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Abstract. In this paper we prove that the function giving the frequency
of a class of patterns of digital planes with respect to the slopes of the
plane is continuous and piecewise affine, moreover the regions of affinity
are precised. It allows to prove some combinatorial properties of a class
of patterns called (m, n)-cubes. This study has also some consequences
on local estimators of area: we prove that the local estimators restricted
to regions of plane never converge to the exact area when the resolution
tends to zero for almost all slope of plane. Actually all the results of this
paper can be generalized for the regions of hyperplanes for any dimension
d ≥ 3.

The proofs of some results used in this article are contained in the
extended version of this paper [1].
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1 Introduction

Digital Planes are very classical objects of Discrete Geometry. Their combina-
torics have been studied in a lot of papers (for example [2,3,4,5,6,7,8,9,10,11,
12, 13]), for a recent review on the subject, see [14]. In this paper we are inter-
ested in a class of patterns called (m, n)-cubes which are intuitively the pieces
of digital planes of size m × n. These objects have been studied for quite a long
time, for example it is well-known that the number of (m, n)-cubes appearing in
a digital plane is always less than mn ( [5, 6, 7, 9, 11]). These (m, n)-cubes can
be used in different domains of image analysis for example for normal vector
estimation, area estimation ( [15,16], see also second section of this paper), form
reconstruction. The originality of this paper is the study of not only the presence
of a (m, n)-cube in a digital plane, but also of the frequency of this (m, n)-cube
in all the digital planes.

The main result of the first part of this paper enunciates that the function
giving the frequency of (m, n)-cubes of digital planes with respect to the slopes
of the plane is continuous and piecewise affine. Moreover we will see that the
study of the frequency allows to prove some combinatorial properties on the
(m, n)-cubes.
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In a second part of the paper, we use our study about frequencies to prove
some results about local estimators of area. A local estimator of area simply
consists to decompose a surface into little pieces (in fact similar to (m, n)-cubes)
and to sum some weights which correspond to the pieces. The study of the
frequency of the (m, n)-cubes allows to prove that even for planar regions these
estimators are not correct in the sense that, if the discrete regions are obtained
from a continuous plane, then the estimated area does not converge to the exact
area for almost all slopes of plane when the resolution of the discretization tends
to zero. It is in fact a generalization to 3D of [17]. Actually we can prove with
the same technics that all the results of this paper are true for the regions of
hyperplanes for any dimension d ≥ 3.

The proofs of some results used in this article are contained in the extended
version of this paper [1].

2 Preliminaries

Let a, b ∈ N and a ≤ b. The discrete interval {a, a + 1, . . . , b − 1, b} is denoted
�a, b�. For x ∈ R, �x� (resp. 〈x〉) denotes the integral part (resp. the fractional
part) of x. So, x = �x� + 〈x〉 with �x� ∈ Z, �x� ≤ x < �x� + 1 and 0 ≤ 〈x〉 < 1.
For any set E, card(E) denotes the cardinality of E.

We refer in all the following to a subset of R
3 of the form R = {(x, y, αx +

βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that α, β ∈ [0, 1] and a, b, c, d ∈ R as a
rectangular planar region. It corresponds to a subset of plane whose projection
on the XY -plane is a rectangle with sides parallel to X, Y -axes.

In this paper all the topological notions are considered relatively to the Eu-
clidean usual topology. If E is subset of a topological space, E denotes its topo-
logical closure (the smallest closed set containing E). The measure notions are
considered relatively to the Lebesgue measure on the Euclidean space, for ex-
ample ‘negligible set’ (set with zero measure) and ‘almost everywhere’ are con-
sidered relatively to the Lebesgue measure on the Euclidean space.

3 Frequencies of the (m, n)-cubes

In this paper we consider naive digital planes Pα,β,γ = {(x, y, �αx + βy +
γ�) | (x, y) ∈ Z

2} with α, β ∈ [0, 1] and γ ∈ R. So a naive plane is functional in
its x, y coordinates: z = pα,β,γ(x, y) = �αx + βy + γ� for all (x, y, z) ∈ Pα,β,γ .
Moreover we fix two positive integers m and n and we define Fm,n = �0, m −
1� × �0, n − 1�.

