
A. Das et al. (Eds.): NETWORKING 2008, LNCS 4982, pp. 1–13, 2008.
© IFIP International Federation for Information Processing 2008

XIAN Automated Management and Nano-Protocol to
Design Cross-Layer Metrics for Ad Hoc Networking∗

Hervé Aïache, Vania Conan, Laure Lebrun, Jérémie Leguay, Stéphane Rousseau,
and Damien Thoumin

Thales Communications
160, boulevard de Valmy, BP82
92704 Colombes Cedex, France

{firstname.name}@fr.thalesgroup.com

Abstract. In the highly dynamic and unpredictable environment of MANETs,
cross-layer design is receiving growing interest but lacks experimental validation
tools. This paper presents XIAN (Cross-layer Interface for wireless Ad hoc Net-
works), a generic framework for experimenting cross-layer designs in Linux test-
beds with 802.11 wireless cards using the MadWifi driver. XIAN can be used as a
service by other layers or system components to access MAC/PHY configuration
and performance information. It provides experimenters with an open framework
to create automatically complex metrics from both local and neighbour node
measurements. The defined and implemented software architecture introduces the
XIAN Nano-protocol and its automated management. We exemplify their benefits
through the implementation of the well-known ETX (Expected Transmission
count) metric and we provide results from real experimentations.

1 Introduction

In Mobile Ad hoc Networks (MANETs [1]), nodes can be mobile and share one or
more wireless channels without centralized control. In such dynamic and unpredict-
able distributed environments, traditional networking principles, such as the layer
isolation of the OSI (Open Systems Interconnection) model, are challenged. Recent
research studies have explored more flexible approaches to networking, called Cross-
Layer approaches, that revisit the classical IP stack design. The central idea of cross
layering consists in allowing a more flexible exchange of status or control information
between the different components of the communication system. With a better knowl-
edge of available resources from different layers of the ad hoc network stack, the
system is expected to be more reactive to the wireless environment and responsive to
quality requirements of applicative-oriented elements.

When compared to the usual OSI reference model, existing cross-layer solutions
span a wide spectrum of options: some advocate global exchange of information be-
tween components (e.g. Conti et al. [2]), others prefer to limit them to adjacent layers
(e.g. Kawadia et al. [3]), depending on how they impact or differ from this reference

∗ This work has been partially supported by the European IST FP6 CHORIST project and the

French RNRT Airnet project.

2 H. Aïache et al.

model. In any case, cross-layering calls for software architectures and implementa-
tions that support a more flexible sharing of information and status reports between
the processes and functional modules of the communication system. Experimenting
with cross layer design for MANETs remains difficult, most ad hoc testbeds making
use of 802.11 cards which lack appropriate API support.

This paper builds upon our earlier work [4] to define XIAN (Cross-layer Interface
for wireless Ad hoc Networks) which consists in a framework that facilitates cross-
layer integrations and experimentations by easing the access to information from
MAC/PHY layers. The ultimate goal of XIAN is to encourage and facilitate cross-
layer studies and experimentations over MANET testbeds. It has been implemented
and is available in open source [7] for Linux over the MadWifi 802.11 driver [5]. This
paper presents a major extension to the earlier basic framework by supporting the
implementation of complex cross-layer metrics that can combine both local informa-
tion and measurements obtained from the node’s neighbours by the XIAN Nano-
protocol. We exemplify its use with the implementation of the ETX (Expected Trans-
mission Count) metric proposed by De Couto et al. [6] and we provide experimental
demonstration of potential benefits.

The remainder of the paper is structured as follows. Section 2 presents the XIAN
approach and software architecture. Section 3 describes the XIAN programming inter-
faces and examples of accessible metrics. Section 4 and Section 5 present the use and
experimental benefits of the proposed XIAN extension for the implementation of
ETX. Section 6 concludes the paper, discussing directions for future work.

2 XIAN: Cross-Layer Interface for Wireless Ad hoc Networks

This section introduces the overall XIAN framework. We first present the Linux
based software architecture. Then we show how to integrate new complex metrics to
extend and customize the framework. Finally we describe the XIAN Nano-protocol,
integrated at the MAC layer, that automatically handles metric exchanges between
neighbour nodes.

