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Abstract. We show that determining whether or not a simplicial 2—
complex collapses to a point is deterministic polynomial time decidable.
We do this by solving the problem of constructively deciding whether a
simplicial 2—complex collapses to a 1—complex. We show that this proof
cannot be extended to the 3D case, by proving that deciding whether
a simplicial 3—complex collapses to a 1—complex is an N P—complete
problem.
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Introduction

In the framework of digital topology, several authors have considered discrete
deformation retraction and collapsing, in particular for characterizing simple
points ([K97],[KR01],[B99]). All of these authors emphasize the importance of
finding efficient algorithms for deciding whether an object can be shrunk on
another object (see also [F00]). In this paper, we investigate the case when
“object” is a simplicial complexr, and “shrunk” means collapsed.

In [EGO90], a generalized collapsing problem is proved N P—complete for sim-
plicial 2—complexes (see Theorem [Ml below). However, this problem is rather ar-
tificial and does not, contrary to the collapsing problems considered here, arise
from topologists’ questions on topology preservation.

This paper is intended to be readable both by topologists and by specialists
in computational complexity. For this purpose, we find two (relatively long)
sections recalling basic notions concerning collapsing of simplicial complexes and
N P—completeness.

Then we investigate the 2D case, showing that deciding whether or not a
simplicial 2—complex collapses to a 1—complex is polynomial. It follows that
deciding whether a 2—complex collapses to a point is also polynomial.
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Finally, we prove that the corresponding 3D problem of deciding whether or
not a simplicial 3—complex collapses to a 1—complex is N P—complete.

1 Basic Notions of Simplicial Topology

1.1 Simplicial Complexes

A (finite abstract) simplicial complex C is a couple C = (V,S), where V =
{v1,...,vp} is a finite set, and S is a set of subsets of V, containing all singletons,
and such that any subset of an element of S is also an element of S. An element
of V is called a vertex of C, and an element of S is called a cell of C or a simplex
of C. A cell s of C with cardinality d + 1 is called a d—cell of C, and the number
d is called the dimension of s. The dimension of C is the maximal dimension
of its cells. For k € N, we call a simplicial k—complex any simplicial complex
with dimension less than or equal to k. In the sequel, all considered simplicial
complexes are finite.

Let C = (V,5) be a simplicial complex. If s’ C s, with s € S, we say that s
is a face of s. If in addition we have s # s, then s’ is called a proper face of s.
Finally, if s’ is a proper face of s, s' is a (d — 1)—cell, and s is a d—cell, we call
s" a mazximal proper face of s.

1.2 Collapsing

Let C = (V,S) be a simplicial complex and let s’ be a maximal proper face of a
cell s in C. We say that s’ is a free face of s in C (or merely a free face for short)
if s’ is a proper face of no cell in C except s.

If ¢" is a free face of s in C, we can define a new simplicial complex C' = (V', 5"),
called an elementary collapse of C, by considering the set V' of vertices of V
which belong to some cell of C which is different from s and s’, and the set
S’ =S5 —{s,s'}. We say also that there is an elementary collapse of C on C’,
and that the collapse is across s from s’. Though we do not need these facts, we
mention that it is known (and not difficult) that if C’ is an elementary collapse
of C, then C’ is a strong deformation retract of C, so that C and C" have the same
homotopy type.

Now, given C = (V,S) a simplicial complex and ¢’ = (V’,S’) a subcomplex
of C (ie. V/ C V and S’ C S), we say that C collapses on C’ if there is a finite
sequence (Co, . . .,C,) of simplicial subcomplexes of C, such that C = Cyp, C' = C,,
and for i« = 1,...,n the complex C; is an elementary collapse of the complex
C;_1. If in addition the complex C’ is 1—dimensional, we say that C collapses to
a 1—complex. If C’ is reduced to a single vertex (C' = ({v}, {{v}})), we say that
C collapses to a point or, simply, that C is collapsible.