Definition 1. A (m, n)-pattern is a function w : Fm,n → Z. We note Mm,n

the set of all (m, n)-patterns and the size of a (m, n)-pattern is m × n.

We can also see a (m, n)-pattern as a set of voxels which projection in the XY -
plane is Fm,n and which has at most one point in each line parallel to the third
coordinate direction.
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In all the following, a pattern of size less than m×n corresponds to a (m′, n′)-
pattern where m′ ≤ m, n′ ≤ n and (m, n) 
= (m′, n′).

A (m, n)-cube is a (m, n)-pattern which can be extracted from a naive digital
plane, more precisely:

Definition 2. The (m, n)-cube at position (i, j) of the digital plane Pα,β,γ is
the (m, n)-pattern w defined by w(i′, j′) = pα,β,γ(i + i′, j + j′) − pα,β,γ(i, j) for
any (i′, j′) ∈ Fm,n. It is denoted wi,j(α, β, γ).

So a (m, n)-cube is simply a piece of a digital plane which projection in the
XY -plane is a translation of Fm,n. Fig.1 corresponds to a (3, 3)-cube in a digital
plane.

Note that for all i, j ∈ Z and α, β, γ ∈ R, wi,j(α, β, γ) = w0,0(α, β, αi+βj+γ).

Fig. 1. A (3, 3)-cube in a digital plane

Let Cα,β
i,j = 1−〈αi+βj〉 for (i, j) ∈ Fm,n, and σα,β be a bijection from �1, mn�

to Fm,n such that the sequence (Bα,β
i )0≤i≤mn defined by Bα,β

i = Cα,β
σα,β(i) for

1 ≤ i ≤ mn and Bα,β
0 = 0, is increasing.

We recall some known results (see for example [6]).

Proposition 1. For all α, β, γ ∈ R we have:

1. The (k, l)-th point of the (m, n)-cube at position (i, j) of the digital plane
Pα,β,γ can be computed by the formula:

wi,j(α, β, γ)(k, l) =

{
�αk + βl� if 〈αi + βj + γ〉 < Cα,β

k,l

�αk + βl� + 1 otherwise

2. The (m, n)-cube wi,j(α, β, γ) only depends on the interval [Bα,β
h , Bα,β

h+1[ con-
taining 〈αi + βj + γ〉.

3. For all h ∈ �1, mn − 1�, if [Bα,β
h , Bα,β

h+1[ is not empty (Bα,β
h < Bα,β

h+1), then
there exist i, j such that 〈αi + βj + γ〉 ∈ [Bα,β

h , Bα,β
h+1[ and thus the number

of (m, n)-cubes in the digital plane Pα,β,γ is equal to card({Cα,β
k,l | (k, l) ∈

Fm,n}). We have, in particular, card({Cα,β
k,l | (k, l) ∈ Fm,n}) ≤ mn.
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So, we have w0,0(α, β, γ)=w0,0(α, β, 〈γ〉) and thus wi,j(α, β, γ) = w0,0(α, β, 〈αi+
βj + γ〉) for all α, β, γ ∈ R and (i, j) ∈ Z

2 .
By Proposition 1, the set of (m, n)-cubes of the digital plane Pα,β,γ depends

only on α, β and it is denoted Cm,n,α,β. In all the following, Um,n denotes the set
of all the (m, n)-cubes. So, Um,n =

⋃
(α,β)∈[0,1]2 Cm,n,α,β.

Definition 3 ( [18]). Let w be a (m, n)-cube, then the pre-image PI(w) of w is
the set of the triple (α, β, γ) ∈ [0, 1]3 such that w is the (m, n)-cube at position
(0, 0) of the digital plane Pα,β,γ.