2.1 XIAN Basic Components for Cross-Layer Exchanges

MAC/PHY state information, such as number of transmission retries or number of
transmitted frames with CTS enabled, is available at driver level and a large part of
this information may be of interest to higher layers. To support flexible cross-layer
access to this information XIAN implements a software architecture composed of
three main components:

• The Kernel Space XIAN Interface (KSI) is dedicated to kernel space compo-
nents (e.g. TCP or UDP implementations) and implemented as a Linux kernel
module. It interacts directly with the MadWifi driver to retrieve its internal
states or statistics or with the XIAN components involved in the definition of
complex metrics (see section 2.2).

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 3

• The User Space XIAN Interface (USI) mimics the KSI but at user space level.
This API is implemented as an ordinary C library in order to facilitate its inte-
gration with user space programs (e.g. routing daemons or applications).

• The XIAN Information Transport Module (ITM) allows to pass information
and statistics from the kernel space to the user space, by connecting the two
previous XIAN APIs. This module is implemented in this version of XIAN as
a special character device.

In addition, a complementary component, called the XIAN User Space Extended In-
terface (or USEI), provides simple means for experimenters to perform additional
processing of raw measurements, such as averaging, metric combination or notification
of significant changes. Figure 1 illustrates how the components interact and how inter-
nal driver/MAC states or metrics are provided to other Linux system components.

From the developer’s point of view, the two XIAN APIs (i.e. KSI and USI) are
identical. The information exchanged through the ITM and accessible via the USI and
the KSI are of two kinds: (1) basic metrics extracted from specific structures/states

Fig. 1. XIAN Framework software architecture

4 H. Aïache et al.

maintained by the MadWifi driver, and (2) new metrics integrated to the framework
thanks to the software components described in the following section.

2.2 Extension to Integrate and Manage Complex Cross-Layer Metrics

XIAN offers mechanisms implementing bidirectional exchanges of metrics among
neighbouring nodes (such as those classically needed by [6, 9, 10, 11]). This makes
possible the creation and the integration within the XIAN framework of metrics that
require information from neighbouring nodes (e.g. the number of packets that have
been received by a neighbour). Implementing a new metric involves the definition of
the metric calculation formula, i.e., it defines how to combine readings from several
individual PHY/MAC layer metric values to obtain a new compound one. Obtaining
the individual values involves configuring the XIAN framework, by setting which
metrics to read from the node’s neighbours and at which frequency. The implementa-
tion of this major extension to XIAN is available in the new release on the official
project web site [7].

As shown Figure 1, four software components, all implemented as Linux kernel
modules, support the integration of such complex metrics within the XIAN framework:

• The XIAN Metric Manager (XMM), in charge of the registration and un-
registration of the new cross-layer metrics instantiated as XIAN Cross-layer
Metric modules (XCMs – An XCM mainly implements the metric calculation
formula and configures the protocol exchanges involved in the calculation of
the metric in terms of type of information and frequency – see section 3.2).

• The XIAN Nano-Protocol handler (XNP), which handles the XIAN Nano-
protocol messages containing the values of the metrics exchanged between
neighbouring nodes. The XNP is implemented between the MadWifi driver
and the Linux kernel implementation of the IP layer. Its role is to extract the
XIAN Nano-protocol messages from in-coming 802.11 frames and to create
and send out-going XIAN Nano-protocol messages to the desired neighbours.

• The XIAN Metrics Repository (XMR), which is responsible of recording the
calculated values of the new cross-layer metrics introduced within the XIAN
framework. Once recorded by the XMR, the metric values become accessible
(via the KSI or the USI – see section 1.1) to other operating system compo-
nents, along with all MadWifi driver information reported by default by XIAN.

• The XIAN Neighbouring Manager (XNM), which detects neighbour nodes
and triggers updates necessary to automate XIAN Nano-protocol message
exchanges.

To enable the exchanges of metrics between neighbouring nodes, we propose a simple
MAC layer-oriented protocol, called the XIAN Nano-protocol. It is described in the
following section.