Next we give some examples of both collapsible and non—collapsible complexes
that will be used in Section Bl All of these complexes are variations around the
well-known Bing’s house introduced in [B64].
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Ezxample 1. Let us consider the object depicted in Figure called here the
Bing’s house with two thin walls. This is a 2D object, which can be described
as follows. The object is a “building” with two rooms, the upper room and the
lower room. We can enter in the upper room by a tunnel through the lower room.
Similarly, we can enter in the lower room by a tunnel through the upper room.
Finally, two thin walls (i.e. 2D walls) are added between the tunnel through
each room and an exterior wall of the building, so that both rooms are simply
connected. In order to realize the Bing’s house with a simplicial complex B =
(V,S), we can break all the rectangular pieces of walls into triangles (i.e. we
can triangulate the 2D walls). Then we take for V' the set of all vertices of
the obtained triangles, and as simplexes (elements of S), the singletons of V' as
0—cells, pairs of extremities of edges as 1—cells, and the sets consisting of the
three vertices of triangles as 2—cells. The obtained simplicial 2—complex B is
not collapsible since no cell of B has a free face, but it has the homotopy type
of a point. For this, first thicken all its walls (this is the inverse operation of a
collapse) and observe that the resulting 3D object is a 3—ball, which collapses to a
point. The next example shows that it is sufficient to thicken only one appropriate
wall of B to check this result.
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(a) The Bing’s house with two thin (b) The Bing’s house with one thick
walls. wall and one thin wall.

Fig. 1. Examples of simplicial complexes

Ezxample 2. Now let us consider the object depicted in Figure . It is called
the Bing’s house with one thick wall. It is similar to the Bing’s house with two
thin walls, except that one of the walls is thickened to get a 3D paralelepipedic
wall W, as represented in Figure . In order to get a simplicial complex to
represent the Bing’s house with one thick wall, we proceed as in Example[ for the
2D parts, but for the 3D wall, we consider a particular triangulation VW consist-
ing of twelve 3—cells, which is as follows. Consider the vertices numbers of the
cube representing the thick wall of Figure . This cube is also represented in
F igure where it has been subdivided into four triangular prisms by adding a
new edge {8,9} with extremities at the barycentres of the rectangles (0,3,5,6) and
(1,2,4,7), respectively, and joining these barycentres to the vertices of the corre-
sponding rectangles. Then, each of these prisms is in turn subdivided into three
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Fig. 2. Decomposition into simplexes of a cube

3—cells as follows. First, divide each rectangular face of the prism with a diago-
nal containing the vertexr with the lowest label, and then consider all tetrahedra
thus obtained. For example, the prism with vertices 0,1,2,3,8,9 is decomposed
into the 3—cells {0,2,3,8}, {0,2,8,9} and {0,1,2,9} (see Figure[2(b)). Thus the
Bing’s house with one thick wall is realized as a simplicial 3—complex By which
1s collapsible.

Indeed, we can first remove each prism from the free 2D faces on the rectan-
gles (0,1,2,3), (2,3,6,7), (4,5,6,7) and (0,1,4,5). For example, the prism with
vertices 0,1,2,3,8,9 can be removed by a sequence of elementary collapses across
the following cells: {0,1,2,9} from {0, 1,2}, then {0,2, 3,8} from {0,2, 3}, after-
wards {0,2,8,9} from {0,2,8}, and finally {0,2,9} from {0,2}, and similarly for
the other prisms. After this process, edges {2,3}, {4,5} and {6,7} become free
faces, from which we can remove rectangles (2,3,8,9), (4,5,8,9) and (6,7,8,9),
respectively. Namely, for rectangle (2,3,8,9) collapse the 2—cell {2,3,8} from
{2,3} and, afterwards, {2,8,9} from {2,8}. Now we can remove the rectangle
(0,1,8,9) from the recently created free face {8,9} in a similar way. Note that the
2D faces representing the rectangles (0,3,5,6) and (1,2,4,7), up to now, remain
in the obtained 2—complex and have no free faces. This remaining 2—complex
B;O’l} has {0,1} as a free face, which enables us to begin to remove the bottom
part of the Bing’s house, and subsequently, all the object until we get a single
vertex.

