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Abstract. The most efficient approaches defined so far to address performance 
degradations in end-to-end congestion control exploit the flow control mecha-
nism to improve end-to-end performance. The most authoritative solution in 
this context seems to be the eXplicit Control Protocol (XCP) which achieves 
high performance but requires changes in both network routers and hosts which 
make it difficult to deploy. To this aim we have developed a new mechanism, 
called Active Window Management (AWM), which is able to maintain the 
queue length in network routers almost constant providing no loss, while 
maximizing network utilization. The idea at the basis of AWM is to allow net-
work routers to manipulate the Advertised Window field in TCP ACKs. In this 
way no modifications to the TCP protocol are required. The target of this paper 
is to propose an extensive numerical analysis of AWM to compare it with the 
XCP protocol, chosen as reference case.  

Keywords: TCP performance optimization, XCP, Congestion Control, Adver-
tised Window. 

1   Introduction 

Internet congestion occurs when the available capacity is insufficient to meet the in-
stantaneous aggregate demand. The resulting effects are long delays in data delivery 
and wasted resources due to lost or dropped packets. For these reasons congestion 
control mechanisms have been introduced in the Internet from the early beginning. 
Congestion control is implemented by transport protocol algorithms that dynamically 
adjust rate or window size in response to implicit or explicit indications of congestion. 
In the Internet, the most used transport protocol is TCP which, in the absence of ex-
plicit feedback from the gateways, usually infers congestion from packet losses or 
from other congestion measurements (changes in throughput or end-to-end delay)[1].  
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Nevertheless, the most effective detection of congestion can occur in the gateways, 
that is, where the queuing behavior can be monitored over time. For this reason, Ac-
tive Queue Management (AQM) techniques, such as RED, REM, have been proposed 
in the last few years to address performance degradations in end-to-end congestion 
control. All the proposed AQM techniques are certainly an improvement over tradi-
tional drop-tail queues; however, they have several shortcomings and have been dem-
onstrated to be inefficient because they miss the challenging target of both minimiz-
ing network delay and keeping goodput close to the network capacity [2]. So the 
important issue on how to control TCP burstiness while maintaining the stability of 
the “AQM+TCP congestion control” system is still open. 

A different approach exploits the flow control mechanism in order to improve end-
to-end performance and maintain network queue stability. There are two different 
classes of solutions that adopt this approach. The first class includes schemes that are 
implemented both in the hosts and in the routers [3], and need undesirable modifica-
tions to the TCP protocol, or even its replacement, in order to accept, understand and 
use feedback signals from gateways. On the contrary, the second class of solutions in-
cludes algorithms which are implemented in the gateways only. 

The most authoritative solution in the first class is XCP [3], a new transport proto-
col that relies on the explicit cooperation among XCP routers and XCP senders or re-
ceivers. This protocol generalizes the Explicit Congestion Notification (ECN) [4] by 
allowing XCP routers to inform the XCP senders about the degree of congestion at 
the bottleneck. Moreover XCP uses two different mechanisms to control utilization 
and fairness: to ensure efficient utilization of network resources, an aggregate feed-
back is calculated according to the spare bandwidth in the network and the feedback 
delay; to control fairness, the concept of bandwidth shuffling is applied and a per-
packet-feedback is obtained by simultaneously allocating and de-allocating bandwidth 
such that the total traffic rate does not change while the throughput of each individual 
flow changes gradually to approach the flow’s fair share. To do so, knowledge about 
flow parameters is needed but in order to avoid per-flow state in routers and ensure 
scalability as number of flows increases, the control state is maintained in the packet 
header by introducing new fields. The explicit cooperation among routers and senders 
allows XCP to achieve better performance than TCP in terms of fairness, high utiliza-
tion, and small queue size, with almost no packet drops. However, even if XCP seems 
to be the most valid solution to address performance degradations in end-to-end con-
gestion control, it also requires changes in the whole system (both network routers 
and hosts) and that makes it relatively hard to deploy.  

