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Abstract. The concept of constrained connectivity [Soille 2008, PAMI]
is summarised. We then introduce a variety of measurements for char-
acterising connected components generated by constrained connectivity
relations. We also propose a weighted mean for estimating a representa-
tive value of each connected component. Finally, we define the notion of
spurious connected components and investigate a variety of methods for
suppressing them.

1 Introduction

A segmentation of the definition domain X of an image is usually defined as
a partition of X into disjoint connected subsets Xi, . . . , Xn (called segments)
such that there exists a logical predicate P returning true on each segment but
false on any union of adjacent segments [1]. That is, a series of subsets Xi of the
definition domain X of an image forms a segmentation of this image if and only
if the following four conditions are met (i) ∪i(Xi) = X , (ii) Xi ∩ Xj = ∅ for all
i �= j, (iii) P (Xi) = true for all i, and (iv) P (Xi ∪ Xj) = false if Xi and Xj are
adjacent.

With this classical definition of image segmentation, given an arbitrary log-
ical predicate, there may exist more than one valid segmentation. For exam-
ple, the logical predicate returning true on segments containing one and only
one regional minimum and false otherwise lead to many possible segmentations.
The watershed transformation definition considers the additional constraint that
there should exist a steepest slope path linking each pixel of the segment to its
corresponding minimum for the logical predicate to return true. Still, this does
not guarantee that there is a unique solution because the steepest slope path of
a pixel is not necessarily unique (problem of ties).

If uniqueness of the result is required, logical predicates based on equivalence
relations should be considered1. Indeed, it has been known for a long time that
there exists a one-to-one correspondence between the partitions of a set and the
equivalence relations on it, e.g., [2, p. 48]. Since connectivity relations are equiv-
alence relations, logical predicates based on connectivity relations naturally lead
1 A binary relation which is reflexive, symmetric, and transitive is called an equivalence

relation.
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to unique segmentations. For example, the trivial connectivity relation stating
that two pixels are connected if and only if they can be joined by an iso-intensity
path breaks digital images into segments of uniform grey scale [3]. They are called
plateaus in fuzzy digital topology [4] and flat zones in mathematical morphology
[5]. In most cases, the equality of grey scale is a too strong homogeneity criterion
so that it produces too many segments. Consequently, the resulting partition is
too fine. A weaker connectivity relation consists in stating that two pixels of a
grey tone image are connected if there exists a path of pixels linking these pixels
and such that the grey level difference along adjacent pixels of the path (i.e.,
weights of the edges of the path) does not exceed a given threshold value. In
this paper, we call this threshold value the local range parameter and denote it
by α. Accordingly, we call the resulting connected components the α-connected
components. This idea was introduced in image processing by Nagao et al. in the
late seventies [6]. The resulting connected components are called quasi-flat zones
[7] in mathematical morphology. The concept of α-connected components pre-
dates developments in image processing since it is at the very basis of the single
linkage clustering method [8]. Although α-connected components often produce
adequate image partitions they fail to do so when distinct image objects (with
variations of intensity between adjacent pixels not exceeding α) are separated
by one or more transitions going in steps having an intensity height less than or
equal to α. Indeed, in this case, these objects appear in the same α-connected
component so that the resulting partition is too coarse.

A natural solution to this problem is to limit the difference between the maxi-
mum and minimum values of each connected component by introducing a second
threshold value called hereafter global range parameter and denoted by ω. This
idea has been originally introduced in [9]. However, the relation at the basis of the
developments of [9] is not an equivalence relation because it is not transitive and
therefore does not guarantee the generation of unique connected components.
This problem has been solved in [10] by introducing the notion of constrained
connectivity. In the present paper, we expand on the results of [10].

The paper is organised as follows. Constrained connectivity relations originally
proposed in [10] are summarised in section 2. We then propose in Sec. 3 a series of
measurements that can be applied to each connected component and introduce the
notion of local connectivity index leading to a weighted mean of its intensity val-
ues. Image segmentation based on constrained connectivity is studied in section 4.
Particular emphasis is given on the analysis of small and usually undesirable seg-
ments. We suggest several procedures for suppressing them while preserving the
hierarchical properties of partitions based on constrained connectivity. Experi-
ments conducted on a benchmark aerial image are discussed in section 5.