Remark 1. Notice that despite the 2—cells lying in the rectangles (0,3,5,6) and
(1,2,4,7) are free faces of Ba, none of them can be used in order to collapse the
Bing’s house with one thick wall to a point.

To check this, let us consider the intersection of the thick wall W with a plane
P parallel to rectangles (0,3,5,6) and (1,2,4,7). If W = (V,S1 U Sy) is the
triangulation of W described in Example [3, where Sy is the set of cells of W
lying in the rectangles (0,3,5,6) and (1,2,4,7) and Sy contains the remaining
cells of W, the intersection of P with the cells in Sy induces a subdivision of
WNP that can be extended (without introducing new vertices) to get a collapsible
simplicial 2— complex R. This complex is shown in Fz'gure where the label
of each vertex has been made up of the vertices numbers of the corresponding
edge in W, and the solid lines represent the intersection of a triangle in the set
So with the plane P.
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Now, let By = Cy,C1,...,Cp be a sequence of subcomplexes of the Bing’s house
By such that C;—1 elementary collapses on C;, for 1 <1 < p, and C, consists of
a single point. Moreover, let ig be the lowest index such that the corresponding
collapse is across a cell not contained in the thick wall WW. Notice that ig > 1
necessarily and C;,—1 collapses on C;, from either the edge {0,1} or from an edge
in the border of the rectangle (0,3,5,6) or (1,2,4,7). Finally, for 0 <1i < iy, let
us consider the 2—complex R; obtained by intersecting the cells of W; = WNC;
with the plane P as above.

Then, for 0 < i <ig, if C;—1 collapses on C; (or, equivalently, W;_1 collapses
on W; ) across a cell s from the free face s', it is not difficult to check that s’ € Sy
if and only if R; is also an elementary collapse of R;—1, and the collapse is across
sN P from s’ N P. For example, the elementary collapse of By across {0,2,3,8}
from {0,2,3} corresponds with the collapse of R = Ro across {02,23,28} from
{02,23}. Hence, any collapsing sequence of R to the point {01} (i.e., to the
complex ({01},{{01}})) corresponds with a collapsing sequence of Bz on the

complex Béo’l}, in which the edge {0,1} is a free face, and conversely. On the
other hand, if C;_1 collapses on C; from a face s’ € Sy, then R; is obtained by
removing from R;_1 the cell sN P without deleting any of its faces. For example,
the collapse across {0,2,3,8} from {0,3,8} corresponds with the deletion of the
2—cell {02,23,28} in R. In this case R; is not longer collapsible since it has

a hole, and hence C; cannot collapse on Béo’l} Just across elementary collapses
from cells in the set Sy. Moreover, it can be proved, by induction on the number of
collapses, that any elementary collapse of C; from a face in S1 will not destroy
the hole in R; (on the contrary, it will create a new hole or, at most, it will
merge two holes) and, in addition, that the edges of the rectangles (0,3,5,6) and
(1,2,4,7) never become free. This is a contradiction with our hypothesis, since
then the edge {0,1} cannot become free either.

This shows, in particular, that in order to collapse the Bing’s house with one
thick wall By to a point, the edge {0,1} necessarily becomes a free face at some
step of the collapsing sequence.

Ezxample 3. We finish this section introducing a 3—complex Bs which does not
collapse to a 1—complex. It is composed of two Bing’s houses, Ba and Bj, each
with one thick wall triangulated as in Example [d and whose central edges {8,9}
and {8',9'} have been identified (we use 0',1',...,9" for labeling the vertices of
the thick wall of By accordingly to Figure . In more intuitive words, we
“paste” the two central edges together, by identifying vertices 8 and 9 with 8
and 9', respectively.

