
AQCS: Adaptive Queue-Based Chunk Scheduling for
P2P Live Streaming

Yang Guo1, Chao Liang2, and Yong Liu2

1 Corporate Research, Thomson, Princeton, NJ, USA 08540
Yang.Guo@thomson.net

2 ECE Dept., Polytechnic University,Brooklyn, NY, USA 11201
cliang@photon.poly.edu,yongliu@poly.edu

Abstract. P2P streaming has been popular and is expected to attract even more
users. One major challenge for P2P streaming is to offer users satisfactory Qual-
ity of Experience (QoE) in terms of video resolution, startup delay, and playback
smoothness, all require efficient utilization of bandwidth resources in P2P net-
works. In this paper, we propose AQCS, adaptive queue-based chunk scheduling,
that can support the maximum streaming rate allowed by a P2P streaming system
with small signaling overhead and short startup delay. AQCS is a distributed al-
gorithm with minimum requirement on peers. Queue-based design enables peers
to be self-adaptive to the bandwidth variations and peer churn, and automatically
converges to the optimal operating point. The prototype of AQCS is implemented
and various implementation issues are examined. The experiments over the Plan-
etLab further demonstrate AQCS’s optimality and its robustness against changing
system/network environment.

1 Introduction

Video-over-IP applications have recently attracted a large number of users on the In-
ternet. Youtube [1] alone hosted some 45 terabytes of videos and attracted 1.73 billion
views by the end of August 2006. With the fast deployment of high-speed residential ac-
cess, such as Fiber-To-The-Home, video traffic is expected to dominate the Internet in
near future. Traditionally, video content can be streamed to end users either directly
from video source servers or indirectly from servers in Content Delivery Networks
(CDNs). Peer-to-Peer video streaming has emerged as an alternative with low server
infrastructure cost. P2P video streaming systems, such as ESM [2], CoolStreaming [3],
and PPLive [4], have attracted millions of users to watch live or on-demand video pro-
grams on the Internet [5].

The P2P design philosophy seeks to utilize peers’ upload bandwidth to reduce
servers’ workload. However, the upload bandwidth utilization might be throttled by the
so called content bottleneck where a peer may not have any content that can be uploaded
to its neighbors even if its link is idle. The mechanism adopted by P2P file sharing ap-
plications is to increase the content diversity among peers. For example, the rarest-first
policy of BitTorrent [6] encourages peers to retrieve the chunks with the lowest avail-
ability among their neighbors. Network coding has also been explored to mitigate the
content bottleneck problem [7]. The content bottleneck problem in live streaming is

A. Das et al. (Eds.): NETWORKING 2008, LNCS 4982, pp. 433–444, 2008.
c© IFIP International Federation for Information Processing 2008

434 Y. Guo, C. Liang, and Y. Liu

even more severe. Video content in live streaming has strict playback deadlines. Even
temporary decrease in peer bandwidth utilization leads to peer playback quality degra-
dation, such as video playback freezing or skipping. To make things worse, at any given
moment, peers are only interested in downloading a small set of chunks falling into the
current playback window. This greatly increases the possibility of content bottleneck.
One way to address this problem is to compromise user viewing quality. For example, a
lower video playback rate would impose lower peer bandwidth utilization requirement.
Allowing a longer playback delay also allows a larger set of chunks to be exchanged
among peers. The opposite solution lies in designing more efficient peering strategies
and chunk scheduling methods.

This paper deals with the second solution. Our focus is on the design of a chunk
scheduling method that can support high resolution video streaming service. We as-
sume collaborative P2P systems. Peers help each other and forward received video
chunks to other peers. Motivated by the effectiveness of buffer control on switches
and Active Queue Management (AQM) on routers, we propose a novel queue-based
chunk scheduling algorithm, AQCS, to adaptively eliminate content bottlenecks in P2P
streaming. Using queue-based signaling between peers and the content source server,
the amount of workload assigned to a peer is proportional to its available upload capac-
ity, which leads to high bandwidth utilization. The queue-based signaling also enables
the proposed scheme to adapt to the changing network environment. The data chunks
are relayed at most once by intermediate peers. Hence the video content can be dis-
seminated to all peers quickly. The simplicity of the design also reduces the signaling
overhead. Our contributions are three-fold:

– We propose a simple queue-based chunk scheduling method achieving high band-
width utilization in P2P live streaming. We theoretically show that the proposed
scheme can support the optimal streaming rate in idealized network environments.
A practical algorithm is designed to achieve the close-to-optimum performance in
realistic network environment.

