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Abstract. Mojette projections of discrete pixel arrays form good ap-
proximations to experimental parallel-beam x-ray intensity absorption
profiles. They are discrete sums taken at angles defined by rational frac-
tions. Mojette-like projections form a “half-way house” between a con-
ventional sinogram and fully digital projection data. A new direct and
exact image reconstruction technique is proposed here to invert arbi-
trary but sufficient sets of Mojette data. This new method does not re-
quire iterative, statistical solution methods, nor does it use the efficient
but noise-sensitive “corner-based” inversion method. It instead exploits
the exact invertibility of the prime-sized array Finite Radon Transform
(FRT), and the fact that all Mojette projections can be mapped directly
into FRT projections. The algorithm uses redundant or “calibrated” ar-
eas of an image to expand any asymmetric Mojette set into the smallest
symmetric FRT set that contains all of the Mojette data without any
re-binning. FRT data will be missing at all angles where Mojette data
is not provided, but can be recovered exactly from the “ghost projec-
tions” that are generated by back-projecting all the known data across
the calibrated regions of the reconstructed image space. Algorithms are
presented to enable efficient image reconstruction from any exact Mo-
jette projection set, with a view to extending this approach to invert
real x-ray data.

1 Introduction

Tomographic reconstruction of discrete images is typically based on a sinogram
of projection data obtained using finite aperture detectors oriented at some set of
angles in continuous space. The mix of continuous and discrete sampling causes
problems with image artefacts. To ensure the uniqueness of the reconstruction,
some interpolation or smoothing is required within the Filtered Back-Projection
or Fourier Inversion methods [1]. Any discrete object can, however, be recon-
structed exactly from a sufficient set of discrete projections. Significant advances
in discrete inversion methods have appeared in [2, 3, 4]. The discrete projections
of the Mojette Transform (MT) of [5] resemble closely the form of real data pro-
jections, but the projections are restricted to angles whose tangents are rational
fractions and the number of rays per projection varies with the projection angle.
These MT projections are matched to the grid on which the object is recon-
structed, removing the conflict between discrete and continuous sampling and
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provide the promise of a more faithful reconstruction process and, potentially,
less dose.

A disadvantage of the very general MT approach is the lack of a direct al-
gorithm that avoids iteration [6] or the use of noise-sensitive “corner-based”
inversion approaches [5]. The discrete Finite Radon Transform (FRT) of [7] has
a very simple, direct and exact inversion algorithm that is a consequence of its
prime number array-size and because of its fixed length, periodically wrapped
projection structure. The FRT is a particular case of the MT. Mojette projec-
tions can be mapped into FRT form. The FRT inverse could then be used to
reconstruct the image, but the number of symmetric FRT projections is usually
larger than the asymmetric MT set. Providing the MT set contains sufficient
information to reconstruct the data exactly, we propose a method to recover the
full FRT projection set and thus provide a direct inversion method for the MT
via the FRT formalism. We begin with a brief overview of the MT and the FRT.

1.1 The Mojette Transform (MT)

The MT is a discrete linogram [8] transform for objects of arbitrary shape where
only a minimum projection set needs to be defined [5]. The projection angles
are confined to the Farey Sequence qi/pi, which is a set of irreducible rational
fractions where gcd (pi, qi) = 1 with i = 1, . . . , μ and μ is the total number of
projections [9]. The number of bins in a given MT projection i, Mi, depends on
the angle θi = tan−1(qi/pi) through

Mi = |pi|(Q − 1) + |qi|(P − 1) + 1, (1)

for a P × Q object. An example of a MT for a 4 × 4 image is given figure 1.
The minimum number of projections μmin required for exact reconstruction is

Fig. 1. An example of a Mojette Transform for a discrete image of size 4 × 4. The
bold lines within the right-hand grid shows a possible reconstruction path using a
corner-based inversion method [5].
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dictated by the Katz criterion

N ≤ 1 + max

(μmin∑
i=1

|pi|,
μmin∑
i=1

|qi|
)

(2)

for an N × N object. Note that one can easily over-specify the projection set
(i.e., μ > μmin) [10]. When the Katz criterion is not satisfied, ghosts or phantoms
arise in the reconstructed image [11, 5]. These ghosts were first studied by Katz
(1977, [12]) and are artefacts formed within an image that sum to zero at certain
projection angles. Examples of ghosts are shown in figure 2. The goal of this
paper is to enable direct the use of the FRT formalism to reconstruct exact
images from arbitrary Mojette projection data.