In order to collapse Bs to a 1—complex, we should be able to start removing
the 2D bottom part of either By or BY, and for this either the edge {0,1} or
{0,1'} must become a free face after collapsing the corresponding thick wall
W or W'. Let us assume, without lose of generality, that {0,1} becomes a free
face. According to Remark[d, W must collapse from faces which does not lie in
rectangles (0,3,5,6) and (1,2,4,7). However, the edge {8,9} = {8,9'} should
become a free face at some step, and this is only possible if W' collapses from its
faces on either the rectangle (0',3',5',6") or (1',2',4',7"); that is, if B} collapses
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on a 2—complex consisting of a Bing’s house with two thin walls and the 1—cell
{8,9'}, in which the edge {0',1'} is not a free face. This enables us to remove
all the cells in Bo, after which there are not more free faces. Hence, B3 cannot
collapse to a 1—complex, however it collapses on a Bing’s house with two thin
walls instead.

2 The 2D Case

First we recall an N P—completeness result concerning simplicial 2—complexes
from [EGI6]. Given a simplicial 2—complex C, a 2—cell of C is called internal if
it has no free faces. We denote by er(C) the minimum number of internal 2—cells
which need to be removed from C so that the resulting complex collapses to a
1—complex. For instance, C collapses to a 1—complex iff er(C) = 0, and for a 2D
hollow cube (or sphere) C, we have er(C) = 1.

GENERALIZED 2D 1-COLLAPSING:
INSTANCE: a finite simplicial 2-complex C and a non-negative integer k
QUESTION: is er(C) equal to k 7

Theorem 1 ([EG96]). GENERALIZED 2D 1-COLLAPSING is N P—complete.
Now, let us consider the following problem for a fixed k € N:

k-GENERALIZED 2D 1-COLLAPSING:
INSTANCE: a finite simplicial 2-complex C
QUESTION: is er(C) equal to k 7

Theorem 2. For any fized k, the problem k—GENERALIZED 2D 1-COLLAPSING
1s polynomial.

Lemma 1. Let C be a simplicial 2— complex which is collapsible to a 1—complex
and let ¢ be a 2—cell of C with a free face f. Then the complex C; obtained by
elementary collapsing ¢ from f also collapses to a 1—complez.

Lemma [I] follows from the fact that the 2—cells of C; can be collapsed in the
same order as they are collapsed when reducing C to a 1—complex, since the
removal of ¢ and f does not affect the free character of 1—cells. Note that the
1—complexes resulting from collapsing of C and C; might be different.

Proof of Theorem First we observe that the case k = 0 follows from the
polynomial character of the algorithm consisting in searching an arbitrary 2—cell
with a free face, collapsing this cell, and recursively treating the resulting com-
plex C;. From Lemma [I] either this algorithm constructs a collapsing sequence
of C to a 1—complex, or C cannot be collapsed to a 1—complex.

Now, for the case k # 0, since k is fixed, we can try all the possibilities of
removal of k£ 2—cells, and try to collapse the resulting complex using the case
k = 0. The resulting algorithm, for a fixed k, is polynomial (in spite of an
exponent k in the complexity). O
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Now consider the following problem:

2D POINT COLLAPSING:
INSTANCE: a finite simplicial 2-complex C
QUESTION: does C collapse to a point 7

Corollary 1. The 2D POINT COLLAPSING problem is polynomial.

Proof. We have a constructive algorithm to decide whether or not an input
simplicial 2—complex collapses to a 1—complex. If C does not collapse to a
1—complex, then, a forciori, it does not collapse to a point. Otherwise, we can
construct a 1—complex K (i.e. a graph) such that C collapses to K. Then, if K is
not a tree, then C is not simply connected and does not collapse to a point. If K
is a tree, then K (and therefore C) collapses to a point. This gives a polynomial
procedure to solve 2D POINT COLLAPSING.