– A full-feature prototype is developed to test the feasibility and efficiency of the pro-
posed scheduling algorithm. Various design considerations are explored to handle
dynamics in realistic network environments, including peer churns, peer bandwidth
variations, and inside network congestion.

– The performance of the prototype system is examined through experiments over
PlanetLab [8]. Both the optimality and the adaptiveness of the proposed chunk
scheduling method are demonstrated.

The remaining part of this paper is organized as follows. Background and related
work is included in Section 2. The queuing model and scheduling algorithm of queue-
based chunk scheduling are described in Section 3. Implementation considerations are
explored in Section 4. The experiment results are reported in Section 5. Finally, Sec-
tion 6 ends the paper with concluding remarks.

2 Background and Related Work

In [9], we propose HCPS - Hierarchically Clustered P2P Streaming system that can
support the streaming rate approaching the optimum upper bound with short delay, yet

AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming 435

is simple enough to be implemented in practice. In HCPS, the peers are grouped into
small size clusters and a hierarchy is formed among clusters to retrieve video data from
the source server. By actively balancing the uploading capacities among clusters, and
executing the perfect scheduling algorithm [10] within each cluster, the system resource
can be efficiently utilized.

Fig. 1 depicts a two-level HCPS system. At the lower level, all peers are organized
into bandwidth-balanced clusters. Each cluster consists of a cluster head and a small
number, e.g. from 20 to 40 normal peers. Cluster heads of all clusters form a super
cluster at upper level and retrieve video from the video source server in P2P fashion.
After obtaining video at the upper level, a cluster head acts as a local video proxy server
for normal peers in its cluster at lower level. Normal peers within the same cluster
collaborate according to the perfect scheduling algorithm to retrieve video from their
cluster head. In this new architecture, the server only distributes video to cluster heads;
a normal peer only maintains connections to its neighbors in the same cluster; and a
cluster head connects to both other cluster heads and normal peers in its own cluster.
Two-level HCPS already has the ability to support a large number of peers with mild
requirement on the number of connections on the server, cluster heads and normal peers.

S

r

3

a1

a3

a2

a1 b1

b2

b3

4

5

Cluster Head

Head Mapping

a2

a3

r
r

b1

b2

b3

r

r r

6

7

8

1 2

Top Level

Base Level

Fig. 1. Hierarchically Clustered P2P Streaming System

The perfect scheduling employed in HCPS does not work well in practical, though.
It requires a central controller that collects all peers’ upload capacity information, and
computes the sub-stream rates sent from the server to individual peers. In practice,
available upload capacity may not be known and can vary over time. The central co-
ordinator needs to continuously monitor peers’ upload capacity and re-compute the
sub-stream rates. The adaptive queue-based chunk scheduling method is a distributed
solution. Peers only exchange information with the server and make local decisions.
Upload capacity information of peers/source is not required, and the scheme adapts to
the changing peer membership and network environment automatically. Hence AQCS
is a more suitable peer scheduling method for HCPS at cluster level.

