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Abstract. This paper deals with the reconstruction of binary matrices
having exactly − 1 − 4 − adjacency constraints from the horizontal and
vertical projections. Such a problem is shown to be non polynomial by
means of a reduction which involves the classic NP-complete problem 3-
color. The result is reached by bijectively mapping all the four different
cells involved in 3-color into maximal configurations of 0s and 1s which
show the adjacency constraint, and which can be merged into a single
binary matrix.
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complete Problem.

1 Introduction and Notations

Given a binary matrix, its horizontal and vertical projections are defined as the
sum of its elements for each row and each column, respectively. The reconstruc-
tion of a binary matrix from its orthogonal projections has been studied by
Ryser [7,8]. One can refer to the books of Herman and Kuba [4,5] for further
information on the theory, algorithms and applications of such a kind of classical
problems which fit in the wide area of the discrete tomography.

It is well-known that this basic problem, where the only constraints to verify
are both projections, can be solved in polynomial time. Numerous studies deal
with the same problem when additional local or global constraints are imposed.
Here we consider binary matrices with a local adjacency constraint, and we
show a polynomial time reduction which maps each instance of the classical NP-
complete problem 3-color into an instance of their consistency problem. Then
we show that such a reduction fulfills a series of requirements stated in a general
framework, in [2], and allows us to set the time complexity of 3-color as lower
bound to that of our problem.

Now, let us proceed by introducing basic notations and definitions: given a
m × n binary matrix M we denote by M [i, j] the element in position (i, j). The
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horizontal projection of M is defined as the vector H = (h1, ..., hm) such that
for each 1 ≤ i ≤ m, hi counts the number of 1’s on row i. Similarly, the vertical
projection V = (v1, ..., vn) of M , is the vector such that for each 1 ≤ j ≤ n, vj

counts the number of 1’s on column j.
In order to define the adjacency constraint, we rely on the definition of the

neighborhood of a given internal element M [i, j], 1 < i < m, 1 < j < n, of the
binary matrix M : we speak of 4-adjacency if its neighbors are considered to be
the elements M [i, j −1], M [i, j +1], M [i−1, j] and M [i+1, j] i.e. the horizontal
and vertical adjacent cells. Different kinds of adjacency can be defined as well,
but they do not concern this paper.

We say that the matrix M fulfills the exactly-1-4-adjacency constraint if
M [i, j] = 1 implies that there is exactly one among its 4-adjacent cells that
has value 1. The class of binary matrices that fulfill exactly-1-4-adjacency is
denoted by N=1

4 .
The concept of adjacent constraint has a prominent role when dealing with

scheduling problems (see [6]), and it has been recently studied under a tomo-
graphical perspective in [1].

Here, two classical problems related to the class N=1
4 are addressed:

Consistency(N=1
4 , H, V )

Input: a couple of integer vectors H and V ;

Question: does there exist an element of the class N=1
4 whose horizontal and

vertical projections are the vectors H and V , respectively?

Reconstruction(N=1
4 , H, V )

Input: a couple of integer vectors H and V ;

Task: reconstruct an element of the class N=1
4 whose horizontal and vertical

projections are the vectors H and V , respectively, if it exists, otherwise give
a failure.

The condition
∑m

i=1 hi =
∑n

j=1 vj is obviously necessary for the existence of
a binary matrix respecting both projections in the two problems.

Finally, we define the class of colored matrices and their projections: given a
set of colors C = {c1, . . . , ck}, a k-colored m × n matrix A is a matrix whose
elements are in C ∪ {colorless}.

The projection of the ith row of A is the k dimensional vector (hc1
i , hc2

i , . . . ,
hck

i ), where each coordinate hcs

i counts the number of elements of color cs ∈ C
lying in the ith row. A similar definition of vertical projection can be given for
a generic column j of A (see Fig. 1). The sequence of all the horizontal [resp.
vertical] projections is indicated as Hk [resp. V k].

2 Principle of the Reduction

In order to prove our main result, i.e. the NP-completeness of Consistency
(N=1

4 , H, V ), we consider the following classical problem:
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Fig. 1. A 3-color matrix with the colors C = {yellow,blue, red}, and its projections

3 − color:
let C = (yellow, blue, red) be a set of three colors.

Input: two 3 dimensional integer vectors

H3=((hy
1, h

b
1, h

r
1), . . . , (h

y
m, hb

m, hr
m)) and V 3=((vy

1 , vb
1, v

r
1), . . . , (v

y
n, vb

n, vr
n)).