This proof shows, in particular, that the order in which we collapse the cells of
a given collapsible 2—complex is not important to reduce it to a single point.
In the 3D case, however, we could get blocked on a non-collapsible complex if
we choose a wrong free face at some step of a possible collapsing sequence. For
instance, let C be a triangulated solid cube such that a Bing’s house with two thin
walls B (see Example[I]) is a subcomplex of C. Despite C is collapsible, it can be
reduced to the non-collapsible 2—complex B by collapsing the 3—cells which are
filling both rooms from the free faces on the tunnels (see Remark [ for another
example). Anyway, we may wonder whether Theorem 2l can be generalized to the
3D complexes case. Section [3 shows that this is impossible (unless P = N P),
since the problem of deciding whether a simplicial 3—complex collapses to a
1—complex is proved to be N P—complete.

3 The 3D Collapsing Problem

In the sequel, we shall consider the following problem:

3D 1-COLLAPSING:
INSTANCE: a finite simplicial 3-complex C
QUESTION: does C collapse to a l1-complex ?

Concerning the encoding of the instance, which is a simplicial 3—complex C,
we suggest that the number of vertices can be written in binary, followed by, for
each simplex s of C, the binary expansions of all the numbers of vertices of s.
Note that we could have written the number of vertices in unary and listed only
the maximal simplices (i.e. those which are proper face of no simplices), but,
for 3D complexes, this makes no significant difference concerning the size of the
input.

Now we can state our main result:

Theorem 3. The 3D 1 — COLLAPSING problem is N P—complete.
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First note that 3D 1 — COLLAPSING is easily seen to be in N P since, given a sim-
plicial 3—complex C = (V, 5), we can guess a sequence o = ((s1, f1),. .., (sp, fp))
of couples of cells, and check in polynomial time that o is a collapsing se-
quence to a 1—complex, that is, the cell f; is a maximal proper face of s;,
fori=1,...,p, and f; is a free face in the complex obtained by removing the
cells s1, f1,...,8;—1, fi—1, and the cells which are not of the form s; or f; have
dimension less than or equal to 1.

The proof of Theorem [ therefore reduces to proving that 3D 1 — COLLAPSING
is NP—hard. This is made by polynomially reducing the 3 — SAT problem to
3D 1 — COLLAPSING. So, in the sequel of this section, U is a finite set of n boolean
variables, and C' = {c1,...,¢,} is a finite collection of m 3—clauses. These
represent an instance I of the 3 — SAT problem, and we are going to construct
an instance of a simplicial 3—complex C(I) which is collapsible to a 1—complex
iff I is satisfiable.

The complex C(I) is made up of several other complexes, representing literals,
the clauses and the conjunction of clauses of I, which are connected by identifying
some of their edges. The main idea is to represent the literals u and w, for
each variable u € U, by two complexes C(u) and C(u), respectively, which are
related in such a way that only one of them may collapse on a 1—complex
at a first stage of a possible collapsing sequence of C([I). If the complex C(I),
representing the literal [, could not be reduced to a 1—complex at this stage, we
will obtain the necessary feedback to collapse it through a particular edge f(I),
which is identified with an edge in the complex Cang representing the conjunction
of clauses. In a second stage, each complex C(¢) representing a clause ¢ = 13 VIy Vi3
will be collapsible to a 1—complex if and only if at least one of the complexes
C(l;), j € {1,2,3}, has collapsed in the previous stage. Then Cang, and hence
C(I) through the edges f(1), turns out to be collapsible if all the complexes C(¢;),
i € {1,...,m}, have been collapsed. We next describe the complexes involved in
this construction.