Remark. It is easy to see that PI(w) is a convex polyhedron defined by the
inequalities w(k, l) ≤ kα + lβ + γ < w(k, l) + 1 for (k, l) ∈ Fm,n. Moreover the
set of the γ′ ∈ [0, 1] such that (α, β, γ′) ∈ PI(wi,j(α, β, γ)) is exactly the interval
[Bα,β

h , Bα,β
h+1[ containing 〈αi + βj + γ〉.

The last remark leads to the following definition:

Definition 4. The γ-frequency of a (m, n)-cube w for the slopes (α, β) (denoted
freqα,β(w)) is the length of the interval Iα,β(w) = {γ ∈ [0, 1] | (α, β, γ) ∈ PI(w)}.
(so the function TP : PI(w) → R such that TP (α, β) = freqα,β(w) is the tomo-
graphic projection of PI(w) w.r.t. the third coordinate direction).

Definition 5. The overlapping frequency of a (m, n)-cube in the digital plane
Pα,β,γ is

lim
N→+∞

card({(i, j) ∈ �−N, N�2 | wi,j(α, β, γ) = w})
(2N + 1)2

if the limit exists. It is denoted overfreqα,β,γ(w).

So, overfreqα,β,γ(w) = limN→+∞
card({(i,j)∈�−N,N�2 | 〈αi+βj+γ〉∈Iα,β(w)})

(2N+1)2

We have the following properties:

Proposition 2 ( [1]). For any α, β ∈ [0, 1] and γ ∈ R we have:

1. w ∈ Cm,n,α,β if and only if freqα,β(w) > 0.
2. overfreqα,β,γ(w) = freqα,β(w)

(A related result is stated in [19]).

Definition 6. A function f : R
2 → R is called a piecewise affine function if

there exists a finite collection (Ci)i∈I of open convex subsets of R
2 and affine

functions fi : R
2 → R for i ∈ I, such that :

– Ci ∩ Ci′ = ∅ for i, i′ ∈ I and i 
= i′,
–

⋃
i∈I Ci = R

2 and
– the restriction of f to Ci is fi for all i ∈ I (for all i ∈ I, f(x) = fi(x) for all

x ∈ Ci).

Property 1 ( [1]). Let f, g : R
2 → R be two piecewise affine functions. Then

−f, f + g, f − g, max(f, g) and min(f, g) are also piecewise affine functions.
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Theorem 1. For any (m, n)-cube w, the function (α, β) 
→ freqα,β(w) is a con-
tinuous function which is piecewise affine.

Proof. PI(w) = {(α, β, γ) ∈ R
3 | w(k, l) ≤ αk+βl+γ < w(k, l)+1 for all (k, l)

∈ Fm,n}.
Then Iα,β(w) = [max(k,l)∈Fm,n

(w(k, l) − αk − βl), min(k,l)∈Fm,n
(w(k, l) + 1 −

αk − βl)[.
So, freqα,β(w) = max(0, min(k,l)∈Fm,n

(w(k, l) + 1 − αk − βl) − max(k,l)∈Fm,n

(w(k, l)−αk−βl)). Affine functions, max and min are continuous functions. Then
(α, β) 
→ freqα,β(w) is a continuous function which is piecewise affine because it
is composition of continuous functions and by Property 1 it is piecewise affine
function. ��

Proposition 3. Let (α1, β1), (α2, β2), (α3, β3) be points of [0, 1]2 and T be the
convex hull of these three points. Let (α0, β0) ∈ T and consider λ1, λ2, λ3 ≥ 0
such that (α0, β0) =

∑3
i=1 λi(αi, βi) and

∑3
i=1 λi = 1 ( λ1, λ2, λ3 are barycentric

coordinates of (α0, β0) relatively to (α1, β1), . . . (α3, β3)). Suppose moreover that
the function (α, β) 
→ freqα,β(w) is affine on T for any (m, n)-cube w, then

Cm,n,α0,β0 =
⋃

1≤i≤3 and λi 
=0

Cm,n,αi,βi

Proof. By affinity of (α, β) 
→ freqα,β(w) on T we have:

freqα0,β0
(w) =

3∑
i=1

λifreqαi,βi
(w)