(a) (b)

Fig. 2. Depiction of simple ghosts in an image. (a) shows image values that lead to
ghosts in the four projection directions shown. (b) shows a 61 × 61 greyscale image of
ghosts (black denotes negative and white denotes positive greyscale values). Here the
image will “disappear” when viewed at 15 of the 62 FRT projection directions.

1.2 The Finite Radon Transform (FRT)

The FRT R(t, m) of image I(x, y) is a discrete prime-periodic transform where
the image space is considered to be a torus of size p×p pixels, where p is prime [7].
An example of a projection in the FRT and how these projections relate to the
MT [13, 14] is given in figure 3.

The FRT projections R(t, m) sum all pixels lying along the lines

y ≡ mx + t (mod p), for 0 ≤ m < p
x ≡ t, for m = p

(3)

where x, y, m, t ∈ Z, with lines at each translate t = 0, . . . , p− 1 having slope m.
Each projection consists of p translates which wrap around the image modulo p.
Due to the primality of p, each translate of a projection sums precisely p pixels,
ensuring that each bin has p terms within it. This in turn ensures that every
pixel is sampled exactly once for each projection. When all p + 1 projections
are taken, the FRT can then be inverted exactly as shown in figure 4(a). An
algebraic example of FRT projection and inversion is shown in figure 5. When
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(a) (b)

Fig. 3. (a) shows how projections are taken in I(x, y) to form R(t,m). Here the m = 2
projection has translate t = 0 on a p = 5 grid. (b) shows how FRT projections can be
mapped to Mojette projections along the direction of nearest neighbour lines [13].

(a) (b) (c)

Fig. 4. (a) shows an example of an FRT space and its reconstructed image. The trans-
form is exact and one-to-one. (b) shows the ghosts that form when projections are
missing from the FRT (shown as black regions). (c) shows how a sufficient calibrated
image region (black) enables exact reconstruction of a sub-region.

any FRT projections are missing, the reconstruction is only partially correct and
has ghost artefacts at each pixel corresponding to a superposition of a (negative)
contribution from each missing projection. The result of FRT inversion when
some projections are missing is shown in figure 4(b). However, given a calibrated
region of sufficient size, the missing projections can be recovered from the ghosts
(see figure 4(c)). In the next two sections we discuss how ghosts are structured,
how they can be used to recover missing projections and what constitutes a
sufficient calibrated region.

2 Ghosts in the FRT

Consider a single missing projection or ghost, labelled as ã = {a0, . . . , ap−1},
located at row ma in R(t, m). In the FRT inversion, each projection from R(t, m)
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Fig. 5. Projections of the image (a) are taken using equation (3) and placed into FRT
space (b) (see example pixels in closed circles). To invert the FRT, projections of the
FRT space are taken in the same way as before, but with m′ = p − m for projections
0 < m < p (see example pixels in broken circles). Then every pixel in the result (c) is
normalised by subtracting ISum and dividing by p to recover the exact image (a).

is mapped, as a whole, onto each row in image space, translated (and wrapped
periodically) by mx pixels at row x. The ghost ã also shifts periodically by −ma

on each subsequent row of the image. This structure is shown in insets A and
B of figure 6. The periodic shift structure of the rows can also be viewed along
the column direction, as shown in inset C of figure 6. In the column data, the
ghost bin indices increment at multiples of mj . Conversion between whole rows
and columns of ghost data is possible using this property. The following section
presents the algorithm to exploit this periodic structure in solving for missing
projections.

3 The Mojette Ghost-Recovery Algorithm (MGR)

The ghost structure represented in figure 6 forms the basis for recovering the
extra FRT projections needed to invert MT data. An image containing a cali-
brated region (i.e., where the image values are known) has the ghosts structured
as depicted in inset A of figure 6. It is possible to unscramble these ghost su-
perpositions (or signals) exactly in this region to solve for the missing FRT
projections. These signals essentially form a set of coupled linear equations that
require N ×p calibrated row or column ghost pixels to solve for the N ×p missing
bins of projection values. In [6] a conjugate gradient approach was used to un-
pack Mojette bins into consistent image data. Here the simple arithmetic nature
of the FRT is exploited to provide a direct algebraic reconstruction. The idea of
using redundant image regions has been used in [10] and [15] for encryption of
data as projections. The MGR algorithm is demonstrated in figure 7.