There have been ongoing efforts intending to improve resource utilization in P2P
live streaming. To improve the resource utilization in mesh-based P2P streaming, [11]

436 Y. Guo, C. Liang, and Y. Liu

proposes a two-phase swarming scheme where the fresh content is quickly diffused to
the entire system in the first phase, and peers exchange available content in the second
phase. Network coding is also applied to P2P live streaming. [12] performs a reality
check by using network coding for P2P live streaming. Nevertheless neither approach
can provably achieve the maximum streaming rate. The authors in [13] design a ran-
domized distributed algorithm, Random Useful Packet Forwarding (RUPF), that can
converge to the maximum streaming rate. They also study the delay that users must en-
dure in order to play the stream with a small amount of missing data. The queue-based
chunk scheduling method is a deterministic distributed algorithm with small control
overhead. No data chunk need to be skipped to achieve short startup delay. AQCS also
incurs less signaling overhead since no bit-maps carrying the data chunk availability
information are exchanged between peers. Our initial experiments show that AQCS
out-performs the randomized broadcasting scheme.

3 Adaptive Queue-Based Chunk Scheduling

It is desirable to support high streaming rate in P2P streaming. Higher streaming rate
allows the system to broadcast video with better quality. It also provides more cushion to
absorb the bandwidth variations (caused by peer churn, network congestion, etc.) when
constant-bit-rate (CBR) video is broadcasted. The key to achieve high streaming rate
is to better utilize peers’ uploading bandwidth. In this section, we describe the queue-
based chunk scheduling algorithm that can achieve close to optimal peer uploading
bandwidth utilization in practical P2P networking environment.

In AQCS, data chunks are pulled/pushed from server to peers, cached at peers’
queue, and relayed from peers to its neighbors. The availability of upload capacity is in-
ferred from the queue status such as the queue size or if the queue is empty. Signals are
passed between peers and server to convey the information if a peer’s upload capacity is
available. Fig. 2 depicts a P2P streaming system using queue-based chunk scheduling
with one source server and three peers. Each peer maintains several queues including a

ba

S

c

Pull signal from peer to server

Chunks in response to pull signal

Chunks with no pull signal

1

2

3
4

5 5 5

4

Fig. 2. Queue-based chunk scheduling example with four nodes

AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming 437

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Playback buffer Forwarding queue

Filter F marked
content

’pull’ signal

(a) Queue Model of Peers

’pull’ signal queue

Content buffer

Forwarding server

F marked content server

(b) Queue Model of Source Server

Fig. 3. Queue Models of Peers and Source Server

forward queue. Using peer a as an example, the signal and data flow is described next.
Pull signals are sent from peer a to the server whenever the queues become empty (or
have fallen below a threshold) (step 1 in Fig. 2). The server responds to the pull signal
by sending three data chunks back to peer a (step 2). These chunks will be stored in the
forward queue (step 3) and be relayed to peer b and peer c (step 4). When the server has
responded to all ’pull’ signals on its ’pull’ signal queue, it serves one duplicated data
chunks to all peers (step 5). These data chunks will not be stored in forward queue and
will not be relayed further.

Next we first describe in detail the queue-based scheduling mechanism at the source
server and peers. The optimality of the scheme is shown afterwards.

3.1 Peer Side Scheduling and Its Queuing Model

Fig. 3(a) depicts the queuing model for peers in the queue-based scheduling method.
A peer maintains a playback buffer that stores all received streaming content from the
source server and other peers. The received content from different nodes is assembled in
the playback buffer in playback order. The peer’s media player renders/displays the con-
tent from this buffer. Meanwhile, the peer maintains a forwarding queue which is used
to forward content to all other peers. The source server marks the data content either as
F-marked content or NF-marked content before transmitting them. F (forwarding) rep-
resents content that should be relayed/forwarded to other peers. NF (non-forwarding)
indicates that content is intended for this peer only and no forwarding is required. NF
content is filtered out at peers. F content is stored into the forward queue, marked as NF
content, and forwarded to other peers. Because the relayed content is always marked
as NF at the relaying peer, data content is relayed at most once in AQCS, which re-
duces the content distribution time and startup delay. In order to fully utilize a peer’s
upload capacity, the peer’s forwarding queue should be kept busy. A signal is sent to the
source server to request more content whenever the forwarding queue becomes empty.
This is termed a ’pull’ signal. The rules for marking the content at the source server are
described next.

