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Abstract. The aim of the paper is to define an algorithm for computing
preimages - roughly the sets of naive digital planes containing a finite
subset S of Z

3. The method is based on theoretical results: the preimage
is a polytope that vertices can be decomposed in three subsets, the upper
vertices, the lower vertices and the intermediary ones (equatorial). We
provide a geometrical understanding (as facets on S or S � S) of each
kind of vertices. These properties are used to compute the preimage by
gift-wrapping some regions of the convex hull of S or of S�S∪{(0, 0, 1)}.

1 Introduction

Digital straightness is an important concept in computer vision. In dimension
two, for nearly half a century many digital straight line characterizations have
been proposed with interactions with many fields such as arithmetic or theory of
words (refer to [1] for a survey on digital straight line). A convenient framework
is to consider the set of Euclidean straight lines, so-called preimage whose dig-
itizations contain the input set of pixels. Based on a parametrization of digital
straight lines, the preimage can be simply defined and correspond to a convex
polygon in a given parameter space [2,3,4]. An important result is that such a
preimage has got an important arithmetical structure that limits to four the
number of vertices. This result is useful for a better understanding of this sim-
ple digital object and thus to design efficient digital straight line recognition
algorithms.

In dimension 3, the same approach leads to define the notion of digital plane
(see [5] or a survey) and of preimage [6,7,8]. The preimage becomes however
more complex than a single polytope with 4 vertices. Questions about its arith-
metical structure are open: even if it is a convex polyhedron in the digital plane
parameter space, we have some difficulties to clearly understand its arithmetical
structure and to bound the number of its vertices [9,10].

In this paper, we focus on a geometrical interpretation of preimage vertices and
facets in order to design a fast preimage computation algorithm. The proposed
algorithm is based on the computation of a surface of the convex hull of S and
of the chords set S � S ∪ {(0, 0, 1)} (as already used in [11] for recognition).
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The first sections are dedicated to the preliminaries and to the analyse of
the preimage geometry. Then Section 4 details the proposed algorithm. Finally,
Section 5 presents some experiments.

2 Preliminaries

2.1 Digital Planes and Digital Plane Recognition Problems

We start by defining naive digital planes according to J.P Reveilles definition[12].
We recall that for any vector x ∈ R

d, its uniform norm is ||x||∞ = max{|xi|/1 ≤
i ≤ d}.

Definition 1. A naive digital plane is a subset of Z
3 characterized by a double

inequality h ≤ ax+ by + cz < h+ ||(a, b, c)||∞ where the normal vector (a, b, c) ∈
R

3 is different from (0, 0, 0) and where h ∈ R.

For a survey on digital plane characterization and alternative definitions, see [5].
According to the value of ||(a, b, c)||∞, there exist three classes of naive digital

planes obtained by rotation of the coordinates. In the following, we focus our
attention on the special case where ||(a, b, c)||∞ = |c|. We introduce therefore the
notion of z-slice which is related to naive digital planes with |a| ≤ |c| and |b| ≤
|c| while x-slices and y-slices are the equivalent objects corresponding to naive
digital planes verifying |a| = ||(a, b, c)||∞ and |b| = ||(a, b, c)||∞ respectively.

Definition 2. A z-slice is a subset of Z
3 characterized by a double inequality

h ≤ ax+by+cz < h+ |c| where c is in R
� and where a, b and h are real numbers.

If |c| is greater than |a| and |b|, the z-slice of double-inequality h ≤ ax+by+cz <
h + |c| is a naive digital plane. Otherwise (if |c| < |a| or |c| < |b|), the z-slice
of double-inequality h ≤ ax + by + cz < h + |c| is a subset of the naive digital
plane h ≤ ax+by+cz < h+ ||(a, b, c)||∞. Thus in any case, a z-slice is contained
in a naive digital plane and conversely, a naive digital plane is either an x-
slice, either a y-slice or a z-slice. It means obviously that naive digital planes
recognition as well as generalized preimage computation can be decomposed
into x-slices, y-slices and z-slices recognition. Since these three problems only
differ by a rotation of the coordinates, we focus our attention on the problem of
recognition of z-slices.

2.2 Digital Plane Recognition Problems

We now state the problems that we shall address in this framework:

Problem 1. Input: a finite subset S ⊂ Z
3

– P-Exi: Does there exist a z-slice containing S?
– P-One: Provide a z-slice containing S
– P-All: Provide a description of all z-slices containing S
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As z-slices are described by double-inequalities h ≤ ax + by + cz < h + |c|,
the question is to find a, b, c and h. This inequation is almost linear. The only
non-linear term is the absolute value |c|. Let us reduce the problem to the case
c = 1.