The complex Canq is just a Bing’s house with one thick wall whose 2D walls
have been triangulated in such a way that, for each literal [, we get an edge
f(1) lying at the intersection between two outer walls of the lower room (see
Figure . As it was shown in Remark [I, the only possibility to reduce Cang
to a 1—complex is to collapse the thick wall until the edge eana = {0, 1} becomes
a free face. For this reason, we paste to this edge a simplicial representation
C(c¢;) of each clause ¢;, i € {1,...,m}. This way, Canq intuitively represents the
“conjunction” of the complexes C(c¢;), since it will be collapsible only if each
C(c;) is previously reduced to a 1—complex.

In order to describe the complexes C(¢;) we may assume that a boolean vari-
able u appears at most (positively or negatively) once in a given clause. If ¢;
contains only one literal, then C(¢;) consists just of a single edge, specifically the
edge eang Of Cang, which is also labeled with this literal. If the clause ¢; contains
two literals, then it is simply represented by a triangle, one edge of this trian-
gle being the edge eang of Cang, and the two other edges being labeled each by
one literal appearing in the clause ¢;. Finally, if ¢; contains three literals (see
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Fig. 3. How to represent 3—clauses

Figure for an example with ¢; = u V v V w), the clause is represented by
two adjacent triangles, being esng one the four edges which are not shared by
the two triangles and the three other of these edges being labeled each by one
of the three literals of the clause ¢;. By identifying all these edges, the union of
the complexes Cana, C(c1), ..., C(cm) yields a simplicial complex C in which some
edges are labeled by literals, and C can be collapsed to a 1—complex if for each
clause we use, as a free face, an edge labeled by a literal of the clause.

Now we have to paste to C some representation of literals. This is the most
tricky point. For this purpose we shall consider, for each variable v € U, two
Bing’s houses with two thick walls such as the one represented in Figure [l one,
denoted by C(u), for the literal u, and one, denoted by C(u), for the literal w.
More precisely, for a given literal [, the two thick 3D walls of the complex C(1),
denoted by W(Il) and F(l) respectively, are triangulated as the thick wall in
Example 2| while the triangulation of its 2D walls provides us with m edges
e1(l),...,em(l) (we remind the reader that m is the number of clauses), these
edges lying on an outer wall (or at the intersection between two outer walls as
represented in Figure []) of the lower room of C(1). Then, each Bing’s house C(l)
associated to a literal [ is double linked to the complex C. Firstly, for each clause
¢, 7 €{1,...,m}, in which the literal [ appears, we identify the edge e;(l) with
the edge labeled by [ in the complex C(c;) representing the clause ¢;. Secondly,
the edge f(I) of the thick wall F(I) of C(l) is also identified with the edge of
the same label in the complex Canq representing the conjunction of clauses (see
Figures[3(a)] andH). Finally, for each variable u € U, the literal v must somehow
be related to the literal u by an exclusion principle. For this, we simply identify
the central edges of the thick walls W(u) and W(u) as in Example

Remark 2. As it was mentioned above, in order to collapse the complex C, and
thus C(I), to a 1—complex, we need for each clause c; at least one free edge
labeled by a literal | appearing in the clause. Since such an edge is identified with
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thick wall W(I)

thick wall (1)

edges e1(1), ..., en(l)

Fig. 4. The Bing’s house C(I) with two thick walls associated to a literal

the edge e;(l) lying in the bottom room of the Bing’s house C(l), we must first
collapse these complexes. For this, we can proceed as in Example[d to collapse the
thick wall F(1) of C(1). But in the complex obtained from C(I) after this process,
there are three 2—cells having the edge f(l) as a face (two of them in Cana and
the third one in C(1)). So, f(l) is not a free face and it cannot be used to remove
the remaining cells of C(1). Thus, we must follow a different collapsing sequence.
Indeed, we must collapse the thick walls W(l) and W(l) simultaneously as in
Ezample [3 in order the edge w(l) of W(l) becomes a free face of the resulting
complex (see Figure[]), from which we can remove the 2—cells of (the bottom
room of ) C(l). Notice that, after this process (in which the thick walls W(l) and
W(l) play the role of W and W' in Example [3, respectively), the edge w(l) of
W(1) is not free in the resulting complex; so that, we must wait until the edge f(1)
becomes free (i.e., until Cang has been collapsed) to reduce C(l) to a 1—complex.