2.3 The XIAN Nano-Protocol

The XIAN Nano-protocol is responsible of exchanging the XIAN Nano-protocol mes-
sages. Figure 2 gives an example of such a message. It contains a XIAN Nano-
protocol Metrics Reports made up of (1) a header, which mainly indicates information

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 5

about the report object itself and (2) a payload, which can embed several XIAN Nano-
protocol Metric Objects that provides metric values and associated meta information.
Note that XIAN Nano-protocol messages are encapsulated into unicast or broadcast
802.11 data frames.

The XIAN Nano-protocol Metrics Report is composed of the following fields:

• Version indicates the used version of the XIAN Nano-Protocol.
• Sequence is the identifier of the XIAN Nano-protocol Metrics Report.
• Length indicates the number of XIAN Nano-protocol Metric Objects con-

tained in the XIAN Nano-protocol Metrics Reports.
• Payload contains a set of XIAN Nano-protocol Metric Objects.

Fig. 2. Metrics Report format of the XIAN Nano-protocol

A XIAN Nano-protocol Metric Object is composed of the following fields:

• Type indicates the identifier associated to a metric.
• Id identifies a reference to the associated XCM (see section 3.2).
• Encoding_type indicates how the metric value is encoded (e.g. integer or

float).
• Mac_addr indicates the MAC address to which the metric value belongs to.
• Value contains the effective numerical value of the metric.

Moreover, in order to optimize the number of messages sent to a given neighbour
node, note that the XIAN Nano-Protocol handler (XNP) is able to aggregate several
XIAN Cross-Layer Metrics Object of different types in a single XIAN Metrics Report.

3 XIAN Programming Interfaces

The previous section described the main building blocks of the XIAN architecture.
This section details the programming interfaces offered by XIAN to implement view
to access, refine, design and integrate MAC-oriented cross-layer metrics.

3.1 Accessing MAC-Oriented Basic Metrics

XIAN eases the access to a large set of basic metrics offered by the MadWifi driver.
The most important ones can be divided into two groups:

• Global metrics, similar to counters, this kind of metrics provides global statuses
on the use of the 802.11 network interface. The reported information can be:

6 H. Aïache et al.

the number of received frames dropped or with wrong BSSID, the number of
transmitted frames with CTS or with RTS enabled, the relative signal strength
indicator (RSSI) of the last ACK received, the number of failed receptions (due
to queue overrun, bad CRC, PHY errors or decryption problems).

• Per link metrics, which stores per-neighbour information. For instance, this kind
of metric reports the number of received/transmitted data frames or bytes, the
relative signal strength indicator (RSSI) or the number of transmission retries.

Depending on the type of reported metric (aggregated or per-neighbour/link), the
prototype of the function (for a given metric named metric_name) is defined as
follows:

• For a global metric:

 u_int32_t /* returned metric */
 get_metric_name(char * dev_name, /* Interface name */
 unsigned int * code_err); /* Error code */

• For a per-neighbour/link metric:

 u_int32_t /* returned metric value */
 get_node_metric_name(
 u_int8_t * macadd, /* Neighbour node’s MAC address */
 char * dev_name, /* Interface name */
 unsigned int * code_err); /* Error code */

About 180 such basic metrics are supported in XIAN, obtained from converting the
corresponding readings of the local MadWifi driver. 40 of these measurements are
given on a per-neighbour basis, the remaining ones being global values for the node.

3.2 Design and Integration of New Complex Metrics

New cross-layer metrics are implemented in XIAN as XIAN Cross-layer Metric mod-
ules (XCMs). XCMs are usual Linux kernel modules which use specific APIs mainly
defined by the XIAN Metric Manager (XMM). To define both the metric calculation
formula and the protocol configuration, the XMM proposes the following interface to
register a new XCM within the framework:

void
register_id (unsigned int id, /* Conf. identifier */
 unsigned int metric, /* New metric id. */
 char dev[IFNAMESIZ+1], /* Net. interface */
 char mac[IEEE80211_MAC_ADDR_LEN+1], /* Report dest. MAC */
 unsigned int freq, /* Reports frequency */
 void * pf) /* Processing func. */