438 Y. Guo, C. Liang, and Y. Liu

3.2 Server Side Scheduling Algorithm and Its Queuing Model

Fig. 3(b) illustrates the server-side queuing model of AQCS. The source server has two
queues: a content queue and a signal queue. The signal queue buffers the ’pull’ signals
issued by peers. The content queue is a multi-server queue with two dispatchers: an
F-marked content dispatcher and a forward dispatcher. Which dispatcher is invoked
depends on the status of the ’pull’ signal queue. Specifically, if there are ’pull’ signals in
the signal queue, a small chunk of content is taken off from the content buffer, marked as
F content, and dispatched by the F-marked content dispatcher to the peer that issued the
’pull’ signal. The ’pull’ signal is then removed from the signal queue. In contrast, if the
signal queue is empty, the server takes a small chunk of content from the content buffer
and puts that chunk of content into the forwarding queue. The forwarding dispatcher
marks the chunk as NF and sends it to all peers in the system.

3.3 Optimality of Queue-Based Chunk Scheduling

Given a content source server and a set of peers with known upload capacities, the
maximum streaming rate, rmax , is governed by the following formula [10]:

rmax = min{us,
us +

∑n
i=1 ui

n
}. (1)

where us is content source server’s upload capacity, ui is peer i’s upload capacity, and n
is the number of peers in the system. The second term on the right-hand side of equation,
us+

∑ n
i=1 ui

n , is the average upload capacity per peer. The maximum/optimal streaming

rate is rmax = us if us ≤ us+
∑n

i=1 ui

n , and rmax = us+
∑n

i=1 ui

n if us >
us+

∑ n
i=1 ui

n .
The first case is termed as server resource poor scenario where the server’s upload
capacity is the bottleneck. The second case is termed as server resource rich scenario
where the peers’ average upload capacity is the bottleneck.

Theorem 1. Assume that the signal propagation delay between a peer and the server
is negligible and the data content can be transmitted at an arbitrary small amount, then
the queue-based decentralized scheduling algorithm as described above achieves the
maximum streaming rate possible in the system.

Sketch of proof: In server resource poor scenario, the source server bandwidth is the
bottleneck and cannot handle all ’pull’ signals issued by peers. The signal queue at the
server side is hence non-empty and the entire server bandwidth is used to transmit F-
marked content to peers. In contrast, a peer’s forward queue becomes idle while waiting
for the new data content from the source server. Since each peer has sufficient upload
bandwidth to relay the F-marked content (received from the server) to all other peers,
the supportable streaming rate is equal to the server’s upload capacity. Optimal rate is
achieved.

In server resource rich scenario, the server has the bandwidth to service the ’pull’
signals. During the time period when the ’pull’ signal queue is empty, the server trans-
mits duplicate NF-marked content to all peers. It can be shown that the streaming
rate is us+

∑ n
i=1 ui

n . Optimal rate is again reached. The detailed proof can be found
in [14].

AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming 439

4 Implementation Considerations

The architecture of content source server and peers using the queue-based data chunk
scheduling are now described with an eye toward practical implementation considera-
tions including the impact of chunk size, propagation delay, network congestion, and
peer churn.

In the optimality proof, it was assumed that the chunk size could be arbitrarily small
and the propagation delay was negligible. In practice, the chunk size is on the order of
kilo-bytes to avoid excessive transmission overhead caused by protocol headers. The
propagation delay is on the order of tens to hundreds of milliseconds. Hence, it is nec-
essary to adjust the timing of issuing ’pull’ signals by the peers and increase the num-
ber of F-marked chunks served at the content source server to allow the decentralized
scheduling method to achieve close to the optimal live streaming rate.