We first notice that the set of possible (a, b, c, h) ∈ R
4 is a positive cone since

for any solution (a, b, c, h) of inequalities and any positive real λ ∈ R
+�, the

point (λa, λb, λc, λh) is also a solution. This comes from the homogeneity of the
inequalities. Hence, instead of computing the whole cone of solutions, it is more
convenient to reduce its computation to a section. As c is assumed different from
0, we can take the sections by the hyperplanes c = 1 and c = −1. It is clear that
the whole set of solutions is characterized by its two sections.

We also notice that the solutions for a direction (a, b, c) and the solutions
for direction (−a, −b, −c) are closely related. By denoting respectively hmin

and hmax the minimum and maximum of the finite set of values {axi + byi +
czi/(xi, yi, zi) ∈ S} (S is finite), the set S belongs to the z-slice h ≤ ax+by+cz <
h+ |c| iff h ∈]hmax −|c|, hmin] while it belongs to the z-slice h ≤ −ax−by−cz <
h + |c| with a symmetric normal (−a, −b, −c) iff h ∈] − hmin − |c|, −hmax]. It
means that one interval can be easily obtained from the other. Thus we can re-
duce the computations of possible parameters h to vectors (a, b, c) with a positive
c (and then with c = 1).

2.3 The Preimage Polyotope

According to previous remarks, problems P-Exi, P-One and P-All can all be
reduced to the case c = 1. Thus these problems can be reduced to a system
of linear inequalities h ≤ axi + byi + zi < h + 1 for (xi, yi, zi) ∈ S. Classical
Linear Programming algorithms such for instance simplex method can be used
for solving the problems P-Exi and P-One but we can notice that usually, they
do not provide the whole set of solutions. Thus the problem P-All does not
enter in their framework of application.

Definition 3. The z-preimage of a finite set S is the 3-dimensional set of values
(a, b, h) ∈ R

3 verifying for any point (xi, yi, zi) ∈ S the double-inequality h ≤
axi + byi + zi < h + 1.

We can as well define x-preimage and y-preimage. Usually, z-preimage will sim-
ply be called preimage. It is a convex set since it is obtained by intersection
of finitely many open and closed half-spaces. If we assume that the preimage
is not empty, we notice that its interior is neither empty with the consequence
that its vertices and faces are also the vertices and faces of its closure. Hence,
under this assumption, we can work with the polyhedron defined by non-strict
inequalities h ≤ axi + byi + zi ≤ h + 1 without changing the vertices and faces
of the preimage.

If we consider the 3D space of solutions (a, b, h), we can notice that the half-
spaces h ≤ axi + byi + zi are directed downwards while the open half-spaces
axi + byi + zi ≤ h + 1 are directed upwards. It leads to introduce the upper
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bound of the preimage of S according to direction h and its lower bound. We
denote them respectively preimage+(S) and preimage−(S). They meet in a
curve that we denote preimage0(S) and call the equator of the preimage (Fig
1). Due to orientation considerations, the faces of preimage−(S) are among the
inequalities axi + byi + zi ≤ h + 1 while the faces of preimage+(S) are of the
form h ≤ axi + byi + zi.

Fig. 1. We decompose the boundary of preimage(S) in its upper bound preimage+(S),
its lower bound preimage−(S) and its equator preimage0(S) (the points that vertical
projection are on the boundary of the vertical projection of preimage(S) (according
to h))

In the following, we assume that the preimage is not empty and that the points
of S do not belong to a vertical plane. We can eliminate this degenerated case
since it can be replaced in a 2D framework. With these conditions, the preimage
of S is a polytope (and the equator is closed) which can be described either by
providing its vertices or a minimal set of linear constraints.

3 Geometry of the Digital Plane Preimage

Our algorithm of preimage computation requires to put in relation the preimage
elements (vertices and faces) with the geometry of S. This structural analysis
was initiated in [9] in which a similar result of Proposition 2 is given. This result
is reformulated and improved by new properties using a uniform formalism.