Once called, the XMM introduces the new metric identified within XIAN under the
reference metric. The XMM will automatically send a report about this cross-layer
metric (through XIAN Nano-protocol Metrics Reports) on the network interface iden-
tified as dev by the Linux kernel each freq milliseconds. Moreover, when a XIAN
Nano-protocol Metric Object of type metric is received, the XMM calls the associ-
ated processing function pf to compute the new value of the metric (typically imple-
menting the metric calculation formula). Note that the field id allows to uniquely
identify an XCM to allow reuse of the same cross-layer metric for different process-
ing or configurations.

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 7

Note that with such a design, experimenters do not have to take care about the
XIAN Nano-protocol exchanges, but just have to configure its behaviour, meaning:
the frequency of the metrics reports (i.e. the parameter called freq), what are the
nodes involved in the calculation of the metric (i.e. the parameter mac) and the for-
mula to calculate the metric (i.e. the processing function pf).

In addition to the function register_id(), the XMM proposes another com-
plementary interface which allows to un-register an XCM:

 void unregister_id(unsigned int id, /* Conf. Identifier */
 unsigned int metric) /* Metric Id. */

This function un-register the metric identified within XIAN by its reference met-
ric and its associated XCM (or configuration) identifier id.

Therefore, as mentioned, a typical XCM implementation looks like to a classical
Linux kernel module with specific calls to the functions register_id()and unreg-
ister_id(). In this way, a typical XCM would implement the following functions:

• An initialisation function, as for Linux kernel modules implementation,
which is necessary to load the XCM into the Linux kernel and to register the
new metric (or several) within the XIAN framework thanks to the XMM’s
function called register_id().

• A processing function, which is specific to XIAN and enables the reception
of XIAN Nano-protocol Metric Objects in view to extract the metrics values
and to apply the associated formula before updating the metric values through
the XMR, the metrics repository of the XIAN framework.

• A cleanup function, as for Linux kernel modules implementation, which is
important to unload properly the XCM from the Linux kernel and to un-
register the given cross-layer metric (or several) from XIAN thanks to the
XMM’s function called unregister_id().

Since the processing function performs operations on the metrics exchanged through
the XIAN Nano-protocol messages, it follows a specific prototype:

 void processing_function(unsigned char *saddr, /* Source MAC */
 struct metric_msg *metric) /* Metric object */

Thanks to this function, once the XCM is inserted inside the Linux kernel and reg-
istered within the XIAN framework, the XMM is able to pass the received XIAN
Cross-Layer Metric Object in metric to the right XCM. Moreover, note that the
XMM provides an additional information to the given XCM: the MAC address of the
source node (indicated by the variable saddr), which sent the received XIAN Cross-
Layer Metric Object (i.e. contained in metric).

3.3 XIAN User Space Extended Interface

Several metrics may have to be further combined or refined in order to be meaningful
or at least more useful for specific system components. For example, the number of
transmitted MAC frames (in bytes) would not be an interesting metric if no time-
correlation is introduced to reflect how this metric evolves during the life-time of the
wireless communication system. In other cases, the average value of a given metric is

8 H. Aïache et al.

more meaningful than an instantaneous measurement. Therefore, XIAN complements
the interfaces introduced in Section 3.1 and 3.2 with another API, available in user-
space, called the User Space XIAN Extended Interface (USEI), which provides:

• Measurement functions, which compute metrics resulting from the combina-
tion of several elementary metrics taken directly via the USI or from the re-
finement of an elementary metric (e.g. average values).

• Operation functions, which implement the corresponding mathematical op-
erator required by the new defined calculated metrics (e.g. min or max func-
tions).

• Relevance functions, which implement the corresponding comparator indicat-
ing if a significant difference occurs between two calculated values (typically
between the previous and the new ones).

The USEI has been implemented as a usual C library to facilitate its use and integra-
tion with user space processes. Based on the description of the XIAN architecture and
programming interfaces, the following section exemplifies their use with the imple-
mentation of the ETX (Expected Transmission Count [6]) metric as a XIAN Cross-
layer Metric module (XCM) available as an example of complex metric in the new
release of XIAN.