At the server side, K F-marked chunks are transmitted as a batch in response to a
’pull’ signal from a requesting peer (via the F-marked content queue). A larger value
of K would reduce the ’pull’ signal frequency and thus reduce the signaling overhead.
This, however, increases peers’ threshold to be shown in Equation (2). Denote by Ti

the threshold for peer i to issue ’pull’ signal. A ’pull’ signal is sent to server whenever
the number of chunks in the queue is less than or equal to Ti. The time to empty the
forwarding queue with Ti chunks is tempty

i = (n − 1)Tiδ/ui. Meanwhile, it takes
treceive
i = 2tsi + Kδ/us + tq for peer i to receive K chunks after it issues a pull

signal. Here tsi is the propagation delay between the source server and peer i, Kδ/us

is the time required for server to transmit K chunks, and tq is queuing delay seen by
the ’pull’ signal at the server pull signal queue. In order to receive the chunks before
the forwarding queue becomes fully drained, tempty

i ≥ treceive
i . This leads to:

Ti ≥ (2tsi + Kδ/us + tq)ui

(n − 1)δ
. (2)

All quantities are known except tq , the queuing delay incurred at the server side signal
queue. In server resource poor scenario where the source server is the bottleneck, the
selection of Ti would not affect the streaming rate as long as the server is always busy.
In server resource rich scenario, since the service rate of signal queue is faster than the
pull signal rate, tq is very small. So we set tq to be zero. This leads to the following
’pull’ signal threshold formula that can be used to guide the threshold selection:

Ti ≥ (2tsi + Kδ/us)ui

(n − 1)δ
. (3)

The architectures of source server and peer are described next. Figure 4 illustrates
the architecture of the source server. Using the ’select call’ mechanism to monitor the
connections with peers, the server maintains a set of input buffers to store received data.
There are three types of incoming messages: management message, ’pull’ signal, and
missing chunk recovery request. Correspondingly three independent queues are formed
for these messages. If the output of handling these messages needs to be transmitted to
remote peers, the output is put on the per-peer out-unit.

440 Y. Guo, C. Liang, and Y. Liu

Internet

Select Call

PULL SIG

MSG

Source

Packet Handler

RECOV REQ

Fig. 4. Server Architecture

There is one out-unit for each destination peer to handle the data transmission pro-
cess. Each out-unit has four queues for a given peer: management message queue, F-
marked content queue, NF-marked content queue, and missing chunk recovery queue.
The management message queue stores responses to management requests. An example
of a management request is when a new peer has just joined the P2P system and requests
the peer list. The F/NF marked content queue stores the F/NF marked content intended
for this peer. Finally, chunk recovery queue stores the missing chunks requested by the
peer.

Different queues are used for different types of traffic in order to prioritize the traf-
fic types. Specifically, management messages have the highest priority, followed by
F-marked content, and NF-marked content. The priority of recovery chunks can be
adjusted based on the design requirement. Management messages have the highest pri-
ority because it is important for the system to run smoothly. The content source server
replies to each ’pull’ signal with F-marked chunks. F-marked chunks are further relayed
to other peers by the receiving peer. The content source server sends out a NF-marked
chunk to all peers when the ’pull’ signal queue is empty. NF-marked chunks are used by
the destination peer only and will not be relayed further. Therefore, serving F-marked
chunk promptly improves the utilization of peers’ upload capacity and increases the
overall P2P system streaming rate.

Another reason for using separate queues is to deal with bandwidth fluctuation and
congestion inside the network. Many P2P researchers assume that server/peer’s upload
capacity is the bottleneck. In our experiments over PlanetLab, it has been observed that
some peers may slow down significantly due to congestion. If all the peers share the
same queue, the uploading to the slowest peer will block the uploading to remaining
peers. This is similar to the head-of-line blocking problem in input-queued switch de-
sign. Separate queues avoid inefficient blocking caused by slow peers.

Peers’ architecture is similar to the server’s and is omitted here. In addition, we
design the missing chunk recovery scheme that enables the peers to recover the missing
chunks to avoid viewing quality degradation. Refer to [14] for more details.