Question: does there exists a 3-color matrix of dimension m×n whose horizontal
and vertical projections are the vectors H3 and V 3, respectively?

As for the class N=1
4 , we can define the correspondent 3-color reconstruction

problem.
Inside the 3-color matrix, we refer to each color in C using its initial letter,

and to the colorless element using the symbol c. Furthermore, it will be useful
to introduce the notations

hc
i = n − hy

i − hb
i − hr

i and vc
j = m − vy

j − vb
j − vr

j

to denote the number of c elements in a 3-color matrix.
Now, following [2], we define a polynomial time process, say a reduction, from

an instance I of 3-color to an instance I ′ of Consistency (N=1
4 , H, V ) by using

the correspondence of each color c, y, b, and r of I with four different placements
of 0s and 1s in a configuration of cells which satisfy the exactly−1−4−adjacency
constraints, as shown in Fig. 2.

The reduction we are going to define has to fulfill two requirements (conditions
npc1 and npc2 of [2]):

i) from the instance I ′ we can univocally compute back the instance I;

ii) each solution of I ′ contains (in a set of fixed positions) only the four chosen
configurations.

We achieve ii) by considering the placements of 0s and 1s in Fig. 2 which are
the only four ones that satisfy the exactly − 1 − 4 − adjacency constraint, and
that are maximal, i.e. that have the maximum number of 1s.

Such a reduction sets the computational complexity of 3−color as lower bound
to that of Consistency (N=1

4 , H, V ). Since the first is known to be NP-complete
(see [3]), then the same holds for the latter.
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Fig. 2. The correspondence between each atom of the 3-atom problem and a configu-
ration of elements 0 and 1 having the exactly-1-4-adjacency constraint. The values 0
in the dotted positions do not belong to the chosen configurations, but they are also
fixed.

3 Going Back and Forth from Instance I to Instance I ′

So, let I = (H3, V 3) be an instance of 3-atom, with

H3 = ((hy
1 , hb

1, h
r
1), . . . , (h

y
m, hb

m, hr
m)) and V 3 = ((va

1 , vb
1, v

r
1), . . . , (v

a
n, vb

n, vr
n)).

We compute an instance I ′ = (H, V ), with

H = (h1, . . . , h6m+1) and V = (v1, . . . , v12n)

of Reconstruction (N=1
4 , H, V ), as follows: for each 0 ≤ i < m, the entries of the

vector H are
• h6i+1 = h6m+1 = 8n • h6i+2 = 2n
• h6i+3 = 4n • h6i+4 = 2n + h−

i + 2hb
i + 2hr

i

• h6i+5 = 3n + h−
i + 2hy

i + hb
i + 2hr

i • h6i+6 = n + hb
i

for each 0 ≤ j < n, the entries of the vector V are

• v12j+1 = v12j+2 = m + 1 • v12j+3 = 4m
• v12j+4 = m + 1 + vb

j + vr
j • v12j+5 = m + 1 + 2v−j + vy

j + vb
j + vr

j

• h12j+6 = 2m + vy
j + 2vb

j + vr
j • h12j+7 = m + 1 + vr

j

• h12j+8 = 2m + 1 • h12j+9 = 2m
• h12j+10 = h12j+11 = 3m + 1 • h12j+12 = 0.

As one can observe, most of the horizontal and vertical projections are inde-
pendent from the vectors H3 and V 3: they are introduced in order to create the
exact shape of the four different configurations used in the reduction.

On the other hand, the projections which involve the entries of the vectors
H3 and V 3 can be easily understood by referring to the different positions of
the 1s in the configurations of Fig. 2.

What we have to show is how to go back from instance I ′, obtained from the
previous computation, to the correspondent instance I.
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This last step fulfills condition i) given in the previous paragraph, and it
implies that the projections of the four chosen configurations are affine linear
independent. This check is crucial, since projections which are dependent may
mix together, and give rise to solutions of I ′ which do not have a correspondent
in the class of the solutions of I.

For what concerns the entry (hy
i , hb

i , h
r
i ), with 0 ≤ i < m, of the horizontal

projections H3 of I, its elements can be easily computed by solving the system
of equations ⎧

⎪⎪⎨

⎪⎪⎩

hc
i + 2hb

i + 2hr
i = h6i+4 − 2n

hc
i + 2hy

i + hb
i + 2hr

i = h6i+5 − 3n
hb

i = h6i+6 − n
hc

i + hy
i + hb

i + hr
i = n

The existence of an integer solution for this system of equations directly fol-
lows from the definition of the horizontal projections of the four configurations
depicted in Fig. 2.