The second class of solutions that relies on a distributed flow control mechanism 
among routers and end-users includes algorithms which are implemented in the gate-
ways only. More specifically, the basic idea is that network routers manipulate the 
Advertised Window parameter in the TCP ACKs. By so doing, routers can drive the 
TCP end-to-end flow control mechanism while TCP is not aware of this occurrence. 
Our proposed mechanism belongs to this second class. The main challenge of these 
algorithms is to derive the Advertised Window value to be sent to each TCP source 
from global congestion information such as the available buffer space, and although 
total compatibility with all versions of the TCP protocol makes this class of algo-
rithms more attractive than the previous one, solutions proposed so far ([5], [6]) are 
not able to improve the performance of TCP connections enough to be competitive 
with XCP. 
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A previous work of the same authors [7] presents an early proposal of a new 
mechanism, called Active Window Management (AWM), which is able to maintain 
the queue length in routers implementing it very close to a given target value, while, 
at the same time, avoiding packet losses. In this paper we extend the work in [7] with 
an extensive analysis of the AWM performance. Moreover we compare AWM with 
XCP and demonstrate that, when the access router implementing AWM is the bottle-
neck in the network, TCP performs very closely to XCP, providing no loss and very 
high network utilization. However, since changes required in the whole system (net-
work routers, and hosts) are less than XCP and, differently from XCP, AWM is per-
fectly compatible with TCP, it is easier to implement and deploy.  

By manipulating the Advertised Window parameter in the TCP ACKs, AWM 
gateways minimize the delay jitter and maximize the goodput of TCP sources. In ad-
dition, no per-flow state storage is needed in AWM gateways, ensuring scalability as 
number of flows increases. The TCP sender works as usual, but the AWM gateway 
action makes the Advertised Window usually more constraining than the Congestion 
Window. We propose to implement the AWM technique in the access network 
routers, that is, in routers through which both incoming and outgoing packets related 
to the same TCP connections are forced to pass through, whatever the routing strategy 
used in the network. The remaining gateways in the network may use other AQM 
technique, if any. Since changes required in the whole system (network routers, and 
hosts) are less than XCP, AWM is easier to implement and deploy relative to XCP. 

The rest of the paper is organized as follows. After a brief description of the AWM 
mechanism in Section 2, we show simulation results about comparisons between 
AWM and XCP in different network scenarios. Finally, in Section 3, we draw our 
conclusions. 

2   The AWM Mechanism 

2.1   Mechanism Description 

The goal of AWM is to maximize link utilization, and at the same time avoid losses. 
AWM is implemented on gateway nodes and interacts with TCP sources without re-
quiring any modification to the TCP protocol. An AWM gateway, that is, a gateway 
node implementing AWM, acts on ACK packets sent to TCP sources. More specifi-
cally, it uses the 16-bit header field in a TCP packet called Advertised Window 
(awnd). Let us recall that, according to the TCP flow control, the TCP receiver uses 
awnd to inform the sender about the number of bytes available in the receiver buffer. 
The TCP sender, on the other hand, transmits a number of packets given by the so-
called Transmission Window (twnd), corresponding to the minimum value between its 
Congestion Window (cwnd) and the last received awnd. 

Note that immediately after the establishment of the connection, cwnd is smaller 
than awnd, and therefore twnd=cwnd. However, according to the TCP protocol speci-
fication, cwnd is increased until a loss is detected. Thus, twnd increases as well until a 
loss is detected, unless cwnd becomes greater than the awnd value specified by the 
TCP receiver before losses occur. In this way, if the TCP receiver is able to manage 
more packets than the network nodes in the end-to-end path, awnd is greater than 
cwnd, and so losses may occur.  



682 M. Barbera et al. 

QF

QB

TCP 
sources

TCP 
destinations

AWM gateway

 
Fig. 1. Buffers considered in the AWM algorithm 

With this in mind, the idea at the base of the proposed algorithm is that, before 
losses occur, the AWM gateway modifies the awnd value in ACK packets in order to 
interrupt the increase in twnd values, and therefore control the transmission rate of the 
TCP sources. By so doing, the awnd value received by the TCP sender may be differ-
ent from that specified by the TCP receiver and the TCP AIMD mechanism is by-
passed, providing the network with a traffic shape defined by the AWM gateway.  

In order to avoid packet losses and maximize the link utilization, the AWM algo-
rithm tries to maintain the average queue length in the gateway close to a target value 
to be chosen significantly smaller than the buffer size (to have no losses), and at the 
same time higher than zero (to achieve high link utilization). To this end, based on the 
state of the queue, the AWM gateway estimates the number of bytes that it should re-
ceive from each TCP source. Hereafter we refer to this value as suggested window 
(swnd).  