If w /∈ Cm,n,α0,β0 then by Proposition 2, freqα0,β0
(w) = 0 and so for any i,

freqαi,βi
(w) = 0 or λi = 0 because λ1, λ2, λ3 ≥ 0 which implies that for any i,

if λi 
= 0 then w /∈ Cm,n,αi,βi. Conversely as λ1, λ2, λ3 ≥ 0 and
∑3

i=1 λi = 1, if
w ∈ Cm,n,α0,β0 , then by Proposition 2, freqα0,β0

(w) > 0 and thus, there must
exist a i ∈ {1, 2, 3} such that λi 
= 0 and freqαi,βi

(w) > 0 ��

We will now precise the domains where the function (α, β) 
→ freqα,β(w) is affine:
Let Du,v,w be the line {(α, β) ∈ R

2 | αu + βv + w = 0} and

Em,n =
⋃

(u,v,w)∈�−m+1,m−1�×�−n+1,n−1�×Z

Du,v,w ∩ [0, 1]2.

Em,n involves only straight lines Du,v,w such that Du,v,w ∩ [0, 1]2 
= ∅ and so we
must only consider the straight lines Du,v,w such that |w| ≤ |u| + |v| and thus
Em,n involves only a finite number of straight lines.

Em,n is called Hyper Farey fan in [2] and Farey’s diagram in [9].
Fig.2 corresponds to Farey’s diagram for m = 4 and n = 3.

Theorem 2 ( [1]). The function (α, β) 
→ freqα,β(w) is affine on the closure
of any connected component of [0, 1]2 \Em,n for all w ∈ Um,n. Moreover for any
(α, β), (α′, β′) ∈ [0, 1]2 \ Em,n: Cm,n,α,β = Cm,n,α′,β′ if and only if (α, β) and
(α′, β′) are in the same connected component of [0, 1]2 \ Em,n.
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Fig. 2. Farey’s diagram for m = 4 and n = 3

Corollary 1. Let O be a connected component of [0, 1]2 \ Em,n. Then O is a
convex polygon and if p1, p2, p3 are distinct vertexes of the polygon O then

1. for any point p ∈ O, Cm,n,p = Cm,n,p1 ∪ Cm,n,p2 ∪ Cm,n,p3 and
2. for any point p in the interior of the segment of vertexes p1, p2, Cm,n,p =

Cm,n,p1 ∪ Cm,n,p2 .

Proof. The function (α, β) 
→ Cm,n,α,β is constant on O. By Theorem 2, for all
w ∈ Um,n, the function (α, β) 
→ freqα,β(w) is affine on O and we conclude by
using Proposition 3 ��

Corollary 2. The number of (m, n)-cubes is in O((m + n)2m3n3).

Proof. Any line of equation ux+vy+w = 0 with |w| > |u|+|v| does not intersect
the square [0, 1]2, so Em,n is composed of at most (2m + 1)(2n + 1)(2(m + n +
1) + 1) = f(m, n) lines. Thanks to Theorem 2 and Corollary 3 all the (m, n)-
cubes appear in the vertices of the connected components of [0, 1]2 ∩Em,n. Each
vertex is the intersection of two lines of Em,n so there are at most f(m, n)2 such
vertices. Each vertex corresponds to at most mn (m, n)-cubes, so in total there
are at most ((2m+1)(2n+1)(2(m+n+1)+1))2mn (m, n)-cubes, which proves
the claim. ��

Corollary 2 gives an upper bound for the number of (m, n)-cubes. In the follow-
ing, we will give a lower bound for this number.
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Definition 7. Let m ∈ N \ {0}.

1. Let α, γ ∈ [0, 1]. The set S(m, α, γ) = {(x, �αx+γ�) | x ∈ �0, m−1�} is called
a digital segment of size m.

2. Sm = {S(m, α, γ) | α, γ ∈ [0, 1]} is the set of all digital segments of size m.

Property 2 ( [20,21])

1. card(Sm) = 1 +
∑m

i=1(m − i + 1)ϕ(i) where ϕ is the Euler’s totient function
(ϕ(i) = card({j | 1 ≤ j < i and i and j are co-prime})).