3.1 The Vertices of preimage+(S) and preimage−(S)

Let us consider a vertex (a′, b′, h′) of the upper boundary preimage+(S) of the
preimage of S. The vertex (a′, b′, h′) satisfies the inequalities h′ ≤ a′x + b′y + z
(and even h′ ≤ a′x+b′y+z ≤ h′+1) for any point (x, y, z) ∈ S and at least three
independent inequalities are equalities. It follows that there exist three affinely
independent points (xi, yi, zi), (xj , yj , zj) and (xk, yk, zk) in S such that we have
exactly h′ = a′xi + b′yi + zi, h′ = a′xj + b′yj + zj and h′ = a′xk + b′yk + zk. It
means that h′ = a′x+ b′y + z is the affine plane of a facet of the lower boundary
of the convex hull of S. Conversely, let us take a facet h′ = a′x + b′y + z of the
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lower boundary of the convex hull of S verifying the complementary condition
that for any (x, y, z) ∈ S: h′ ≤ a′x + b′y + z ≤ h′ + 1. There exist three affinely
independent points (xi, yi, zi), (xj , yj , zj) and (xk, yk, zk) on this facet. They
verify h′ = a′xi + b′yi + zi, h′ = a′xj + b′yj + zj and h′ = a′xk + b′yk + zk. All
the points (a, b, h) of the preimage verify h ≤ axi + byi + zi, h ≤ axj + byj + zj

and h ≤ axk + byk + zk. In the parameter space (a, b, h), these three conditions
define a cone of vertex (a′, b′, h′) containing the preimage. As (a′, b′, h′) is at
least in preimage of S (due to the complementary condition), it is a vertex of
the preimage.

Proposition 1. Let S be a finite subset of Z
3 which is not contained by any

vertical plane. A point (a, b, h) is a vertex of preimage+(S) if and only if the
affine plane ax+ by + z = h contains a facet of the lower boundary of the convex
hull of S and we have for any point (xi, yi, zi) ∈ S: h ≤ axi + byi + zi ≤ h + 1.

An equivalent proposition can be given for the vertices of preimage−(S): a point
(a′, b′, h′) is a vertex of preimage−(S) if and only if the affine plane a′x+b′y+z =
h′ + 1 contains a facet of the upper boundary of the convex hull of S and we
have for any point (xi, yi, zi) ∈ S: h′ ≤ a′xi + b′yi + zi ≤ h′ + 1. It means that
the vertices of preimage+(S) and preimage−(S) are both derived from a subset
of facets of the convex hull of S. These two subsets of facets (if non empty) can
be introduced as the caps of S.

Definition 4. The upper (resp. lower) cap of S is the set of points (xi, yi, zi)
of the upper (resp. lower) boundary of the convex hull of S for which there
exist (a, b, h) ∈ R

3 with h + 1 = axi + byi + zi (resp. h = axi + byi + zi) and
h ≤ ax + by + z ≤ h + 1 for all points (x, y, z) of S (see Fig 2).

Two cases are possible: the upper (lower) cap contains facets and according to
Proposition 1, these facets are one to one with the vertices of preimage−(S)
(preimage+(S)) -the correspondence is described in Fig 2- or there is no facet
in the upper (lower) cap (it is reduced to points or edges) and preimage−(S)
(preimage+(S)) has no vertex (the vertices are equatorial). Authors of [9] notice
that the caps usually contain exactly one facet with the consequence that there is
one non-equatorial vertex in preimage−(S) and another one in preimage+(S).
They prove that this case occurs necessarily under some assumptions on the
input sets (large enough to contain “leaning points”).

3.2 The Vertices of preimage0(S) : Chords and Visibility Cone

The situation on the equator of the preimage is different because a vertex (a, b, h)
of the equator is either the intersection of two faces h ≤ axi + byi + zi of
preimage+(S) and one face axj + byj + zj ≤ h + 1 of preimage−(S), either
the intersection of one face h ≤ axi + byi + zi of preimage+(S) and two faces
axj +byj +zj ≤ h+1 of preimage−(S). We thus introduce a new tool to describe
them differently: the notion of chords set.
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Fig. 2. The upper cap of the convex hull is made of the points of upper convex hull of
S contained by a plane h+1 = ax+by+z that translation by (0, 0, −1) is under S. The
lower cap contains the points of the lower convex hull of S contained by a plane h =
ax+by+z that translation by (0, 0, +1) is above S. The support planes h = ax+by+z
of facets of the upper cap provide the vertices (a, b, h − 1) of preimage−(S) while the
facets h = ax + by + z of the lower cap provide the vertices (a, b, h) of preimage+(S).

