the unknown nodes in rack(0,0) and one un-
known node in rack(0,1) and 2 unknown nodes in rack(1,1) are localized. These
unknown nodes are then used as reference nodes for corresponding rack localiza-
tion. Rack(0,1) onwards during localization 2 reference nodes from the current
rack and one reference node from the previous rack. Rack(0,1) localization on-
wards exactly 2 nodes in the next rack and 2 nodes in the opposite rack are
localized. Thus the row 0 localization is complete. The odd numbered racks
need not localize the servers in the next rack except the ones present in the
beginning of the first rack. For example, rack(1,1) uses two reference nodes from
its rack and one from rack(0,0) and localizes one server in rack(2,0). Thus, all
the servers in the data center are localized from right to left one row at a time.

Each server maintains a local grid map of its neighbors. Local grid map refers
to the map of position of neighbors. As the localization is performed, each server
updates its map to indicate which neighbors are plugged-in.

A critical element in cold-start localization is the avoidance of servers in racks
that we are currently not interested in localizing. The fundamental assumption
in the approach above is that the transmit power is chosen low enough so that the
signal does not reach across more than one rack in either direction. Obviously,
this cannot be guaranteed by power control alone. Instead, we need to examine
each distance estimate and determine whether the responder is more than one
rack away. That is, the problem requires doing “macro localization” in order to
enable systematic localization discussed above. This is another place where we
take advantage of the regular geometry of the racks. Since the rack dimensions
are known and the racks are regularly placed, macro-localization is relatively
straightforward. In particular, if we have 3 known nodes and distances from
them to an unknown node, simple geometric calculations can easily tell us with
high probability which rack the unknown node belongs to. In cases where there
is ambiguity, multiple measurements can be used for disambiguation much in the
same way as discussed in section for correctly locating new set of reference
nodes. For brevity, we omit the details of this procedure.

Once the cold start localization is finished, monitoring in steady state is rel-
atively simple because several Piconets operating simultaneously monitor their
surrounding nodes in order to update any changes in the locations of the nodes.

3 Localization Methods

In this section, we consider the issue of accurately estimating the position of a
single unknown node based on distance measurements from a number of known
nodes. We propose the maximum likelihood identification method and compare
with the traditional hyperbolic positioning method.
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3.1 Hyperbolic Positioning

Hyperbolic Positioning technique requires common time reference only between
reference nodes and does not rely on the synchronization between references
nodes and the target node [6]. The position of the target node is determined
based on the time difference of arrival from two reference nodes. Let us determine
the 2-D position of the target node T'(x¢,yo) using k reference nodes. Each of
the reference node makes the range measurement based on TOA with the target
node denoted as Dy, Dor....Dyr. Let us assume that the reference node share
a common time reference and the clock at the target node T is delayed by 6.
Then it is observed that the difference of range measurements between any pair
of node removes the delay. The range measurement between any two nodes is
given as

DkT — DZT = C(TkT + 6) — C(TZT + 6) (1)

where T, denotes the TOA measured by reference node k from the target node.
The position of target node T in the 2-D space is determined by the intersection
of hyperbola using 3 reference nodes. However, when range measurements incur
errors due to multi path and noise HBP could show large errors in localization [7].
In fact, for our problem ML identification shows much better accuracies than
HBP localization, as will be shown in section @l

3.2 Maximum Likelihood Identification

Maximum likelihood (ML) testing is a well-known technique for deciding on
which one of the hypothesized models a measurement came from. Since in our
problem, we only have 42 discrete possible positions for a server in a rack, the
maximum likelihood identification (MLI) deals with identifying which one of the
several discrete positions is the correct one. For a more formal description of
MLI, consider two nodes at the known locations in rack 1 and one in rack 2 (this
can be easily extended to p transmitters). Each of the known nodes measure
the distances using TOA from an unknown node at (m,l,n) where m denotes
the row number, m € (0,1..M), | denotes the rack number [ € (0,1,..L), and n
denotes the position of the node in the rack, n € (0,1,2...N —1).

Let V out of N-2 (N-2 possible unknown positions for rack 1 ) possible posi-
tions are filled by plugged-in servers. Each of the V' nodes determines its position
based on its range estimates from the three known nodes.