2. card(Sm) = m3

π2 + O(m2 log(m)).

Property 3. Let m, n ∈ N
∗ and α, β, γ1, γ2 ∈ [0, 1] and consider the two dig-

ital segments S(m, α, γ1), S(n, β, γ2). Then, there exists w ∈ Um,n such that
S(m, α, γ1) = {(i, w(i, 0)) | i ∈ �0, m − 1�} and S(m, β, γ2) = {(j, w(0, j)) | j ∈
�0, m − 1�}.

Proof. By [21, 6], there exist i, j ∈ Z such that S(m, α, γ1) = {(x − i, �αx� −
�αi�) | x ∈ �i, m+i−1�} and S(n, β, γ2) = {(x−j, �βy�−�βj�) | y ∈ �j, n+j−1�}.
Then w = wi,j(α, β, 0) verifies the conditions of the property. ��

Corollary 3. card(Um,n) ≥ card(Sm)card(Sn). So, card(Um,n) ≥ 1
π4 m3n3 +

O(m2n2 log(m) log(n)).

Proof. By Property 3, we have card(Um,n) ≥ card(Sm)card(Sn) and the second
assertion is a direct consequence of Property 2. ��

Corollaries 2 and 3 imply that there exist two constant numbers k1, k2 such that
k1m

3n3 < card(Um,n) < k2(m + n)2m3n3.

4 Application to Local Estimators

A digital surface is the discretization of a surface of R
3. We investigate in this

section the local estimators of the area of digital surface in the digital space rZ
3

of resolution r.
The local estimator of area is obtained by associating a weight p(w) to each

pattern w ∈ M(m, n) of size m×n where M(m, n) is the set of all m×n-patterns,
then any digital surface Sr, can be obtained by concatenation of elements in
M(m, n) with perhaps a pattern εi, ε′j of size less that m × n. In other words
Sr can be viewed as a bi-dimensional word on the alphabet of patterns of size
less or equal to m × n. If

Sr =

w1,1 w2,1 · · · wM,1 ε1
w1,2 w2,2 · · · wM,2 ε2

...
... · · ·

...
...

w1,N w2,N · · · wM,N εN

ε′1 ε′2 · · · ε′M ε′M+1
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where wi,j ∈ M(m, n) for all i, j, then we define the area of Sr by Sr,m,n,p(Sr) =
r2 ∑

i,j p(wi,j) (i.e. we neglect the contribution of the digital surfaces εi and ε′j).

Actually, we investigate the following problem:
Does there exist m, n and p(.) such that for any surface S ∈ R

3 the areas
Sr,m,n,p(Sr) converge to the area of S where r tends to 0? (i.e. Sr is a dis-
cretization of S).

In this section, we study this problem for a particular class of surfaces: the
set of rectangular planar regions. Moreover we suppose that the discretization
operator δr restricted to these regions is in the class of the “Bresenham” dis-
cretization.

Let a, b, c, d ∈ R such that a < b and c < d and 0 ≤ α, β ≤ 1. Let r > 0
be the resolution of the discrete space rZ

3. Let the rectangular planar region
R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d}. So the “Bresenham”
discretization of R in rZ

3 is

Rr = r{(x, y, �αx + βy +
γ

r
�) | (x, y) ∈ ��a

r
�, � b

r
�� × �� c

r
�, �d

r
��}.

We fix m, n as a positive integers. As it has been explained for surfaces, the
discrete region Rr can be seen as the bi-dimensional word:

Rr =

w1,1 w2,1 · · · wMr ,1 ε1,r

w1,2 w2,2 · · · wMr ,2 ε2,r

...
... · · ·

...
...

w1,Nr w2,Nr · · · wMr ,Nr εNr,r

ε′1,r ε′2,r · · · ε′Mr,r ε′Mr+1,r

(1)

where Mr = � � b
r 
−� a

r �+1
m � and Nr = � � d

r 
−� c
r �+1

n � and for all i, j, wi,j is a (m, n)-
cube and εi, ε′j are patterns of size less than m × n.