Definition 5. The set of the differences {x′ − x/x ∈ S, x′ ∈ S} is called the
chords set of S and we denote it S � S.

The interest of the chords set comes from next lemma.

Lemma 1. Given (a, b), there exist a real h such that the finite set S belongs
to the z-slice h ≤ ax + by + z ≤ h + 1 if and only if there exists a real h′ ≤ 1
such that the plane ax + by + z = h′ separates (0, 0, 1) from the chords set of S
(equality is permitted).

Proof. We denote again [hmin, hmax] the range of the values axi + byi + zi for
(xi, yi, zi) in S. The first proposition means exactly that hmax − hmin ≤ 1 while
the second one means that any pair of indices i and j, the difference between
axi + byi + zi and axj + byj + zj is ≤ 1. By taking the index i providing hmin

and the index j providing the value hmax, the equivalence is easy to obtain. �

Lemma 1 means more generally that the chords set of S contains all the infor-
mation necessary to compute the projection of the preimage of S on the plane
of coordinates a and b: a point (a, b) is in the projection of the preimage of S if
and only if there exist a plane of normal direction (a, b, 1) separating the chords
set S �S from (0, 0, 1). This last proposition makes the link between the projec-
tion of the preimage (according to direction h) and the set of planes separating
S � S from a point. Thus it can be useful to recall that the set of directions
of the planes separating a set S′ from a point P can be given by the cone of
visibility of S′ from P . More precisely, the directions (a, b, c) of the planes sepa-
rating S′ from P are convex combination of the normal directions of the faces of
the visibility cone. In the present framework lemma 1 means that the directions
(a, b, 1) of the preimage of S (or namely the projection of the preimage on the
plane (a, b)) are convex combinations of the directions (a, b, 1) of the faces of the
cone of visibility of S � S from (0, 0, 1) (see Fig 3). It means that the cone of
visibility of S � S from (0, 0, 1) provides directly the vertices of the projection
of the preimage on the plane (a, b): a face of the cone of visibility with equation
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ax + by + z = 1 provides the vertex (a, b) of the projection of the preimage of S
on the plane (a, b).

To pass from the vertices of the projection of the preimage on the plane (a, b)
to the ones of the equator preimage0(S), we just need to pick up the point (a, b)
by computing the unique value h such that h ≤ axi + byi + zi ≤ h + 1 for any
(xi, yi, zi) ∈ S. Thus we obtain easily the vertices of the equator preimage0(S)
of the preimage of S.

Fig. 3. The cone of visibility of the convex hull of S � S from (0, 0, 1). The normal
direction (a, b, 1) of a face of the cone provides a vertex (a, b) of the projection of
the preimage on plane (a, b). By picking it with height h (the unique value verifying
h ≤ axi + byi + zi ≤ h + 1 for any point (xi, yi, zi) of S), we obtain the vertices of the
equator preimage0(S) of the preimage of S.

3.3 The Faces of the Preimage

After the geometrical description of the vertices of the preimage of S, next step
is the characterization of its faces. It is obvious that the faces of preimage+(S)
are among the inequalities h ≤ axi + byi + zi with (xi, yi, zi) ∈ S while the
faces of preimage−(S) are among the inequalities axj + byj + zj ≤ h + 1 with
(xj , yj, zj) ∈ S. The question is to know which points of S define the faces of
preimage+(S) and which ones define the faces of preimage−(S).

Proposition 2. The points (xi, yi, zi) and (xj , yj , zj) providing the upper faces
h ≤ axi + byi + zi and lower faces axj + byj + zj ≤ h + 1 of the polyhedron
preimage of S are respectively some vertices of the lower and upper caps of S.

Proposition 2 does not mean that all vertices of the caps provide some faces of
the preimage. Let (a′, b′, h′) be the center of an upper face h ≤ axi + byi + zi of
the preimage, the point (xi, yi, zi) is unique in S to verify h′ = a′xi + b′yi + zi

(h′ < a′xi + b′i + zi ≤ h′ + 1 for all other points of S). Hence, (xi, yi, zi) is in the
lower cap but it means more: a point (xi, yi, zi) without any (a′, b′, h′) satisfying
h′ = a′xi + b′yi + zi and h′ < a′xi + b′i + zi ≤ h′ + 1 for all other points of S can
not provide a face of the preimage. This necessary condition is even sufficient
but we do not know if there exist points in the lower cap which do not satisfy it!
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4 The Recognition Algorithm