Figure 7(a) shows three rows from the calibrated region where a total of three
ghosts (ã, b̃, c̃ and N = 3) are superimposed. We can first eliminate ghost ã
by cyclically shifting (or rotating) row 1 and row 2 by −ma and −2ma (i.e.,
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Fig. 6. Ghost structure in image space. The image (Lena) is of 100 × 100 pixels em-
bedded (by padding) in a prime image space of 113 × 113. If we assume there is only
one missing projection ã in FRT space (N = 1) at ma = 2, then inset A shows how
the ghost will be structured inside the calibrated region. Inset B shows how artefacts ã
affects the image data. All ghosts will be structured in the same m-dependent pattern.
If multiple ghosts are present, the resulting pattern is a superposition of each ghost
pattern.

to the left) respectively and differencing. The result is shown in figure 7(b)
which contains a mixture of shifted ghosts b̃ and c̃ as differences. However, the
differences have the same ghost order but are shifted with respect to each other.
Therefore, we may remove the b̃ differences by aligning them by −(mb − ma)
and differencing again. The result is shown in figure 7(c), where only differences
containing ghost c̃ remain. The differencing process leaves a systematic pattern
(marked by the arrows) caused by the relative shifts with respect to mc used
to remove the other ghosts. A consecutive sum of the c̃ differences (where the
previous result is carried on to the next) at steps mc − mb (p times) and then
at steps mc − ma (p times), cancels the negative terms in the pattern, leaving
only ghost c̃. Note that this is only made possible by the properties of prime
congruence, as attempting to integrate the differences having lengths other than
p will result in an incomplete ghost. This sum (a discrete integration) leaves
the result with a constant offset that can be removed after each integration
(see figure 7(d)). The result c̃ can then be back substituted and the process
repeated to solve for the remaining ghosts. If the redundant region is sufficient
(i.e., there are at least N full rows or columns in the calibrated region), all
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Row 0
ao a1 a2 a3 a4
bo b1 b2 b3 b4
co c1 c2 c3 c4

Row 1
a4 a0 a1 a2 a3
b3 b4 b0 b1 b2
c2 c3 c4 c0 c1

Row 2
a3 a4 a0 a1 a2
b1 b2 b3 b4 b0
c4 c0 c1 c2 c3

(a)

(Row0)0 - (Row1)−1

bo − b4 b1 − b0 b2 − b1 b3 − b2 b4 − b3
co − c3 c1 − c4 c2 − c0 c3 − c1 c4 − c2

(Row1)−1 - (Row2)−2

b4 − b3 b0 − b4 b1 − b0 b2 − b1 b3 − b2
c3 − c1 c4 − c2 c0 − c3 c1 − c4 c2 − c0

(b)

(c)

c1 − c4 − (c4 − c2) c2 − c0 − (c4 − c2) c3 − c1 − (c4 − c2) c4 − c2 − (c4 − c2) c0 − c3−(c4−c2)
(d)

Fig. 7. An example of the MGR algorithm for p = 5 and N = 3. (a) shows ghosts ã, b̃
and c̃ for m = 1, 2, 3 superimposed in Row 0,1 and 2. The addition signs are removed
for clarity. (b) shows ghost ã eliminated after alignment and pair differences of rows
0, 1 & 2. The superscripts on row labels denote direction and size of cyclic shifts. (c)
shows ghost ã and b̃ eliminated, leaving a summation of four shifted copies of ghost
c̃. At each step the remaining ghosts are compounded by the differencing. Integration
(at steps shown by arrows) simplifies terms to leave the ghost c̃ with constant offset.
(d) shows the first integration result at step mc −mb. Offset −(c4 − c2) is removed and
the next integration done at step mc − ma.

missing projections can be recovered exactly. In summary, the algorithm for
solving missing projections is:

1. Align the first ghost (say ã) by shifting the row or column data cyclically
using −ma and differencing N − 1 pairs of signals. This removes ghost ã
from all those signals. Shifting by −ma also shifts all other ghosts by −ma.

2. Align the next ghost (say b̃) by the new relative shift −(mb − ma) and
difference. This removes ghost b̃ from the signals.

3. Repeat until only the N th ghost is left. Note that the solve order is com-
pletely arbitrary (i.e., in figure 7 we could have solved for b̃, followed by ã
to get c̃).