The AWM algorithm works on two different buffers in the same gateway (see Fig. 
1): QF is the buffer loaded by data packets coming from TCP sources; QB is the buffer 
queuing the corresponding ACKs. Therefore, it needs to be implemented in network 
nodes crossed by both incoming and outgoing packets of the same TCP connections. 
This is the case of network access routers, which are also very often bottleneck 
routers. The AWM gateway calculates swnd on the basis of the status of QF. This is 
done at each packet arrival and departure in the QF buffer, independently of the TCP 
connection the packet belongs to. In the following the arrival and departure events are 
called updating events. Every time an ACK packet leaves the buffer QB, if its awnd 
value is greater than the last updated value of swnd, the AWM gateway overwrites the 
value of the awnd field with the swnd value and recalculates the checksum. In the op-
posite case the awnd field value remains unchanged in order not to interfere with the 
original TCP flow control algorithm1. Let us stress that this mechanism has been de-
fined in such a way that scalability is not weaken. In fact, the AWM gateway main-
tains one swnd value for the entire set of connections: no per-flow state memory is re-
quired, and updates are applied to awnd in forwarded ACKs, independently of the 
particular TCP connection they belong to.  

More specifically, the swnd value at the generic updating event k, swndk, is evalu-
ated on the basis of its previous value swndk-1, by considering two corrective terms 
DQk and DTk: 

( )MTUDTDQswndwnds kkkk ,max 1 ++= −  (1) 

                                                           
1 Clearly the roles of QF and QB are exchanged for TCP traffic in the opposite direction. 
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The minimum value of the suggested window is set to the Maximum Transfer Unit 
(MTU) in order to avoid the Silly Window Syndrome [8]. 

The term DQk in (1) is defined as follows: 

( )kkk qq
N

DQ −= −1
1

 (2) 

where N is an estimation of the number of active TCP flows crossing the AWM gate-
way. Its evaluation is discussed in Section 2.2. 

The term DQk has been defined as in (2) in order to give a negative contribution 
when the instantaneous queue length qk is greater than its previous value and a posi-
tive contribution in the opposite case. In other words, the AWM gateway detects the 
bandwidth availability when the instantaneous queue length decreases, and informs 
TCP sources by proportionally increasing the suggested window value for each of 
them. When, on the contrary, the queue length increases, the AWM gateway infers in-
cipient congestion and forces TCP sources to reduce their emission rates. If the N 
TCP sources reduce their transmission window by the term DQk, the queue length will 
go back to the qk-1 value.  

The term DTk, on the other hand, has been introduced in order to stabilize the 
queue length around a given target value, T. To this end, DTk has to give a positive 
contribution when the queue length is less than T, and a negative contribution in the 
opposite case. These considerations motivate our choice of evaluating DTk in the fol-
lowing way: 

( )k
k

k qT
TN

DT −⋅
⋅

⋅
=

δβ
 (3) 

The positive parameter β has to be chosen in such a way that fast convergence to the 
target is guaranteed, reducing the oscillations as much as possible. In [7], we have 
presented an analytical fluid model of the AWM gateway to be used for the choice of 
the appropriate values of β in order to obtain the desired performance. 

2.2   Estimation of N 

In order to evaluate both the terms DQk and DTk in (1), the AWM gateway has to 
know the number N of active TCP flows passing through the AWM gateway. As a 
first step we assume that they have the same average round-trip time, )(tR . We will 

subsequently relax this assumption in section 2.3.  
Let q(t) indicate the instantaneous queue length in the buffer QF of the AWM gate-

way at the generic time instant t, and W(t) the value of the TCP source transmission 
window. Thanks to the AWM mechanism, the transmission window is the same for all 
the sources and equal to the suggested window indicated by the AWM gateway in the 
ACK packets coming out of the buffer QB at the generic time instant t. The change rate 
of the queue length is equal to the total arrival rate minus the output rate, that is: 

C
tR

tWN

dt

tdq
−

⋅
=

)(

)()(
 (4) 
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where )(tR  is the round-trip time calculated as the sum of the round-trip propagation 

delay D and the queuing delay, i.e. ( ) CtqDtR /)( += , being C the link capacity of 

the buffer QF. 
Since the β parameter is chosen in order to guarantee the convergence of the queue 

length to the target, we can conclude that at the steady state the derivative of the 
queue length is zero. As a consequence, we can rewrite (4) as )()( tRCtWN ⋅=⋅ . 