4.1 Sketch of the Algorithm

The task of the paper is to provide an efficient algorithm to solve problem P-

All. We recall that problems P-Exi and P-One are already solved efficiently
(quasi-linear time) by linear programming or other algorithms derived from Com-
putational Geometry [11]. Problem P-All consists in computing the whole poly-
hedron of solutions. The algorithm is based on the computation of its vertices :

- a function upperVertices computes the vertices of preimage+(S) (according
to proposition 1, they correspond to the faces of the lower cap of S);

- a second function lowerVertices computes the vertices of preimage−(S) by
using their correspondence with the vertices to the upper cap of S;

- a third function equatorVertices is in charge of the computation of the ver-
tices of the equator by using the cone of visibility of S �S from (0, 0, 1). Instead
of working with the real cone, we compute the facets of the convex hull of
(S � S) ∪ {(0, 0, 1)} containing vertex (0, 0, 1).

The common point of each function is to explore a set of facets, the facets
of the upper and lower caps for functions upperVertices or lowerVertices and
the facets of the convex hull of (S � S) ∪ {(0, 0, 1)} containing (0, 0, 1) for equa-
torVertices. This exploration can be done according to a gift-wrapping principle
[13,14]: starting from a facet F of the convex hull, we compute the neighboring
facet F ′ according to a given edge e of F (thus F and F ′ share e).

4.2 Initialization

We start the computation with any algorithm solving P-One. If there exists no
solution, the preimage is empty and we stop. Otherwise, the algorithm provides
a double inequality h ≤ ax + by + z < h + 1 satisfied by all points (x, y, z) of S.
Normal direction (a, b, 1) provides three initial points:

- we compute the point (xi, yi, zi) ∈ S realizing the minimum of ax + by + z
in S. We have ax+ by + z = hi. It is straightforward that all points (x, y, z) of S
verify hi ≤ ax + by + z ≤ hi + 1. This proves that (xi, yi, zi) is in the lower cap;

- we compute the point (xj , yj , zj) ∈ S realizing the maximum of ax + by + z
in S. We have ax + by + z = hj . As previously, (xj , yj , zj) is in the upper cap
because all points of S verify hj − 1 ≤ ax + by + z < hj ;

- the point (xj − xi, yj − yi, zj − zi) is a vertex of the convex hull of S � S. It
belongs to the plane ax + by + z = hj − hi above S � S and cutting the vertical
axis between 0 and (0, 0, 1).

4.3 From a Starting Point to a Starting Facet

We have a starting point and we explore the facets that contain it until finding
a satisfying one.

- We explore the facets of the convex hull of S with vertex (xi, yi, zi). We can
do it by turning around (xi, yi, zi) by gift-wrapping until finding a facet in the
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lower cap of S. It is also possible that no facet adjacent with (xi, yi, zi) belongs
to the lower cap: it simply means that preimage+(S) has no vertex and closes
this computation.

- We explore the facets of the convex hull of S with vertex (xj , yj, zj) by
gift-wrapping. If we do not find any facet of the upper cap of S, it ends the
computation (preimage−(S) has no vertex).

- We search a facet of the convex hull of (S � S) ∪ {(0, 0, 1)} having (0, 0, 1)
as vertex but at this point, we have only a vertex (xj − xi, yj − yi, zj − zi)
of the convex hull of S � S (Fig 4). We can decompose the convex hull of
S � S between the facets which are destroyed when we add (0, 0, 1) to S � S
(region A) and the ones which are preserved (region B). By construction, the
point (xj − xi, yj − yi, zj − zi) is in region A or at least on its boundary. The
challenge is to go from this point in region A in the direction of region B until
finding the boundary. In this goal, we compute a first facet containing the vertex
(xj −xi, yj −yi, zj −zi) and cross a ”line” of facets until an edge of the boundary
(the choice of the edge that we share is made in order to advance in a given
direction so to avoid loops). We go from a facet to next one by gift-wrapping.
Although the number of points in S � S is the square of the cardinality of S,
this computation can be done O(card(S)) time (see next Sect. 4.4). We end this
computation with an edge of the boundary of region A: it remains only to add
the vertex (0, 0, 1) to have a facet of the convex hull of (S � S) ∪ {(0, 0, 1)}

Fig. 4. Region A is made of the facets of the convex hull of S � S which disappear
when we add the point (0, 0, 1). The remaining facets are in region B. The equator of
the preimage is given by the visibility cone of S � S from (0, 0, 1). The facets of this
cone are bounding the two regions. We can go from region A to region B by using a
gift-wrapping process following a given direction, as drawn for instance in white.