We construct Sr,m,n,p as the local estimator of measure by using a weight
function p : Um,n → R. Then Sr,m,n,p is defined by:

Sr,m,n,p(Rr) = r2 ∑
(i,j)∈�1,Mr�×�1,Nr� p(wi,j)

= r2 ∑
w∈Um,n

n(w, Rr , r)p(w) (2)

Where n(w, Rr, r) = card({(i, j) ∈ �1, Mr� × �1, Nr� | wi,j = w}) which is the
number of occurrences of the pattern w in the bi-dimensional word Rr (i.e. we
neglect the contributions of the εi,r and ε′j,r for i ∈ �1, Nr� and j ∈ �1, Mr + 1�).

The central question of this section can be formulated as the following, does
there exist m, n and p(.) such that, for any rectangular planar region R, the
estimation Sr,m,n,p(Rr) converges to the area of R when the resolution r tends
to 0?

We will prove in this section that the response is almost everywhere no.
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Actually, we will prove that for almost all rectangular planar regions R, the
estimation Sr,m,n,p(Rr) does not converge to the area of R when the resolution
r tends to 0.The result of this section is an extension of the results of [17] for
estimating area of rectangular planar regions of R

3.
Put DAm,n,p(R) = limr→0 Sr,m,n,p(Rr).
In all the following, to simplify the notations we denote Er = (��a

r �, � b
r �� ×

�� c
r �, �d

r ��)∩ ((mZ+ �a
r �)× (nZ+ � c

r �)) and Sr = (� b
r �−�a

r �+1)(�d
r �−� c

r �+1)

Definition 8. The non-overlapping frequency Fα,β,γ,a,b,c,d
r of a pattern w of size

m × n in Rr is defined by:

Fα,β,γ,a,b,c,d
r =

card({(x, y) ∈ Er | wx,y(α, β, γ
r ) = w})

Sr

Lemma 1. Let α, β ∈ [0, 1] such that α or β is irrational, γ, a, b, c, d ∈ R,
w ∈ Cm,n,α,β. Then

Fα,β,γ,a,b,c,d = lim
r→0

Fα,β,γ,a,b,c,d
r =

1
mn

freqα,β(w)

In particular Fα,β,γ,a,b,c,d does not depend on γ, a, b, c, and d.

Proof.

Fα,β,γ,a,b,c,d = limr→0
card({(x,y)∈Er | wx,y(α,β, γ

r )=w})
Sr

= limr→0
card({(x,y)∈Er | 〈αx+βy+ 1

r γ〉∈Iα,β(w)})
Sr

So, if we take p = m, q = n, γr = 1
r γ and I = Iα,β(w) in Theorem 4 of the

Appendix A [1], then we have Fα,β,γ,a,b,c,d = 1
mnμ(Iα,β(w)) = 1

mn freqα,β(w)
because by Proposition 2 overfreqα,β,γ(w) = μ(Iα,β(w)) ��

Theorem 3. Let O be a connected component of [0, 1]2 \Em,n. Then there exist
u, v, t ∈ R such that DAm,n,p(R) = (b−a)(d− c)(uα+vβ + t) for all rectangular
planar regions R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that
α, β ∈ O and α or β is irrational.

In other words, DAm,n,p(.) is an affine function in (α, β) for (α, β) ∈ (O\Q
2).