5 Experiment Results

In this section, we examine the performance of AQCS via experiments over Planet-
Lab [8]. 40+ nodes (one content source server, one public sink and 40 users/peers) are

AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming 441

used with most of them located in North America. All connections between nodes are
TCP connections. TCP connections avoid network layer data losses, and allow us to
use software package Trickle [15] to set a node’s upload capacity. In our experiments,
we observe the obtained upload bandwidth is slightly larger (< 8%) than the value we
set using Trickle. To account for this error, we measure the actual upload bandwidth,
and use the measured rate for plotting the graphs. The upload capacity of peers are
assigned randomly according to the distribution obtained from the measurement study
conducted in [16]. The largest uplink speed is reduced from 5000 kbps to 4000 kbps,
which ensures that PlanetLab nodes have sufficient bandwidth to support the targeted
rate. Specifically, 20% of peers have upload capacity of 128 kbps, 40% have 384 kbps,
25% have 1 Mbps, and 15% have 4 Mbps.

•Optimality evaluation. All 40 peers join the system at the beginning of the exper-
iment, and stay for the entire duration of the experiment. The content source server’s
upload capacity is varied from 320 kbps to 5.6 Mbps. For each server upload capacity
setting, we run an experiment for 5 mins. The achieved streaming rate is collected every
10 seconds and the average value is reported at the end of each experiment. Fig. 5(a)

0 1000 2000 3000 4000 5000 6000
300

400

500

600

700

800

900

1000

1100

1200

1300

Server Bandwidth (kbps)

R
at

e(
kb

p
s)

Achieved Rate
Perfect Rate

Server resource rich region

Server resource poor region

(a) Achieved Rate vs. Optimal Rate

560 1600 3200 4800
0

1

2

3

4

5

6
x 10

4

Server Bandwidth(kbps)

F−marked Chunk
NF−marked Chunk
Unique Chunk

(b) Distribution of Chunks from Server

Fig. 5. Optimality Evaluation Results

shows the achieved streaming rate vs. the optimal rate with different server bandwidths.
The difference never exceeds 10% of the optimal rate possible in the system. The curves
exhibit two segments with turning point at around 1.1 Mbps. According to Equation (1),
the server bandwidth is the bottleneck when it is smaller than 1.1 Mbps (server resource
poor scenario). The streaming rate is equal to the source rate. As the server bandwidth
becomes greater than 1.1 Mbps, the peers’ average upload capacity becomes the bottle-
neck (server resource rich scenario). The streaming rate still increases linearly, however,
with a smaller slope. Notice that AQCS performs better in the server resource poor sce-
nario than in the server resource rich scenario. We plot the numbers of F-marked and
NF-marked chunks sent out by the source server to explain what causes the difference.

As shown in Fig. 5(b), when the server bandwidth is 560 kbps (source resource poor
scenario), very few NF-marked chunks are transmitted. In theory, no NF-marked chunks
should be sent in this scenario since signal queue is always non-empty. We do see sev-
eral NF-marked chunks, which is caused by the bandwidth variation in the network. The

442 Y. Guo, C. Liang, and Y. Liu

variation occasionally causes the server’s pull signal queue becomes empty. In contrast,
more and more NF-marked chunks are sent by the server as its uplink capacity increases
beyond 1.1 Mbps (source resource rich scenarios). In the server resource poor scenario,
the server sends out F-marked chunks exclusively. As long as the pull signal queue is
not empty, the optimal streaming rate can be achieved. In the server resource rich sce-
nario, the server sends out both F-marked and NF-marked chunks. If F-marked chunks
are delayed at server or along the route from the server to peers due to the bandwidth
variations or peer churn, peers can not receive F-marked chunks promptly. Peers’ for-
ward queues become idle and upload bandwidth is wasted. Nevertheless, AQCS always
achieve the streaming rate within 10% of the theoretical optimal rate.