A similar system can be defined for the vector V 3 of the vertical projections
in the instance I.

4 From a Solution of I to a Solution of I ′

Now we proceed in showing that the instances I and I ′ are equivalent, i.e. that
the process of defining instance I ′ from I preserves the existence of its solutions.
In the sequel we establish even more (but this is not unusual): there exists a one-
to-one correspondence between the set of solutions of I and the set of solutions
of I ′.

Intuitively, a solution of I ′ is constructed starting from a solution of I, by
means of the correspondence in Fig. 2. On the other hand, each solution of I ′

has some fixed positions where one can detect the configurations corresponding
to a color, and only those. The horizontal and vertical projections of the instance
I ′ defined in the previous paragraph accomplish this task.

So, let us go into details by showing, with the aid of Fig. 3, how to compute
a solution M ′ of the instance I ′ from a generic solution M of I: let 1 ≤ i ≤ m
and 1 ≤ j ≤ n

Step 1: for each element M [i, j], we insert in the matrix M the rectangular
configuration of 0 and 1 depicted in Fig. 3, iii), placing its left-uppermost
element in position M [6(i − 1) + 1, 12(i − 1) + 1]′;

Step 2: according with the color of the element M [i, j], we place a configura-
tion of 0s and 1s as in Fig. 2 inside the void elements of the corresponding
rectangle;

Step 3: we copy the entries of the first row of the matrix M ′ in its last row of
index 6m + 1.

An easy check reveals that the defined matrix M ′ is a solution of instance I ′,
as desired.
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5 From a Solution of I Back to a Solution of I ′

On the other hand, in order to associate to each solution M ′ of I ′ a solution
M of I, we need to inspect its entries and detect some of them which are fixed.
Figure 3 will help the reader, showing a part of matrix M in detail: let 0 ≤ i < m
and 0 ≤ j < n

i) columns 12j + 12 are completely filled with 0s; rows 6i + 1, and row 6m + 1
have projections 8n, so they are determined by the exactly-1-4-adjacency
constraint (see Fig. 3, i) − ii));

ii) the sets of columns - 12j + 3 whose projection is 4m;
- 12j + 1 and 12j + 2 whose projection is m;
- 12j + 10 and 12j + 11 whose projection is 3m + 1
are determined by the already placed entries, and the exactly-1-4-adjacency
constraint(see Fig. 3, i) − ii));

iii) columns 12j + 8 and 12j + 9 whose projections are 2m + 1 and 2m,
respectively, and rows 6i + 2 and 6i + 3 whose projections are 2n and 4n,
respectively, are also determined by the previous placements of entries, and
again by the exactly-1-4-adjacency constraint (see Fig. 3, iv)).
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Fig. 3. The reconstruction of the fixed parts of a generic solution of instance I ′

Finally, the boldface elements 0 in Fig. 3, iii) are set by the exactly-1-4-
adjacency constraint, and finally, the remaining grey positions are those elements
of M ′ which are not fixed, and which may eventually differ from one solution
to another. We refer to (the shape of) each of these configurations by S. The
reader can check that the found S is the same as that associated to each color
in Fig. 2.

Now the definition of the matrix M from M ′ is straightforward: for each
0 ≤ i < m and 0 ≤ j < n

- if M [6i + 4, 12j + 5]′ = M [6i + 5, 12j + 5]′ = 1, then M [i + 1, j + 1] = c;
- if M [6i + 5, 12j + 5]′ = M [6i + 5, 12j + 6]′ = 1, then M [i + 1, j + 1] = y;
- if M [6i + 5, 12j + 6]′ = M [6i + 7, 12j + 6]′ = 1, then M [i + 1, j + 1] = b;
- if M [6i + 5, 12j + 6]′ = M [6i + 5, 12j + 7]′ = 1, then M [i + 1, j + 1] = r;
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The correctness of this last step deeply relies on the assumption that no other
configurations except those four coding a color are possible inside each S.

To prove it, we remind that

- each of the four colors is associated to a maximal placements of 1s in S;

- no other maximal placements exist. This fact can be easily checked by an
exhaustive search.