2 Constrained Connectivity Relations

After a reminder about the well established notion of alpha-connectivity, this
section summarises the notion of constrained connectivity recently introduced
in [10].
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2.1 Alpha-Connectivity

Two pixels p and q of an image f are α-connected if there exists a path going
from p to q such that the range of the intensity values between two successive
pixels of the path does not exceed the value of the local range parameter α [6].
By definition, a pixel is α-connected to itself. Accordingly, the α-connected com-
ponent of a pixel p is defined as the set of image pixels that are α-connected to
this pixel. We denote this connected component by α-CC(p):

α-CC(p) =
{
p
}

∪
{

q
∣∣ there exists a path P = (p = p1, . . . , pn = q), n > 1,

such that R{f(pi), f(pi+1)} ≤ α for all 1 ≤ i < n
}
,

where the range function R calculates the difference between the maximum and
the minimum values of a nonempty set of intensity values.

More restrictive connectivity relations detailed in Sec. 2.2 exploit the total
ordering relation between the α-connected components of a pixel. Indeed, for
all local range parameters α less than or equal to a given local range parameter
α′, the α-connected component of a pixel p is included in the α′-connected
component of this pixel:

α-CC(p) ⊆ α′-CC(p) for all α ≤ α′. (1)

This hierarchy is known since the fifties in the field of combinatorial optimisation,
see [11] for a detailed survey till 1960. Indeed, it is at the root of the greedy
algorithm of Kruskal [12] for solving the minimum spanning tree problem. In
this algorithm, referred to as ’construction A’ in [12], the edges of the graph are
initially sorted by increasing edge weights. Then, the minimum spanning tree
T is defined recursively as follows: the next edge is added to T if and only if
together with T it does not form a circuit. That is, assuming the edge weights are
defined by the range of the intensity values of the two nodes (pixels) they link,
there is a one-to-one correspondence between (i) the α-connected components
and (ii) the subtrees obtained for a distance α in Kruskal’s greedy solution to
the minimum spanning tree problem. This hierarchy of subtrees is itself at the
very basis of the dendrogram representation of the single linkage clustering [8].
This clustering method was put forward by Sneath [13] as a convenient way of
summarising taxonomic relationships in the form of taxonomic trees also called
similarity trees or dendrograms.

2.2 (Alpha,Omega)-Connectivity

We define the (α, ω)-connected component of an arbitrary pixel p as the largest
αi-connected component of p such that (i) αi ≤ α and (ii) its range is lower than
or equal to ω [10]:

(α, ω)-CC(p) =
∨{

αi-CC(p)
∣∣∣ αi ≤ α and R

(
αi-CC(p)

)
≤ ω

}
. (2)
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The existence of a largest αi-connected component is secured thanks to the
total order relation between the αi-connected components of a pixel (Eq. 1).
Two pixels p and q are (α, ω)-connected if and only if q ∈ (α, ω)-CC(p).

Beyond range parameters, one may consider other constraints such as a con-
nectivity index indicating the degree of cohesion of each α-connected component.
This idea leads to the notion of α-strong connectivity detailed in [10]. A further
generalisation to arbitrary logical predicates is presented in [14].

3 Connected Component Representation

First, a series of useful measurements that can be applied to each connected
component is presented. We then indicate a method for computing a represen-
tative value for each connected component, taking into account their internal
cohesion.

3.1 Measurements

Measurements performed on each connected component provide us with a set of
features useful for classification purposes and subsequent processing. We propose
the definition of the difference image ΔA mapping the difference between α and
the maximum value of αi leading to the (α, ω)-connected component of p:

ΔA[CC(p)] = α − max
{

αi | αi-CC(p) = (α, ω)-CC(p)
}

.

Similarly, the difference image ΔΩ measures the difference between ω and the
actual range of the connected component:

ΔΩ[CC(p)] = ω − R
(
(α, ω)-CC(p)

)
.

The difference between the maximum and minimum value of αi leading to the
(α, ω)-connected component is proportional to the strength of the external iso-
lation of the component:

max
{
αi | αi-CC(p) = (α, ω)-CC(p)

}
− min

{
αi | αi-CC(p) = (α, ω)-CC(p)

}
.

The connectivity index function [10] obtained for increasing threshold range
values could also be used as feature vector characterising each connected com-
ponent. It is used in the following section for calculating a representative value
of each connected component.