•Adaptiveness to peer churn and bandwidth variations. Peer churn has been iden-
tified as one of the major disruptions to the performance of p2p system. We study how
AQCS performs in face of peer churns next. In this 10 minutes experiment, the server
bandwidth is set to be 2.4 Mbps. Three peers with the bandwidth of 4 Mbps are selected
to leave the system at time of 200 seconds, 250 seconds, and 300 seconds, respectively.
Two peers rejoin the system at time of 400 seconds, and the third one rejoins the sys-
tem at time of 450 seconds. Fig. 6(a) depicts the achieved rate vs. optimal rate every

0 100 200 300 400 500 600
400

500

600

700

800

900

1000

1100

1200

Time(s)

R
at

e(
kb

p
s)

Achieved Rate
Perfect Rate

(a) Streaming Rate under Peer Churn

0 100 200 300 400 500 600
80

100

120

Time(s)

M
ar

ke
d

 C
h

u
n

k
R

at
e(

kb
p

s)

F−marked Chunk
Noise Traffic

0 100 200 300 400 500 600
0

500

1000

1500

N
o

is
e

T
ra

ff
ic

 R
at

e(
kb

p
s)

(b) Marked Chunk Receiving Rate with
Background Traffic

Fig. 6. Adaptiveness to Peer Churn and Bandwidth Variations

10 seconds. Although the departure and the join of a peer does introduce disruptions to
the achieved streaming rate, overall the achieved streaming rate tracks the optimal rate
closely. The difference between them never exceeds 12% of the optimal rate.

In addition to peer churn, the network bandwidth varies over time due to cross traf-
fic. To evaluate AQCS’s adaptiveness to network bandwidth variations, the following
experiment is conducted. We set up a sink on a separate PlanetLab node not partici-
pating in P2P streaming. One peer in the streaming system with upload capacity of 4
Mbps is selected to establish multiple parallel TCP connections to the sink. Each TCP
connection sends out garbage data to the sink. The noise traffic generated by those TCP
connections causes variations in the bandwidth available for the P2P video threads on
the selected peer.

Fig. 6(b) depicts the rate at which the F-marked chunks are received at the selected
peer together with the sending rate of noise traffic. During time periods of (120 sec,

AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming 443

280 sec) and (380 sec, 450 sec), the noise traffic threads are on. The queue-based chunk
scheduling method adapts quickly to the decreasing available bandwidth by reducing its
pull signal rate. Consequently, the server reduces the rate of F-marked chunks sent to
the selected peer. When the noise traffic is turned off, the server sends more F-marked
chunks to the selected peer to fully utilize its available uploading bandwidth. The self-
adaptiveness of the queue-based chunk scheduling method makes the overall achieved
streaming rate close to the optimal rate.

• Optimality comparison. Finally the performance of AQCS is compared with that
of the Random Useful Packet Forwarding (RUPF) scheme [13], also proved to be opti-
mal theoretically. We implemented the prototype of randomized broadcasting scheme,
and carefully tune the configuration parameters so that it performs at its peak perfor-
mance. The server bandwidth is chosen to be 3.2Mbps, however, the conclusion is true
for different scenarios we tested.

700 900 1100 1300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Streaming Rate(kbps)

AQCS
RUPF

M
is

si
n

g
 C

h
u

n
k

R
at

io

(a) Chunk Missing Ratio

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

Bandwidth Utilization

C
D

F

AQCS
RUPF

(b) Bandwidth Utilization

Fig. 7. Comparison with RUPF

Fig. 7(a) depicts the chunk missing ratio, the fraction of chunks that are lost or miss
the playback deadline, with different streaming rates. Both adaptive queue-based chunk
scheduling (AQCS) and the randomized scheduling (RUPF) achieve zero loss when the
streaming rate is low. However, as the streaming rate increase beyond 1Mbps, AQCS
remains no loss while RUPF starts to experiences missing chunks. In fact, AQCS main-
tains zero loss until the streaming rate reaches 1.1Mbps, the maximum streaming rate
allowed by the system. The missing ratio of AQCS does increase linear after that due
to un-sufficient bandwidth in P2P system. Fig. 7(b) explains why AQCS out-performs
RUPF consistently. The CDFs of peer bandwidth utilization for both AQCS and RUPF
are plotted at streaming rate 1.12Mbps. It is evident that peers in AQCS are able to
utilize their upload bandwidth more efficiently than the peers in RUPF.