4 Implementation of a Complex Metric within XIAN

Several cross-layer metrics have been proposed in the literature. De Couto et al. [6,8]
have proposed the Expected Transmission count (ETX) which measures the bidirec-
tional packet loss ratio of link. Awerbuch et al. [9] have introduced the Medium Time
Metric (MTM) that selects high throughput paths. Déziel et al. [10] have defined the
available bandwidth. Iannone et al. [11] have combined the packet success rate, the
interference level, and the physical bit rate.

In this section, we specifically illustrate how the new set of XIAN functionalities
presented in this paper enable experimenters to easily implement the ETX metric.
First, we recall the definition of this metric. Then, we show how to implement this
metric within the XIAN framework.

4.1 The Expected Transmission Count (ETX)

The Expected Transmission count (ETX) calculates the expected total number of
packet transmissions (including retransmissions) required to successfully deliver a
packet to the ultimate destination. ETX predicts the number of transmissions required
using per-link measurements of packet loss ratios in both directions of wireless links.

The ETX value for a route is the sum of the link metrics. ETX is a combination of
two measurements: (1) the forward delivery ratio, called Df, which is the measured
probability that data packets successfully arrive at the recipient, and (2) the reverse
delivery ratio, Dr, which is the probability that ACKs packets are successfully re-
ceived. The probability that a transmission is successfully received and acknowledged
is Df x Dr. Then, ETX is expressed as follows:

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 9

ETX(link) = 1/(Df x Dr).

The main issue when it comes to ETX implementation is that Df and Dr are not di-
rectly available locally. The only solution is to exchange delivery ratios among
neighbours. These delivery ratio can be determined in various manners: (1) by look-
ing at statistics reported in a per-neighbour fashion by XIAN (e.g., number of data
transmission trials, number successful data transmissions), (2) by comparing the
number of broadcast packets that have been received from neighbours to those that
should have been received, assuming that nodes send broadcast messages every T
milliseconds.

In this work, to demonstrate how ETX can be implemented as a XIAN Cross-layer
Metric modules, nodes exchange their delivery ratios for all their out-going links
using XIAN Nano-protocol messages. They also take advantage of these message
exchanges to calculate these delivery ratios using the solution (2) explained in the
previous paragraph.

4.2 ETX Implementation in XIAN

ETX has been implemented within the XIAN framework as an XCM, called
ETX_XCM. At the load of the ETX_XCM, we configure the XNM to send every T mil-
liseconds the metric Dr in a broadcast message. Thus we create a new configuration
identifier and a new metric code for it. The parameter pf given to the function reg-
ister_id() is a function called at each reception of the metric ETX, which has the
following prototype:

processing_ETX(unsigned char*saddr, struct metric msg *metric).

The broadcast message contains the values of Dr for the list of MAC addresses pro-
vided by the function insert_mac_to_broadcast() which is used for each received
broadcast message when the MAC address is not present. At the reception of those
messages, the ETX_XCM stores the Dr metric’s value thanks to the XMR by using its
interface: update_xian_stat(). Then, ETX_XCM increments a counter and records it
in the XMR. Thanks to Dr and Df, we can calculate ETX. The calculated ETX values
are stored within the XMR in order to provide the metric and the possibility to esti-
mate the quality of a link.

In parallel, a thread is wake up every W milliseconds to recover the counter and to
calculate the Df, thanks to the counter and the expected number of received messages
during W milliseconds. Df is then recorded within the XMR and the counter reset to
zero. At last, ETX is recalculated with the new value of Df and updated within the
XMR.

Note that, since the Linux kernel does not manage float values, all the metrics
within the kernel space are under the format struct xian_float and accessible by
the function struct xian_float get_xian_stat(), added to the KSI. In the user
space, the results are available under the format float with the similar function float
get_xian_stat(), offered by the USI. Moreover, to perform operations on struct
xian_float, the addition, the multiplication and the division are available as func-
tions provided by XIAN.