3.2 Representative Value

Within the scope of image simplification, one needs to estimate a representative
value for each connected segment2. This is also necessary when iterating the
2 For the estimation of a representative value within geodesic adaptive neighbourhood

instead of connected components, see [15] in this volume.
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partitioning procedure. In this latter case, the estimated values at each step of
the iteration influence the segments obtained in the successive steps.

A common choice for the representative value of a segment is the average of
the grey levels of the pixels belonging to it. Some approaches also propose to
select it as the local mode of the segment [16].

We propose here to associate with each segment a weighted mean of the
intensity values of the pixels of the segment. This is achieved by calculating
for each pixel of the segment the number of adjacent pixels that belong to this
segment and that are within a range of α. More generally, rather than looking
for adjacent pixels only, one can analyse larger neighbourhoods (of size n) to
estimate a representative value ψn[CC(p)] of any segment CC(p):

ψn[CC(p)] =
{∑

CIn(pi)f(pi)∑
CIn(pi)

∣∣∣ pi ∈ α-CC(p)
}

, (3)

with the local connectivity index of order n of the pixel p defined as CIn(p) =
card(pi ∈ CC(p)) such that there exists a path P with length n and R(f(p), f(pi))
≤ α. This idea is related to the concept of (global) connectivity index function
as introduced in [10] and defined at the level of a connected component.

With this definition, we have in particular CI1[p] ≤ N where N is imposed
by the graph connectivity definition (4 or 8 in the square grid). This way, in
the computation of the weighted mean ψ1, large weights are assigned to the
’core’ pixels of the segment, with large connectivity index, while lower weights
are assigned to pixels with smaller connectivity index. Notice moreover that the
border pixels of the segment, that have at least one connection with a pixel
from another segment, have a connectivity index automatically forced to a value
CIn[p] < N . Thus, pixels lying on the internal segment boundaries are assigned
lower weights in the weighting procedure defined by Eq. 3 and they contribute
less to the final grey level of the segment (ψ1[CC(p)]).

4 Partition Filtering

Constrained connectivity relations partitions the image definition domain into
labelled connected components. In addition, by varying the threshold values of
the constraints, partition of increasing coarseness degree are obtained. This idea
is applied to hierarchical image decomposition and simplification in [10]. Inter-
estingly, any level of the hierarchy can be directly computed without requiring
knowledge of the previous levels, in contrast to most alternative partition hier-
archies [17].

The generated partitions deliver puzzle pieces that can be further assembled
depending on application dependent rules. However, by essence, the method does
not take any size criterion into account. It follows that regions as small as one
pixel may survive even for large values of the constraint threshold values. We
study hereafter the origin of these small regions and propose some approaches
for suppressing them in cases this is required by the application at hand.
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4.1 Characterisation of Small Regions

We define small regions as regions that cannot contain the elementary structuring
element defined by a pixel and its adjacent neighbours (4- or 8-neighbours in the
square grid). They are extracted by the following 3-step procedure:
1. perform the union of the erosion of each connected component of the labelled

partition. This can be achieved by initialising the output image to 1 and then
scan the input image while checking for each position that the structuring
element centred at this position covers pixels with the same label value. If
this is not the case, the value of the output image at the current position is
set to 0. The resulting binary image is then multiplied by the input labelled
partition. This image corresponds to the union of the erosion of each con-
nected component of the labelled partition and is referred to as the marker
image hereafter;

2. reconstruct the labelled partition from the marker image (reconstruction
operation on labels, that is, the markers propagate only within the region
having the same label value as the marker);

3. define small regions as the arithmetic difference between the initial labelled
partition and the reconstructed partition as per step 2.

The resulting small segments are then categorised into two classes having
different origins:
– 1 pixel thick segments containing at least one regional extremum (union of

regional minima and maxima). These regions may either be due to noise or
thin relevant structures.

– 1 pixel thick segments that do not contain any regional extremum. These re-
gions are usually due to the limited resolution of the digital image leading to
non ideal step edges spanning over 1 or more pixels. We call them transition
regions (for alternative definitions of transition regions, see [18,19]). Often,
transition regions are located at the boundaries between larger regions.

In both situations, these small regions cannot grow further because their
growth would lead to a violation of either the local or global range constraints.
We explore hereafter a number of methods for reducing or even suppressing small
regions of one or both types.