4.4 Gift-Wrapping on the Chords Set S � S

Gift-wrapping on a set of cardinality n takes O(n) time. Given a face F of the
convex hull of S and one of its edges e, we find the other facet sharing e by
projecting the points of S in a plane according to direction e. To determine the
new vertex to associate with e, we research the point providing the maximum
angle with the projection of F . Thus the time necessary for this computation is
linear in n (find the maximum of n angles through the ratio of the coordinates).
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For the computation of the vertices of the equator, we use a gift-wrapping
procedure working on the chords set S � S that cardinality can be quadratic.
For thousands of points, if we still use a procedure linear in the number of points,
the cost could be important. We can however improve the research of the new
vertex by reducing the number of angles that should be compared. As drawn
in Fig 5, the edge issued from a vertex u − v in the convex hull of S � S is
necessarily equivalent with an edge issued from u or from v. It allows to work
directly on S: we compute the point of S that angle with u or v is maximal. It
reduces the number of angles to compare from n2 to 2n with the consequence
that gift-wrapping on the chords set remains linear.

Fig. 5. If we consider the edges issued from a vertex v − u of the chords set S � S (S
is here in 2D), they are both equivalent either to an edge issued from u, either to an
edge issued from v in the convex hull of S

4.5 Last Step: From a Facet to the Others

The exploration of the whole upper and lower caps from an initial facet is a
standard procedure of Computational Geometry. We just have to stop the ex-
ploration in a direction as soon as next facet does not satisfy the condition
to be in the considered cap. Each lower facet h′ = a′x + b′y + z or upper
facet a′x + b′y + z = h′ + 1 computed this way provides a vertex (a, b, h) of
preimage+(S) or preimage−(S). We have however to take care that they are
not on the equator by verifying that there does not exist two points (xi, yi, zi)
and (xj , yj , zj) of S with a′(xj − xi) + b′(yj − yi) + zj − zi = 1.

In the case of the equator, we start from a facet of the convex hull of (S �S)∪
{(0, 0, 1)} containing (0, 0, 1) and we just have to turn around (0, 0, 1) to obtain
the whole cone of visibility of S � S from (0, 0, 1). The faces a′x + b′y + z = 1 of
this cone provide the values (a′, b′) of the vertices of the equator. It remains to
compute h as the minimum of a′x + b′y + z for (x, y, z) in S.

4.6 Complexity Analysis

The advantage of Gift-Wrapping algorithms is that they are output-sensitive.
The complexity of computation of each new facet is linear [13]. It provides a
theoretical complexity in O(nh) where n is the cardinality of the set S and h
the number of vertices of the preimage.
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5 Experiments

In this part, we provide some experiments about the behavior of our algorithm
with respect to the number n of voxels in the set S. To do this, we have used
the random generator of the TC18 challenge. We have generated around 6000
tests with various sizes in the coordinates of the voxels. The number of voxels
in each test was also randomly generated. We have segmented the results into
classes corresponding to set size that varies from 0 to 1000, from 1000 to 2000
and so on. For each class, we have computed the minimum, the maximum and
the mean value of the execution time. All those experiments have been plotted
on Fig. 6.
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Fig. 6. Variation of the execution time (vertically in seconds) in function of the number
of voxels

It is clear that both dependence on n and h are visible in the graph. For
instance, the running time globally increases linearly with n but when complex
instances are found the h factor leads to an increase in the running time. The
maximal time obtained around 60000 voxels comes probably from a bug in our
current implementation. We are currently studying this problem.

To compare to already available codes, we have used another set of around
4000 voxels not used in previous experiments. The implementation of Sivignon
[15] took 9.78 seconds, the lrs code [16] took 66.76 seconds and our new imple-
mentation took 0.56 seconds on the same computer. This behavior was confirmed
during all our experiments where our new method is at least 10 times faster than
other preimage computation algorithms.

6 Conclusion

In this article, we have precisely studied the preimage set of digital planar sets.
We have decomposed the vertices of the preimage into three sets and we have
presented algorithms for compute them. We have provided an implementation
of this algorithm as well as experiments showing that our new method is fast in
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comparison with other available algorithm. We plan to test our algorithm in the
TC18 Challenge and our implementation will be shortly available on the TC18
pages (http://www.cb.uu.se/∼tc18/ ).
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