Moreover, since the queue length is constant, the average round-trip time R(t) does 
not suffer of variations during the system evolution, so the product N⋅W(t) is constant 
as well. This means that if we consider two consecutive updating events at the instants 

1−kt  and kt , we have: 

kkkk swndNswndN ⋅=⋅ −− 11  (5) 

where 1−kswnd  and kswnd  are the values of W(t) calculated at the instants 1−kt  and kt , 

respectively. 
The above relationship states that if the AWM algorithm needs to change the value 

of the suggested window to be sent to TCP sources according to (1), the reason is that 
a variation in the number of active sources is occurred. As a consequence, (5) allows 
us to adaptively evaluate Nk in the following way: 

k

kk
k swnd

swndN
N 11 −− ⋅=  (6) 

The number of sources immediately after the k-th updating event estimated as in 
(6) should be substituted in (1) for evaluating swndk+1. However, when one or more 
TCP sources start, because of the Slow Start mechanism, they will probably have a 
congestion window less than the suggested window, so they will not react to the 
AWM gateway indications. Therefore, until their congestion window value does not 
reach the suggested window, only the other sources will have in charge to maintain 
the queue length constant. For this reason during this phase the number of sources in 
(1) will be kept constant and equal to the number of sources already active before the 
start of the new sources.  

The number of source will be varied in (1) only when the Slow Start phase is inter-
rupted by a suggested window value less than the congestion window value. This 
event is detected by the AWM gateway when the number of sources estimated by 
AWM, which is continuously evaluated by (6), decreases for the first time. On this 
occurrence the value of N to be used in (1) will be calculated by gradually increasing 
the value of N from that calculated before the start of the new sources, until it reaches 
the value estimated by (6). 

2.3   AWM Model in Presence of Sources with Different Round Trip Time 

Let us consider a set of M TCP sources loading the AWM buffer, and divide them in 
G groups in such a way that in each group there are TCP sources with the same  
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average round-trip time, Ri, where i = 1, 2, …, G2. Further let us indicate the number 
of sources in the generic group i as Ni. In this case (4) can be rewritten as follows: 

C
R

tWN

dt

tdq G

i i

i −
⋅

=∑
=1

)()(
 (7) 

Let Rm denote the mean value of the round-trip time of all the groups of sources, 
and let us define Neq as follows: 

∑
=

⋅=
G

i i

i
meq R

N
RN

1

 (8) 

The term Neq represents the equivalent number of TCP sources that should produce 
the same effects on the AWM buffer if all they had the same round-trip time equal to 
Rm. According to this notation, (4) becomes: 

C
R

tWN

dt

tdq

m

eq −
⋅

=
)()(

 (9) 

Since (4) and (9) have the same form, we can repeat all the considerations about 
the AWM mechanism by substituting N and R with Neq and Rm, respectively. 

3   Numerical Results 

In this section we show that AWM appropriately shapes incoming traffic into the 
network. More specifically, we will show that, with AWM, TCP performs very 
closely to a pseudo-constant bit-rate protocol providing no loss, and network utiliza-
tion becomes very close to one. In addition, we compare performance achieved by us-
ing AWM with performance obtained with XCP and when no control is applied in the 
network. That is, we will consider the following three cases: 

• AWM - sources use TCP NewReno unmodified as the transport protocol, and 
gateways in the network implement AWM mechanism over a buffer with Drop-
Tail dropping policy; 

• NC - sources use TCP NewReno unmodified as the transport protocol, but gate-
ways do not implement any particular mechanism; buffer dropping policy is Drop-
Tail; 

• XCP - sources use XCP as transport protocol, and gateways in the network are 
XCP as well, with a buffer using Drop-Tail dropping policy. 

Let us observe that, although we are considering TCP NewReno, any TCP version 
can be used achieving the same results for AWM given that AWM by-passes the TCP 
control mechanism, which is just the key element making the difference between dif-
ferent versions of TCP. 
                                                           
2 As mentioned above, at the steady state the round-trip time does not suffer appreciable varia-

tions. Therefore we can remove its temporal dependence, and refer to it with the constant 
value R. 
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Comparison is carried out through extensive simulations in different scenarios with 
the ns-2.29 simulator [9], integrated with a module implementing AWM. For the sake 
of space we present just a subset of the obtained simulation results. In order to have a 
fair comparison with XCP, we use the same case study considered in [3], where the 
XCP authors demonstrated its superiority over other important schemes like RED, 
REM, AVQ and CSVQ. The used network topology presents a single bottleneck 
shared by a number of sources (see Fig. 2(a)). The bottleneck capacity, the round-trip 
propagation delay and the number of flows vary according to the specific goal of each 
experiment. When unspecified, the link capacity is set to 150 Mb/s, the link propaga-
tion delay to 80 ms and the number of flow in the forward direction to 50. All flows 
have the same round-trip propagation delay and sources are long-lived FTP flows. In 
order to create a 2-way traffic with the potential for ack compression, we use the same 
number of flows in the forward and reverse paths. The MTU length is 1000 bytes. The 
buffer dropping policy is Drop-Tail. The buffer size is set equal to the bandwidth-
delay product, while the target value for AWM is half a buffer size. 