Let us consider the detection of the location of one of these V nodes say, node
u. Since the location of node v is unknown , it hypothesizes its location to be
any one of the possible locations and forms N — 2 likelihood functions, one for
each hypothesis, based on the range measurements (71, 724, 3, ). For forming
the likelihood function, we assume that a range estimate r;, is distributed as
Gaussian with zero bias (that is, mean equal to the true distance between the
reference node 7 and the node u, d;,, ) and variance o2 = Np/2. This model as-
sumes line of sight propagation, which may be reasonable when the transmitters
and the receivers are in close proximity of each other. In future work we relax
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this assumption and introduce bias in the range estimates. The node u estimates
its location based on the maximum likelihood rule, i.e., decide location (m, 1, 7),

(m,l,n) = 379

max P (i, r2u, 30| Hn) (2)
where the row index m is assumed to be correct as we localize one row at a time
and the rack index [ is decided based on the geometry of the racks and the three
range estimates as mentioned in section 2.l Hence, MLI searches only over the
rack index n.

Since each plugged in server is classified as occupying one of the allowed server
positions, several types of errors could happen. A server could be misclassified
to be occupying a wrong position where (i) there actually exists another server
or (ii) there exists no server. Another situation occurs when two or more nodes
claim the same location. This situation could be resolved by subsequent range
measurements. For the proposed location estimation system to be successful,
it is imperative that the probability of error in the classification of a node is
extremely small, especially because the estimation of nodes occurs in successive
stages, relying on previous estimates, one rack at a time and one row at a time.
We briefly mention the calculation of probability of correctly identifying a node
location for the maximum likelihood rule. By expanding eq. 2l and by throwing
out the terms that do not depend on n, the equivalent rule picks the maximum
of Z,, , = (ry,dy) — E, /2, where r,, = (Tlu,rgu,Tgu)T, d,, = (din,don, dsn).

Here, (—,—) denotes the inner product between two vectors and E, =
(d,,d,). Given that the true location of unknown node say, (m,l,u), the prob-
ability of correct classification is the probability that Z, , is the largest among
all possible Z,, ,, , Finally, a closed expression for error probabilities is similar to
calculating the error probabilities, in the detection of M-ary signals in additive
white Gaussian noise with arbitrary signal set [8]. It is well-known that the exact
error probability is difficult to calculate but tight upper and lower bounds can
be obtained.

Notice that the maximum likelihood rule does not require the knowledge of
the variance, as long as the variance is the same for any estimated range. If
the variances of the range estimates depend on the distance, then the maximum
likelihood rule would require the values of these variances. However, for short
distances, spanning the height of a rack or an adjacent rack, a single variance
assumption may be valid as a first approximation [5]. For assessing the effec-
tiveness of the algorithm we will use MATLAB simulations and union bound
discussed in section

3.3 Error Bound

For any countable set of events, A;,7 = 1,2, ..., with corresponding probabilities
P[A4;], the probability of union of these events is no greater than the sum of the
probabilities of individual events [§]. That is, P(U, 4i) < >, P[A;].

A node u can be uniquely identified by specifying the distances between the
node and the reference nodes, d,. Then, the “distance” between two nodes u
and ¢, denoted D, ;, is characterized by Dfm = Zi:l (dw — dki)Q
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From the detection of known signals in Gaussian noise [§], the probability of
error in distinguishing between two locations, u and 4, given that the data came

from the location u, is given by P (g4:]|dy) = Q (Du,i/\/(QNO)) where Q(x) is
the complementary cumulative distribution function of the standard Gaussian

at point z. Since a node u can be misidentified as any one of the other possible
nodes i # wu, the probability of error in misidentifying u is

P(eldy) = P || Jeuildu| < D P(ewldy) (3)
i#u i#u
Since N-2 corresponds to the maximum number of possible unknown servers

assuming the rack is completely filled, the average probability of error is obvi-
ously P (¢) = N1—2 Y. P(eldy)

3.4 Comparison of HBP and MLI

To analyze the performance of HBP and MLI methods, two racks in a data center
are considered. The problem of localization of 1U servers in rack(0,0) is studied.
The two servers in known locations in the top and middle of rack(0,0) (known
servers) and one known server in the middle of rack (0,1) is considered. We
analyze the performance of HBP and MLI methods by estimating the probability
of incorrect identification of server position, P..