So, let us consider the vectors of vertical projections of the four configurations
S in Fig. 2:

vc = (0, 2, 0, 0), vy = (0, 1, 1, 0), vb = (1, 1, 2, 0) and vr = (1, 1, 1, 1),

and the vectors of vertical projections of the four remaining non maximal
configurations of S shown in Fig.4:

v1 = (1, 1, 0, 0), v2 = (0, 0, 2, 0), v3 = (0, 0, 1, 1) and v0 = (0, 0, 0, 0).

1 00
00

0
1

0

0
0

0

1
00

1
configuration 2

configuration 0

0
0

0
1

0configuration 3

configuration 1 0
0
0

1

Fig. 4. The four non-maximal configurations of S

We proceed by contradiction, and we assume that there exists a solution of
I which has at least one non maximal placements of elements in one of the Ss,
say S′. In that case no color can be associated to S′.

The vertical projections of the m−1 configurations which lie above and below
S′, i.e. which share with it the same columns in M ′, together with S′ itself, can
be expressed both as linear combination of vc, vy, vb, and vr, and as linear
combination of all and eight the vectors of projections as follows:

l1 : k1vc + k2vy + k3vb + k4vr ,
l2 : k′

1vc + k′
2vy + k′

3vb + k′
4vr + k′

5v1 + k′
6v2 + k′

7v3 + k′
8v0.

Since the number of the involved S in both the linear combinations has to be
fixed, and since it holds that
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- the sums of the elements of vb and vr is equal to 4, and it is greater than the
sums of each of six remaining vectors;

- the sum of the elements of v0 is zero, which is the minimum of the sums of
each of the other vectors;

- the sums of the elements of each of the remaining vectors are 2,

then it follows that k3 + k4 = k′
3 + k′

4.
Since the contribution to the first entry in both the linear combinations is

given only by vb, vr and v1, it also holds that k′
5 = 0.

On the other hand, the contribution to the second entry in both the linear
combinations, decreased by k3 + k4, is now restricted only to the vectors vc and
vy, so we have k1 + k2 = k′

1 + k′
2.

As a consequence, we reach k′
6 = k′

7 = k′
8 = 0, against the assumption that

there exists in l2 at least one vector of projections different from the maximal
ones.

Now we can state the following

Theorem 1. The problem Consistency (N=1
4 , H, V ) is NP -complete.

The proof is a direct consequence of the defined reduction, and, as a consequence,
we have

Corollary 1. The problem Reconstruction (N=1
4 , H, V ) is NP -hard.

The following example tries to clarify the reduction

Example 1. Let us consider the instance I = (H3, V 3) where

H3 = ((0, 1, 0), (1, 0, 1), (0, 1, 1)) and V 3 = ((0, 2, 1), (0, 1, 0)).
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Fig. 5. The correspondence between an instance of 3-color and a matrix in N=1
4
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for which the solutions are 3-color matrices of dimension 3 × 2.
Following what defined in paragraph 3, the correspondent instance I ′ =

(H, V ) of Consistency (N=1
4 , H, V ) is

H = (16, 4, 8, 7, 8, 3, 16, 4, 8, 6, 10, 2, 16, 4, 8, 8, 9, 3, 16) and
V = (4, 4, 12, 7, 7, 11, 5, 7, 3, 10, 10, 0, 4, 4, 12, 5, 8, 8, 5, 7, 3, 10, 10, 0).

Figure 5 depicts a binary matrix M ′ which has H and V as vectors of projec-
tions, together with its associated 3-color matrix, having projections H3 and V 3.
Again we underline the property that there is no way of obtaining a matrix M ′

whose configurations of 0s and 1s inside the grey zone are not in correspondence
with a color.

6 Conclusion

In this paper we have studied the computational complexity of the consistency
problem for the class N=1

4 . This is one the simplest examples of a class of binary
matrices satisfying adjacency constraints. However, our studies in that direc-
tion are just at the beginning, and a systematical analysis of all the other cases
of 4-adjacency constraints and their extension to a general framework where
the adjacent constraint involve different sets of neighborhood elements are work
in progress. Our attention is also attracted by the presence in N=1

4 of some
subclasses which allow a fast reconstruction strategy, and which show some in-
teresting geometrical aspects.
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3. Chrobak, M., Dürr, C.: Reconstructing Polyatomic Structures from X-Rays: NP
Completness Proof for three Atoms. Theor. Comp. Sc. 259, 81–98 (2001)

4. Herman, G., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Appli-
cations. Birkhauser, Basel (1999)

5. Herman, G., Kuba, A.: Advances in Discrete Tomography and its Applications.
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