10 H. Aïache et al.

Based on this implementation of ETX, the following section explains how the
ETX_XCM has been used to perform measurements over a real 802.11 ad hoc testbed.

5 Experimental Testbed and Results

To illustrate the benefit of XIAN to facilitate cross-layering experiments, we present
experimental measurements oriented on QoS routing and performed with the
ETX_XCM, the implementation of ETX with the XIAN APIs.

The testbed we setup was composed of 3 machines equipped with Cisco Aironet
Wi-Fi cards equipped by the Atheros chipset and configured to use the 802.11b stan-
dard at the bit rate of 11 Mbits/s in ad hoc mode (without RTS/CTS). On each ma-
chine, we used iperf [12] to generate TCP and UDP traffic and the STAF/STAX
[13] framework to automate the experiment runs. We also use a simple program that
logs, for each link, the metrics accessed through XIAN. We logged each of the fol-
lowing metrics every δ seconds:

• The RSSI (Relative Signal Strength Indicator): the wide-band received power
within the used channel;

• The throughput: the sum of total data bytes received and sent at the MAC
layer within the last δ seconds;

• The ETX metric measured over 10 beacons (XIAN Nano-protocol messages)
sent every 200 milliseconds.

Fig. 3. Experimental setup and traffic generation

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 11

Figure 3 presents the triangle network topology that we considered and the differ-
ent flows that we have generated. The link between the machine N2 and N5 is signifi-
cantly longer than the other ones. The traffic generation sequence used (depicted in
Figure 3(b)) is composed of the following phases each lasting 24 seconds:

• Phase (0): no traffic.
• Phase (1): UDP traffic between N3 and N5 via N2 at 4 Mbits/s.
• Phase (2): TCP traffic between N3 and N5 via N2.
• Phase (3): UDP traffic between N3 and N5 at 4 Mbits/s.
• Phase (4): TCP traffic between N3 and N5.

Figure 4 presents the measurements that we have performed. More specifically, Fig-
ure 4(b) and Figure 4(e) present the throughput respectively for links N3→N2 and
N3→N5. We can see that when UDP and TCP flows issued from N3 are passing via N2
to reach N5, high throughput are achieved with average values equal respectively to
3.4 Mbits/s (saturation is achieved) and 2.4 Mbits/s. Whereas when UDP and TCP
flows issued from N3 are passing directly over the link N3→N5, the average values are
equal respectively to 0.1 Mbits/s and 0.1 Mbits/s. These results show that in our case,
routing decisions based on hop-count can fail. Cross-layer metrics are then required to
achieve acceptable performances.

Figure 4(a) and Figure 4(d) look at RSSI values respectively for links N3→N2 and
N3→N5. We can see that due to the higher length of the link N3→N5, RSSI values are
lower on this link than those or the link N3→N2 with average values equal respec-
tively to 12.5 Db and 36.1 Db. An average RSSI of 33.4 Db have been observed for
the link N2→N5. In our case, we could have used this metric to make efficient routing

Fig. 4. Metric values measured with XIAN

12 H. Aïache et al.

decisions. However, the RSSI does not capture information regarding the congestion
and contention levels at MAC layer and thus may not work in larger and more realis-
tic conditions.

Figure 4(c) and Figure 4(f) present the ETX values respectively for links N3→N2

and N3→N5. We can see that the link N3→N5 plots ETX values continuously higher
than the one of the link N3→N2 (see especially values for the different phases (0))
which denotes the fact that ETX captures the poor quality of links. In phases (3), as
the UDP traffic is totally not able to be transferred over the link, node N3 runs out of
buffer memory. This results in a large amount of drops for the beacons used in ETX
computation and thus to high values of the metric (this impact can also be seen for the
ETX value of link N3→N2). Some of the loses of beacons might have also caused by
collisions over the wireless medium. We have seen here that ETX captures two cru-
cial factors: (1) the weakness of links due to low RSSI values and (2) the local and
neighbouring traffic load.

This experiment illustrates how the ETX metric, implemented within the XIAN
Framework through automated XIAN Nano-protocol exchanges, introduced in this
paper, allows to make efficient QoS routing decisions.