To simulate the range estimate obtained via UWB radio, i.i.d Gaussian errors
are added to the true distance between the two nodes. Given the dimension of
the rack, there are 42 U servers possible in rack(0,0) when rack is completely
filled, out of which a maximum of 40 server positions may be unknown. Let the
three reference nodes for rack(0,0) simulation are labeled as 1,2,3 respectively
and the unknown server is at the position u, then the error distance metric for
MLI method is formed as

errDist(i) = sqrt((r1y — dii)? + (roy — d2i)? + (134 — ds;)?),i =1,2,...,V (4)

The position of the unknown node is localized as that position for which the
errDist metric is minimum among the V' metrics. Ideally, when the range mea-
surements are exact, the correct decision ¢ = u is made with the corresponding
errDist metric being zero. In HBP method, the position of each of the unknown
server is estimated using the intersection of hyperbolas. The position of the un-
known server is determined in the nearest neighbor sense by finding the minimum
distance between the estimated position and all the possible server positions.
In Fig. [ the performance of HBP method is compared with MLI method.
Assuming zero bias in the range estimates, the average probability of error in
identification of locations of unknown servers in a rack is plotted as a function of
variance of ranging errors. In Fig. [3] two graphs are shown for MLI method, one
for error bound described earlier and the other based on simulation procedure
outlined here. It can be seen that the MLI method significantly outperforms the
HBP method. The MLI method requires the calculation of distances between the
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three known nodes and all possible hypothesized positions for the unknown node
whereas the HBP method requires the finding of the nearest neighbor node, near-
est to the estimated position obtained through hyperbolic intersection. Hence,
the MLI method requires a slightly more computation per sever localization.
However, since computations involve mainly the calculations of Euclidean dis-
tances and ascertaining the minimum of a set of numbers, these computations
can be done quickly with a reasonable inexpensive processor. Certainly, the pro-
posed localization algorithm dictates an accuracy that is not attainable with the
HBP method. It is observed that, as long as the variance is below 0.8 (corre-
sponding to a probability of error of less than 0.1), the union bound is extremely
close to the simulation estimate. In rest of the paper we analyze the performance
of the MLI method only.

4 MLI Simulation Results

4.1 Single Rack Simulation

In this section, we further analyze the performance of MLI method for a single
rack. We also introduce the threshold rule based on the magnitude of error
distance metric in eqn (2).

Fig. @shows the error probability of ML method as a function of node position,
for two different variances of ranging errors. It is observed that the nodes at the
top and bottom of a racks, experience smaller errors than the nodes at the center
of the rack. Of course, each of the two end nodes, the top and the bottom, has only
one immediate neighbor, and this could have contributed to the low error rate.

The probability of incorrect identification can be lowered by increasing the
number of reference nodes or using multiple measurements. In Fig. Bl the simula-
tions show that by using 2 measurements of range estimates, P, is lowered by two
orders of magnitude. Similar reduction could also be obtained using increased
number of reference nodes. However, more reference nodes require that we start
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out with more servers in fixed and known locations, which is undesirable. A
downside to more measurements is increase in localization time.

The distance between two adjacent 1U servers is 1.8 inches. When the magni-
tude of minimum of V' errDist metrics exceeds a certain threshold value (which,
by simulation study,was fixed at 0.9, for a range estimate variance of 0.2) the
probability of incorrect identification increases substantially. Such error events
are unacceptable when reference nodes are identified for subsequent localizations.
Therefore, during the next rack reference node localization, if the magnitude of
the minimum of errDist metrics exceed the threshold value, then two range
measurements to each known reference nodes are made in order to increase the
ranging accuracy and reduce the errDist metric.

4.2 Error Propagation in Large Data Centers

The previous section showed that we can achieve excellent localization accuracy
in single rack. In this section we address the question of how the localization
error will change as we proceed from rack to rack.

Fig.[6lshows how the localization proceeds across racks in row 0. For simplicity,
we only show localization of reference nodes. We need to choose 2 reference
nodes in successive racks starting with known racks in racks 0 and 1 (shown in
red squares). Each such localization depends on 3 previously localized servers as
shown. The error propagation could then be characterized via a recursive set of
equations as discussed below. This simple analysis suggests that we arbitrarily
pick two of the localized nodes in a rack as reference nodes. In fact, because of
their importance, we pick reference nodes a bit more carefully, by considering
error distance metric and position within the rack. Nodes with small values of
error distance metric are likely to be located more precisely and hence make a
better choice for reference nodes. The position is important since we don’t want
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both reference nodes to be close together. These aspects should only make the
reference node choice more robust and hence result in even less error propagation.