4.2 Filtering Procedures

Filters can be applied either before or after the computation of the constrained
connected components.

Pre-filtering. Filters reducing irrelevant local variations can help aggregating
small regions into larger regions since the largest αi-connected component sat-
isfying the input constraints will usually be obtained for larger values of αi.
The occurrence of the first type of small regions can reduced by preprocessing
the image with a filter removing isolated pixels. If necessary, more active filters
such as the self-dual reconstruction of the input image from its median filter or
self-dual area filters [20] can be considered.
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Post-filtering. The filtering procedure consists in computing a partition given
local and global range parameters. Transition regions defined as small regions
not containing any regional extrema are then extracted and considered as spu-
rious regions . The resulting gaps are then filled using a seeded region growing
algorithm [21] (see also [22] for a version suitable for connected operators and
multispectral images). This procedure ensures that all unwanted regions are sup-
pressed but at the cost of some arbitrary decisions unless the ties are tracked (see
seeded region growing algorithm enhanced in [23] to address order dependence
issues).

5 Experiments

Figure 1a shows an aerial image retrieved from the miscellaneous section of image
database of the University of Southern California (USC-SIPI Image Database).
Figure 1b shows the partition obtained using the same value (64 grey levels) for

(a) 256 × 256 aerial image (54,364 iso-
intensity connected components).

(b) (α, ω)-partition with α = ω = 64
(8,664 regions).

Fig. 1. Input aerial image and resulting partition using local and global range
thresholds equal to 64. The input image corresponds to the lower left quarter of
the image 5.2.09 of the miscellaneous section of the USC-SIPI image database, see
http://sipi.usc.edu/database/

the local and global range parameters and considering the 4-connected graph. A
simplified image can be generated by setting each region to the weighted mean as
proposed in Sec. 3.2 leads to the simplified image shown in Fig. 2a. A comparison
with the image obtained using the non weighted mean is shown in Fig. 2b. This
image reveals that the weighted mean generate a more contrasted image even if
differences can be hardly perceived through a visual comparison between mean
and weighted mean representations.

Figure 3 illustrates the post-filtering procedure whereby transition regions are
suppressed (1 pixel thick regions not containing any regional extremum). The

http://sipi.usc.edu/database/


430 P. Soille and J. Grazzini

Fig. 2. Left: Edge preserving simplification of the image shown in Fig. 1a using the
partition shown in Fig. 1b and weighted mean based on local connectivity index with
adjacent pixels only (equation 3 with n = 1). Right: comparison between mean and
weighted mean with grey for identical values, black for lower values with weighted
mean, and white for greater values with weighted mean. In both cases, the mean was
rounded to its integer part.

partition without transitions regions contains 2,897 regions contrary to the 8,664
regions of the initial partition (compare Fig. 3f with Fig. 1b by zooming on the
electronic version).

6 Concluding Remarks and Perspectives

The concept of constrained connectivity offers a fruitful framework for creating
image partitions and edge preserving filtering (image simplification). A non-
exhaustive list of measurements characterising the generated connected com-
ponents has been proposed. The use of these measurements for classification
purposes will be reported in a follow-up paper together with their extension
to multichannel images since the concept of constrained connectivity can be
extended to these images [10]. The proposed notion of local connectivity index
allows for the definition of a weighted mean for estimating a representative value
of each connected component. Further improvements regard the estimation of
a representative value for each connected component. For instance, rather than
using the input local range threshold value α in the definition of the local con-
nectivity index CIn, the actual local range threshold value αi (Eq. 2) that varies
from one connected component to another could be considered.

We have also analysed the origin of the small connected components and
categorised them into two main categories. A technique for removing spurious
small regions corresponding to transition regions has been proposed and allows
for a drastic reduction in the number of regions of the segmented images. Other
techniques based on iterative methods could also be easily designed. Finally,
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(a) Union of the erosion of CC of Fig. 1b. (b) Reconstruction of Fig. 1b from (a).

(c) Resulting small regions. (d) Regional extrema of Fig. 1a.

(e) Transition regions (small regions not
containing a regional extremum).

(f) Final partition with transition regions
removed (2,897 regions).

Fig. 3. Partition filtering based on the removal of transition regions (see details in text)
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comparisons with related hierarchical segmentation techniques [24,17] will be
addressed in an extended version of this paper.
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