4. Integrate the last ghost (removing the integration constant after each in-
tegration) to get the missing projection. Back substitute and repeat the
algorithm to determine the other ghosts.

The advantageous features of this algorithm are:

1. The algorithm processes just N 1D cyclic blocks of data, each of length p.
2. The algorithm is exact and non-iterative in nature.
3. The solve order is arbitrary. When processing noisy projection data, this

may be an advantage relative to “corner-based” methods.
4. The algorithm is easily and highly parallelised, because each missing projec-

tion can be solved independently.
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MGR will also help to understand the nature of artefacts in CT reconstructions
arising from non-uniqueness as discussed by [11], [12] and [16]. In the next sec-
tion, the FRT ghosts are utilised to demonstrate a simple inversion mechanism
for the Mojette transform.

4 MGR-Based Inversion

The essential difficulty of inverting the MT is the arbitrary number of projections
and the variable number of bins in each projection. The fixed properties of the
FRT, together with the ability to recover ghosts, provide an explicit inversion
scheme for the MT. Mojette projections can be mapped into an FRT space
with only a minor re-ordering of the translates t without any interpolation (as
was required for reconstructing the real sinogram data in [13]). The net effect
of placing MT projections without interpolation in FRT space is to embed the
sought image within a larger image space. The size of the larger image space is
dictated by the prime p chosen so that the longest MT projection (the largest
Mi as given by equation (1)) fits into FRT space. Merging of bins is avoided in
order to preserve the information in the Mojette set under the Katz Criterion.
Since MT projections tend to be longer and smaller in number than for FRT
projections, the resulting FRT space largely consists of missing projections. After
recovering the ghosts from the calibrated region in image space using the MGR
algorithm, the Mojette projections may be inverted using the very simple inverse
FRT algorithm. This final inversion of the FRT can also be done efficiently by
selecting the appropriate translates from R(t, m) space so only the embedded
image is reconstructed (ignoring the calibrated area). Hence, the MT inversion
scheme is:

1. Reorder and place MT projections into a sufficiently large FRT space.
2. Recover the missing FRT projections. This is done by creating ghosts and

using the MGR algorithm to untangle each of the missing projections.
3. Invert the FRT data using only the translates in FRT space that correspond

to the embedded image.

The scheme has the favourable property of not relying on the corners of the image
(as required by most other exact inversion methods) and should be more noise
tolerant. In the following section, initial results of the MGR inversion scheme
are presented and its current limitations are discussed.

5 Results

The MGR scheme was applied to the MT inversion of a 100×100 image. The MT
of the image is shown in figure 8(a) and the subsequent exact reconstruction in
figure 8(b). In order to solve the system, the total number of missing projections
could not be greater than the size of the calibrated region. As the FRT has p+1
projections, a total of 101 MT projections had to be taken. This meant solving
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(a)

(b)

Fig. 8. Illustration of the exact and non-iterative image reconstruction using MGR
inversion. (a) shows the MT for the Lena image (100×100 pixels) using 101 projections.
(b) shows the exact inversion result of the MGR algorithm using rows. The larger image
space is p = 1289 and required solving for 1188 missing projections. The reconstructed
image, mostly calibrated space, has been truncated for display.

for 1289 − 101 = 1188 missing projections, since the longest Mojette projection
was Mi(max) = 1288 (hence p = 1289) corresponding to p = −7 and q = 6.

An interesting phenomenon also occurs during the differencing process. When
taking differences while shifting periodically, the magnitude of the differences
compound as shown in figure 7(c). When N is large, the pattern of resultant
differences of the N th ghost are almost purely sinusoidal. This sinusoidal effect is
probably due to the differences being zero mean and periodic. The differences are
always zero mean because all FRT projections must sum to the same constant
ISum. The process was replicated using a computer algebra package and solved
analytically. Here the ghost bin addresses were represented by variables, as in
figure 7. The weight each ghost bin contributes to the ghost differencing process
is shown in figure 9. This shows that the sinusoidal behaviour is independent of
image data and dependent on geometry of the problem. For large N , the same
sinusoidal behaviour leads to rapid numerical growth of the difference values
(reaching 1040 in the case of figure 8(b) for N = 1188). An example of the rapid
numerical growth is given in figure 10. This problem so far has been overcome by
using arbitrary-precision integers for the differencing and integration processes
in the MGR algorithm. Controlling the numerical growth is an area of future
work which is discussed in the next section.