Note that the purpose of this work was to show how to implement the original ETX
specifications in XIAN. With XIAN it is moreover possible to explore variants of this
protocol, for example by monitoring more exactly the real traffic to estimate transmis-
sion count in place of the dedicated ETX probes, thus taking into account the packet
size distribution.

6 Conclusions and Future Work

This paper presented XIAN a cross-layer interface implementation specialized in the
building of experimental setups for validating a large variety of use cases of IEEE
802.11 cross-layering and its extensions to support complex user-defined metrics. The
extension proposed in this paper turns XIAN into an extensible framework dedicated
to the creation of complex cross-layer metrics. Moreover, the decomposition of cross-
layer metric definitions in metric calculation formula and protocol exchanges
configuration, translated into software components, facilitates their design and their
integration within the XIAN framework.

It is thus possible to define and to implement cross-layer metrics as new compo-
nents in XIAN that can use both local and neighbouring measurements transparently
exchanged with the XIAN Nano-protocol. We exemplified its use with the implemen-
tation of the ETX (Expected Transmission Count) metric and we provided experimen-
tal demonstration of its potential benefits. Finally, we released our code that can be
downloaded from [7].

Future work along these lines would include the development of interfaces work-
ing in a publish/subscribe manner. This kind of interface may improve further the
integration of the MAC and routing layers as it would allow, for instance, reporting of
link up and link down events and help the system react more quickly to topology
changes. Finally, one could wish to extend the generic APIs to support other chipsets
than Atheros in the spirit of the Wireless Tools.

 XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics 13

References

1. Corson, S.: RFC 2501, Mobile ad hoc networking (MANET): Routing protocol perform-
ance issues and evaluation considerations. In: IETF (January 1999)

2. Conti, M., Maselli, G., Turi, G., Giordano, S.: Cross-layering in mobile ad hoc network
design. IEEE Computer, 48–51 (February 2004)

3. Kawadia, V., Kumar, P.R.: A cautionary perspective on cross layer design. IEEE Wireless
Communication Magazine (July 2003)

4. Aïache, H., Conan, V., Leguay, J., Levy, M.: XIAN: Cross-layer interface for wireless ad
hoc networks. In: Proc. Med-Hoc-Net (2006)

5. MadWifi, http://www.madwifi.org
6. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-throughput path metric for

multi-hop wireless routing. In: Proc. MobiCom. (2003)
7. XIAN., http://sourceforge.net/projects/xian/
8. De Couto, D.S.J., Aguayo, D., Chambers, B.A., Morris, R.: Performance of multi-hop

wireless networks: Shortest path is not enough. In: Proc. HotNets, ACM SIGCOMM
(2002)

9. Awerbuch, B., Holmer, D., Rubens, H.: High throughput route selection in multi-rate ad
hoc wireless networks. In: Proc. WONS. (2004)

10. Déziel, M., Lamont, L.: Implementation of an IEEE 802.11 link available bandwidth algo-
rithm to allow cross-layering. In: Proc. WiMob. (2005)

11. Iannone, L., Khalili, R., Salamatian, K., Fdida, S.: Cross-layer routing in wireless mesh
networks. In: Proc. ISWCS. (2004)

12. Iperf, http://dast.nlanr.net/Projects/Iperf/
13. STAF: Software Testing Automation Framework, http://staf.sourceforge.net

	XIAN Automated Management and Nano-Protocol to Design Cross-Layer Metrics for Ad Hoc Networking
	Introduction
	XIAN: Cross-Layer Interface for Wireless Ad hoc Networks
	XIAN Basic Components for Cross-Layer Exchanges
	Extension to Integrate and Manage Complex Cross-Layer Metrics
	The XIAN Nano-Protocol

	XIAN Programming Interfaces
	Accessing MAC-Oriented Basic Metrics
	Design and Integration of New Complex Metrics
	XIAN User Space Extended Interface

	Implementation of a Complex Metric within XIAN
	The Expected Transmission Count (ETX)
	ETX Implementation in XIAN

	Experimental Testbed and Results
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