We present results for link utilization and lost packet percentage. Moreover we in-
troduce a robustness index, defined as the standard deviation of the queue length 
normalized with respect to the minimum distance between the average queue length 
and the two buffer limits (zero and buffer size). 

This definition comes from the consideration that the standard deviation is not able 
to represent by itself the impact of queue length oscillations on buffer performance.  
In fact, if the average queue length is close to zero, large space is available in the 
buffer to absorb an increase of the queue length without losses, but an even small de-
crease may empty the buffer and cause underutilization; on the contrary, if the aver-
age queue length is close to the buffer size, relatively large oscillations may lead to 
buffer overflow.  

Bottleneck capacity – First we investigated how the bottleneck capacity affects per-
formance of the three considered schemes. Fig. 2(b) shows performance in terms of 
loss percentage, bottleneck utilization and normalized queue standard deviation. From 
that figure we can observe that no losses occur with AWM and XCP. Moreover, only 
AWM provides 100% link utilization in all the considered cases. This is because the 
queue length is always close to the target value therefore greater than zero. In fact the 
amplitude of oscillations of the queue length around the average is very small for 
AWM, which means that the queue is stable around its average value. In addition, 
since the round-trip time is function of the bottleneck queuing time, small oscillations 
around the average queue length make variance of the round-trip time small as well, 
implying small values of delay jitter. 

Round-Trip Propagation Delay – To study the impact of increasing delays, we vary 
the propagation delay of each link. The bottleneck capacity is set to 150Mb/s while all 
the other parameters maintain the same values used in the previous analysis. Fig. 3(a) 
shows that performance achieved by AWM, as well as XCP, are not affected by the 
round-trip propagation delay. 

Number of flows – We analyzed the impact of the number of flows on congestion 
control. Even with a large number of flows, AWM is able to guarantee 100% link 
utilization and zero loss (see Fig. 3(b)). The amplitude of oscillations around the aver-
age queue length, and consequently the delay jitter, grows as the number of flows  
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increases. This behavior is due to the rounding errors introduced when TCP sources 
convert the number of bytes specified by the suggested window in an equivalent 
number of packets. As the number of flows increases, the suggested window de-
creases and the equivalent number of packets decreases as well, making the effects of 
the rounding errors more evident. 

Short Web-Like Flows – Finally we consider the impact of the presence of short 
web-like sources (mice) on performance of the three considered schemes. To this aim 
we assume short flows arrive according to a Poisson process, with Pareto-distributed 
file sizes [10]. Fig. 4(a) demonstrates that AWM is robust in dynamic environments 
with a large number of flow arrivals and departures. Once again, the utilization is 
100% while no losses occur even when the number of short flows grows significantly;  
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Fig. 2. (a) Network topology: Single Bottleneck – (b) Performance vs. LinkCapacity 
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Fig. 3. (a) Performance vs. Round-Trip Propagation Delay – (b) Performance vs. Number of 
FTP Flows 
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Fig. 4. (a) Performance vs. Mice Arrival Rate – (b) Average Response Time Reduction vs. 
Mice Arrival rate – (c) Average Throughput Increase vs. Mice Arrival Rate 
 
but as soon as the number of new mice per second becomes higher than 750, the 
number of simultaneously active flows becomes larger than the buffer size measured 
in packets: there is no space in the buffer to maintain a minimum of one packet from 
each flow and both AWM and XCP start dropping packets.  

For short web-like sources, as additional performance parameter we consider the 
Response Time that is, the time interval between the instant in which the users make 
the web file request and the instant in which its transfer is completed. Fig. 4(b) shows 
the reduction in the average Response Time among all web connections in AWM and 
XCP relative to the NC case. When AWM, as well as XCP, is applied, average re-
sponse time reduction of 20-30% is possible.  