6 Further Work

The main remedy for the limitation in the number of projections required will
be to fully utilise all parts of the redundant image area (i.e., a combination of
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-25000

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 25000

 0  10  20  30  40  50  60  70

G
ho

st
 B

in
 W

ei
gh

ts

Ghost Bin

Weight of Ghost Bins after Differencing

f(x)
Weights

(a)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

A
m

pl
itu

de

Frequency

FFT of Ghost Bin Weights after Differencing

(b)

Fig. 9. The result of algebraically solving a ghost system with p = 71 and N = 58 as
described in section 3. (a) shows the distribution of weights of the missing projection
bins at the end of the differencing process. Here the fit f(x) = −a sin(bx + c) where
a = 20591.2, b = 0.0885 ≈ 2π
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Fig. 10. The max and minimum positive values of the compounded ghosts N = 170
during the differencing process. The max values have a fine-scale oscillatory imprint as
shown in (b). Each period consists of one less point than the previous cycle, as each
ghost is progressively eliminated.

a3 a4 a0 a1 a2
b2 b3 b4 b0 b1
a4 a2 a0 a3 a1
b4 b1 b3 b0 b2

(a)

a4 a2 a0 a3 a1
b3 b1 b4 b2 b0
a4 a2 a0 a3 a1
b4 b1 b3 b0 b2

(b)

b3 − b4 0 b4 − b3 b2 − b0 b0 − b2

(c)

Fig. 11. An example of solving N = 2 using a row and a column. Here we denote
ghosts as ã and b̃ having projections m = 2, 3 respectively. (a) shows the initial data
showing row 1 and column p−1. (b) shows the row put into column form and aligned so
ã can be removed. (c) shows ã eliminated by differencing the two rows in table (b). The
resulting b̃ differences cannot be integrated because of the cancellation of like terms.
This occurs regardless of the starting position of the integration. Also, the integration
step required is no longer constant.
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complete rows and columns of the calibrated region). Initial attempts to use both
the rows and columns simultaneously have been frustrated by the interactions
between row and column data (see figures 6 and 11) as p independent values
per row or column are needed to untangle the ghosts and integrate the result.
We are also considering an alternative algorithm that uses the calibrated area to
retrieve the compounded ghost values from the reconstructed image area, pixel
by pixel, rather than independently solving for each ghost in its entirety.

To remedy the problem of numerical growth, the compounding of the ghost dif-
ferences must be understood. Any truncation or wrapping of the differences leads
to incorrect results and any re-normalisation of the values will still require high
precision floating point representation. Also note from the Fourier transform of
figure 9(a) (shown in figure 9(b)) that the sinusoidal signature includes very small
but essential contributions from other frequencies whose origins are unclear. Fu-
ture work will also address the speed relative to other Mojette inversion algorithms
as well as the robustness of MGR to noise in the projection data.

7 Conclusion

An MT projection set mapped into R(t, m) space has missing FRT projections or
ghoststhathaveaknown,precisestructureinthereconstructedimage.Thisstructure
allows the construction of algorithms to recover the missing FRT projections. The
algorithms rely on a calibrated region being present with the image within a larger
image space.TheMGRalgorithm is exact, non-iterative and easily parallelised.

The algorithm was applied to invert the MT as shown in figure 8. Known MT
projections are converted to R(t, m) projections. The sought image then becomes a
subset of a larger image space. Since the small numberofMTprojections leavemany
missing FRT projections, portions of the larger image space are used as a calibrated
area for the MGR algorithm, in order to recover these projections. Once the FRT
space is filled, an efficient subset inverse FRT can be used to invert the MT.

The algorithm has two main drawbacks at the moment. The current use of
either full rows or columns in the calibrated region leads to a limit on the number
of MT projections able to be processed. The algorithm also leads to interesting
ghost structures (see figure 9) and involves very large integer values as shown
in figure 10. A further study of these ghost structures may reveal a means to
control or suppress the numerical growth. The remaining area of concern is then
to establish the robustness of the MGR algorithm to noise in the MT projection
data. Initial results show that small levels of added noise are well tolerated, but
more work is required to quantify these findings.
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[10] Normand, N., Guédon, J.P., Philippe, O., Barba, D.: Controlled redundancy for
image coding and high-speed transmission. In: Proceedings of the SPIE - The
International Society for Optical Engineering, vol. 2727, pp. 1070–1081 (1996)
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