Let P.; denote the probability of error in identifying an unknown node in a
rack, given i reference nodes in incorrect positions where i € {0,1,2,3}. Using
simulations and the MLI method we estimate values for P.; as:

Py =1.920e-5, P, = 1.430e-3, P.p = 7.60e-1, P.3 =820e-1  (5)

Not surprisingly, the probability of error goes up sharply with number of nodes
in error. The simulation also examined instances where the estimated server po-
sition is off by only +1 slot. The simulation study shows that, except when all
the three reference nodes are in error, whenever an error occurs in the identi-
fication of a node, the MLI method picked one of the immediate neighboring
nodes.

Let P;(n), i = 1,2 denote the probability of error in locating the ith reference
node in rack n. Now referring to Fig. [G, we can write the following equations.
First, the initial conditions are:

P1(0) = P(0) =0, Pi(1) = Peo, P2(1)=0 (6)
Now for n > 1, we can write the following recursive equation for Py (n).

Pi(n) = [1-P1 (n—D)][1—P2 (n—1)] {[1-P1 (n—2)] Peo+ P1 (n—2) Pe1 }
+ {P1(n—)[1-P2 (n—1) |+ [1-P1 (n—1)| P2 (n—1) } {[1-P1(n—2)] Pe1 + P (n—2) Pe2 }
+Pi(n—1) Po(n—1) {[1-Pi1(n—2)] P2+ P1(n—2) Pes }

The equation for Pa(n) is almost identical and is omitted. Since P;() and Ps()
differ only at rack 1, we simply assume the worst case scenario (which applies
to Pp) and drop the subscript from the above equation. We now show, via an
inductive proof, that P(n) remains “small” (i.e., of the order of P,y or smaller)
even as n grows. For this, let us inductively assume that both P(n—2) and P(n-)
are of the order of P.y. Certainly, this is true for P(0) and P(1). Therefore,

P(n) = Poo+P(n—2)P.y+2P(n—1){P.1+P(n—2)Pe2} ~ Pey+3P.1 P(n—1) (7)

Clearly, P(c0) = Peo/(1 — 3P.1). Now since Py is itself quite small (1.43e-3), it
follows that P(n) ~ Py and there is no appreciable error propagation. More gen-
erally, so long as P.; can be kept reasonably small, there is no error propagation
of any consequence. In particular, for the values given above, P(c0) =1.9283e-5.

Once row 0 localization is completed, two reference nodes in (rack 0, row 1),
are localized by utilizing range measurements from known nodes in (rack 0, row
0). After this, row 1 localization proceeds exactly as in row 0.

In order to verify analytic calculations above, we simulated localization for
all 16 racks in a 4x4 data center. In other words, we carried out successive
localizations across racks using MLI along with the threshold rule for identifying
the reference nodes. We ran the simulation 1 million times. With range estimate
variance of 0.2, the resulting localization error in 16th rack was found to be
1.9286e-5, which is pretty close to the expected value.
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5 Conclusions and Future Work

In this paper we proposed a wireless USB based solution for localization of all
plugged-in servers in data center racks. In particular, we showed how we can
systematically locate all other nodes starting with a few known nodes and the
associated errors in doing so. We showed how the use of multiple measurements
and careful selection of reference nodes can be used to keep the error probabil-
ities low in this process. For estimating the location of individual servers, we
considered both Hyperbolic Positioning (HBP) and Maximum Likelihood iden-
tification (ML) techniques. Our analysis indicates that (i) the ML method is
far superior to HBP in terms of accuracy of localization (ii) the ML method,
though computationally more intense than HBP, is executable with cheap pro-
cessors (iii) even with ML method, the overall accuracy critically depends on
good range estimates between a pair of UWB radios.

Future work on the topic would address the issue of reliably estimating bias in
distance measurement that arises naturally due to non line of sight components.
We also would like to obtain bounds on total localization time as a function of
the data center size.
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