6 Conclusions

In this paper, we propose a simple queue-based chunk scheduling method that supports
the streaming rate close to the maximum rate allowed by a P2P streaming system. A

444 Y. Guo, C. Liang, and Y. Liu

prototype is implemented and various design considerations are explored to ensure that
the algorithm works in realistic network environment. The experiments over PlanetLab
further demonstrate the optimality and the adaptiveness of the proposed queue-based
chunk scheduling method.

Future work can develop along several avenues. As the first attempt of applying
queue management to P2P streaming, we used simple queue control schemes. We will
explore queue control design space to further improve its performance. The other direc-
tion is to apply this approach to other P2P content distribution applications such as file
sharing and video-on-demand. Our work demonstrated the effectiveness of application
layer queue management in eliminating content bottlenecks in P2P live streaming. It is
a natural extension to explore its applicability in other P2P applications.

References

1. Youtube: (Youtube Homepage) http://www.youtube.com
2. Chu, Y.H., Rao, G., Zhang, S.,, H.: A case for end system multicast. In: Proceedings of ACM

SIGMETRICS (2000)
3. Zhang, X., Liu, J., Li, B., Yum, T.S.P.: DONet/CoolStreaming: A data-driven overlay network

for live media streaming. In: Proceedings of IEEE INFOCOM (2005)
4. PPLive (PPLive Homepage), http://www.pplive.com
5. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A Measurement Study of a Large-Scale P2P

IPTV System. IEEE Transactions on Multimedia (2007)
6. BT: (Bittorent Homepage) http://www.bittorrent.com
7. Gkantsidis, C., Rodriguez, P.R.: Network Coding for Large Scale Content Distribution. In:

Proceedings of IEEE INFOCOM (2005)
8. PlanetLab: (PlanetLab Homepage) http://www.planet-lab.org
9. Liang, C., Guo, Y., Liu, Y.: Hierarchically clustered p2p streaming system. In: Proceedings

of GLOBECOM (2007)
10. Kumar, R., Liu, Y., Ross, K.: Stochastic fluid theory for p2p streaming systems. In: Proceed-

ings of IEEE INFOCOM (2007)
11. Magharei, N., Rejaie, R.: PRIME: Peer-to-Peer Receiver-drIven MEsh-based Streaming. In:

Proceedings of IEEE INFOCOM (2007)
12. Wang, M., Li, B.: Lava: A reality check of network coding in peer-to-peer live streaming. In:

Proceedings of IEEE INFOCOM (2007)
13. Massoulie, L., Twigg, A., Gkantsidis, C., Rodriguez, P.: Randomized decentralized broad-

casting algorithms. In: Proceedings of IEEE INFOCOM (2007)
14. Guo, Y., Liang, C., Liu, Y.: Adaptive Queue-based Chunk Scheduling for P2P Live Stream-

ing. Polytechnic U., Tech. Rep (2007)
15. Trickle: (Trickle Homepage)

http://monkey.org/∼marius/pages/?page=trickle
16. Ashwin, R., Bharambe, C.H., Padmanabhan, V.N.: Analyzing and Improving a BitTorrent

Network Performance Mechanisms. In: Proceedings of IEEE INFOCOM (2006)

http://www.youtube.com
http://www.pplive.com
http://www.bittorrent.com
http://www.planet-lab.org
http://monkey.org/~marius/pages/?page=trickle

	AQCS: Adaptive Queue-Based Chunk Scheduling for P2P Live Streaming
	Introduction
	Background and Related Work
	Adaptive Queue-Based Chunk Scheduling
	Peer Side Scheduling and Its Queuing Model
	Server Side Scheduling Algorithm and Its Queuing Model
	Optimality of Queue-Based Chunk Scheduling

	Implementation Considerations
	Experiment Results
	Conclusions