Proof. By (1) and (2) we have:

Sr,m,n,p(Rr) = r2
∑

1≤i≤Mr

∑
1≤j≤Nr

p(wi,j)

= r2
∑

w∈Um,n

n(w, Rr, r)p(w)

where n(w, Rr, r) = card({(x, y) ∈ (((mZ + �a
r �) × (nZ + � c

r �)) ∩ ([�a
r �, [� b

r �] ×
[� c

r �, [�d
r �]) | wx,y(α, β, γ

r ) = w}) which is the number of occurrences of the
pattern w in the bi-dimensional word Rr. So,
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DAm,n,p(R) = lim
r→0

r2
∑

w∈Um,n

n(w, Rr , r)p(w)

= lim
r→0

r2Sr

∑
w∈Um,n

n(w, Rr , r)
Sr

p(w)

= (b − a)(d − c)
∑

w∈Um,n

1
mn

freqα,β(w)p(w) (By Lemma 1)

So, according to Theorem 2, DAm,n,p(.) is an affine function in (α, β) for (α, β) ∈
(O \ Q

2) ��

Corollary 4. The set of (α, β) ∈ ([0, 1]2 \ Em,n) such that α or β is irrational
and DAm,n,p(R) = area(R) is a negligible (relatively to the Lebesgue measure
on the Euclidean space) where for a, b, c, d ∈ R, R = {(x, y, αx + βy + γ) | a ≤
x ≤ b and c ≤ y ≤ d}.

Proof. We consider a connected component O of [0, 1]2 \ Em,n. By Theorem 3,
there exist u, v, t ∈ R such that the estimated area of the rectangular planar
region R is DAm,n,p(R) = (b − a)(d − c)(uα + vβ + t) for α or β is irrational.
The exact area of R is area(R) = (b − a)(d − c)

√
1 + α2 + β2. So we have:

DAm,n,p(R) = area(R) ⇐⇒ (uα + vβ + t)2 = 1 + α2 + β2

Which is equivalent to (u2−1)α2+(v2−1)β2+2(uvαβ+utα+vtβ)+t2−1 = 0
But, the last equation corresponds to an object of Lebesgue measure greater than
0 only when u2 − 1 = 0, v2 − 1 = 0, t2 − 1 = 0, uv = 0, ut = 0 and vt = 0
which never happens. So, the last equation corresponds to a curve in R

2 (which
is the intersection of conic and the region O) and thus, for (α, β) ∈ O, the
estimated area can be equal to the exact area for only (α, β) in a set included
in the intersection of a conic and the region O which corresponds to a negligible
set.

But, [0, 1]2 \ Em,n contains only a finite number of connected components.
Thus, the set of (α, β) ∈ ([0, 1]2 \ (Em,n ∪ Q

2)) such that the estimated area is
equal to the exact area is a negligible set because it is a finite union of negligible
sets. ��

Corollary 5. For any m, n ∈ N
∗ and any weight function p(.) the set of (α, β) ∈

[0, 1]2 such that the rectangular planar region R = {(x, y, αx+βy + γ) | a ≤ x ≤
b and c ≤ y ≤ d} (where γ, a, b, c, d ∈ R) satisfies area(R) = DAm,n,p(R)
is a negligible set. So, for any m, n ∈ N

∗ and any weight function p(.), for
all rectangular planar regions R with the parameters α, β ∈ [0, 1], we have
area(R) 
= DAm,n,p(R) almost everywhere.

Proof. By Corollary 5, we have, for almost all rectangular planar regions R with
parameters (α, β) ∈ ([0, 1]2 \ Em,n) area(R) 
= DAm,n,p(R). But Q

2 is infinite
countable set and Em,n is a finite set of straight lines. So Em,n∪Q

2 is a negligible
set. So, for all rectangular planar regions R with the parameters α, β ∈ [0, 1],
area(R) 
= DAm,n,p(R) almost everywhere ��



About the Frequencies of Some Patterns in Digital Planes 55

5 Conclusion

In this paper we have seen that the frequencies of the (m, n)-cubes of digital
planes are given by a continuous piecewise affine function in the slopes of the
digital planes. This has consequences on the combinatorics of (m, n)-cubes, in
particular on the asymptotic behavior of the number of (m, n)-cubes when m
and n tend to infinity.

Moreover it has also consequences on local estimators of area as it permits to
prove that any local estimator of area is never multigrid-convergent: for almost
all region of plane it does not converge to the true area. This result is a general-
ization of a result in dimension two proved in [17]. Actually we can prove with
the same technics that this result is true for the equivalent notions for any finite
dimension.
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