Moreover, it is interesting to investigate if this reduction of the response time hap-
pens because AWM, or XCP, allows short web-like flows to gather more bandwidth 
than long FTP-like flows. To this end we show the variation of the Average Web 
Throughput and the Average FTP Throughput obtained when AWM and XCP schemes 
are implemented and compare these results with the NC case. Fig. 4(c) shows that 
AWM is able to substantially increase the throughput of Web sources without wasting 
the throughput of the FTP sources. In fact, let us consider the  case of 500 new mice per 
second as an example. The average web throughput obtained with AWM is approxi-
mately 25% more than the NC case, while the reduction of the average FTP throughput 
is less than 5%. On the contrary, XCP increases the average web throughput by 5% but 
the average FTP throughput is approximately 20% less than the NC case. 

Topology with multiple bottleneck links – In order to demonstrate that results 
shown so far are independent from the particular topology, we considered a more 
complex scenario with multiple bottlenecks. Once again, for comparison we choose to 
use the same topology used by the authors of XCP. The topology is composed by 9 
links as shown in Fig. 5(a). Capacity of link 5 is 50Mb/s, while all other links have a 
capacity of 100Mb/s. The propagation delay of every link is 20ms. Links are traversed  
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Fig. 5. (a) Network topology: Multiple Bottlenecks – (b) Performance vs. Link ID 

by 50 flows both in the forward and reverse directions, from node 1 to node 10. In ad-
dition, in order to have multiple bottleneck links, 50 flows traverse every link from 
node i to node 1+i , with i = 1, 2, …, 9.  

In this scenario, XCP provides lower link utilization than the other considered 
schemes (Fig. 5(b)). As XCP authors explained, this is because, at links 1, 2, 3 and 4, 
XCP tries to share the bandwidth between long-distance and short-distance flows. 
Nevertheless, throughput of long-distance flows is limited by the same mechanism at 
the most stringent bottleneck link 5. To overcome this drawback, XCP could be modi-
fied in order to keep the queue length around a target value and improve the link 
utilization, but the effect of this choice would be a fluctuation in the queue. However 
XCP authors chose to trade “a few percent of utilization for a considerably smaller 
queue”. The opposite choice (i.e. to trade a greater average queue length for the 
maximum link utilization) can be made for AWM without affecting the stability of the 
queue around the target. This is demonstrated in Fig 5(b) where the normalized stan-
dard deviation is very small. Results show that packet losses are zero for both AWM 
and XCP schemes. 

Fairness –  Simulation results are obtained considering 30 flows with a bottleneck 
link of 30Mb/s. As regards the fairness metric, we use the Jain fairness index [11]. 
Considering N flows, with flow i receiving a fraction xi of the given link bandwidth, 

the Jain fairness index is defined as ( ) ( )∑∑ 22
/ ii xNx . Simulation results are pre-

sented in Table I. In case 1, flows have the same round-trip propagation delay equal to 
40ms and performance of three considered schemes are quite the same. In case 2, dif-
ferent round-trip propagation delays are considered. In particular round-trip propaga-
tion delays of each flow are chosen as Di = Di-1 + 10ms, where i = 2,  3,  …, 30 and 
D1 = 40ms. Simulation results demonstrate that AWM is fairer than the non-
controlled case, but as expected, thanks to the explicit collaboration between XCP  
users and XCP network nodes, XCP is fairer than AWM. In fact, an XCP router re-
ceives, from each XCP source, information about the estimated round-trip time and  
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Table 1. Jain’s Fairness Index 

Case AWM XCP NC 
1 1.0000 1.0000 0.9937 
2 0.7007 0.9954 0.4392 

 

on the base of this value calculates a different feedback for each source. On the con-
trary, since the goal of AWM is to preserve the compatibility with TCP, AWM does 
not receive any information regarding the estimated round trip time and calculates the 
swnd regardless of the specific TCP connection would receive it. 

4   Conclusions 

In this paper we have proposed an extensive numerical analysis to compare the AWM 
mechanism, intended to enhance TCP congestion control, with the eXplicit Control 
Protocol (XCP), chosen as usual as reference case. Results demonstrate that AWM 
performs very closely to XCP. It achieves high performance as it stabilizes the queue 
length in the network access routers by manipulating the Advertised Window parame-
ter in TCP ACKs. Moreover it is scalable as the number of flows increases. However, 
AWM application is easier than XCP since it requires implementation only at access 
gateways and no modification at internal routers or at hosts is required.  
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