The following proposition clearly follows from the construction of C([).

Proposition 1. Given the data of the instance I of the 3 — SAT, we can con-
struct the complex C(I) in polynomial time.

Then the N P—completeness of the 3D 1 — COLLAPSING problem immediately
follows from the following

Theorem 4. The 3D simplicial complex C(I) collapses to a 1—complex if and
only if the instance I of the 3 — SAT problem is satisfiable.

Proof. First, assume that the instance I is satisfiable, and let G : U — {0, 1}
be a truth assignment which satisfies the collection C' of clauses of I. Let us
show how to collapse C(I) to a 1—complex.

We extend the truth assignment G to literals by setting G(u) = —~G(u) for
u € U. For each literal [ such that G(I) = 1, we collapse the Bing’s house C(1), as
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it suggested in Remark[2] so that the edges labeled by [ in the complex C become
free. Thus, since G is a satisfying truth assignment, for each clause ¢; € C there
is a free edge €;(1) in the resulting complex from which we can remove the (at
most) two triangles of C(c;). Therefore, we can collapse the thick wall of the
Bing’s house Canq as in Example 2 until the edge e.,q becomes free, which allows
us to remove the remaining 2—cells of Capg. Finally, since the faces f(I), for
all literals [ (in particular for those with G(I) = 0), are faces of no 2—cells of
the remaining of Capnq, we can begin to collapse the thick wall F(I) similarly to
Example 2] and then collapse all Bing’s houses C(l) to a 1—complex.

Conversely, suppose that C collapses to a 1—complex K. For [ literal of I, let
G(l) be equal to 1 if there exists and edge e;(l) in C(I) which is removed before
the edge f(I) (in particular if f(I) is an edge of K) and equal to 0 otherwise.
Let us prove that for any literal [ we have G(I) = 1 implies G(I) = 0, and that
the truth assignment G’ defined by G'(I) = G(I) if G(I) =1 or G(I) = 1 and by
G'(u) =1and G'(u) =0 for all u € U such that G(u) = G(u) = 0 is a satisfying
truth assignment for 1.

First, assume that G(I) = 1. We need collapse (at least part of) the bottom
room of C(1) in order to remove the edge e;(l). For this, according to Remark [T}
we must start collapsing from either the edge w(l) or f(I) of C(I). Thus, since
e;j(l) is removed before f(l), this process starts being the edge w(l) a free face,
for which necessarily the thick walls W(I) and W(I) must be collapsed simul-
taneously as in Example Bl As a consequence the edge w(l) is not free in the
remaining of C(I), and hence no edge e;(I) can be removed before f(I). This
shows that G(I) = 0.

Now let us prove that G’ is a satisfying truth assignment for I. In order to
remove the 2—cells of the Bing’s house Canq by collapsing, we have to use the edge
€ana as a free face by Remark [Il Therefore, for each clause ¢;, j € {1,...,m},
there is an edge labeled by some literal of the clause in the (at most) two triangles
representing the clause ¢; (see Figure which is used as a free face before
any edge of the form f(I) is removed. This shows that in each clause ¢; appears
a literal [ such that G(I) = 1, so that G’ is a satisfying truth assignment for I.

4 Conclusion

We proved that deciding whether a simplicial 3—complex collapses to a 1—
complex is an intractable problem. This is, as far as we know, the first result of
that kind concerning topology preservation. Several kindred questions remain:

— Characterizing the complexity of the problem of deciding whether a simpli-
cial 3—complex collapses to a point;

— Studying the complexity of characterization of simple points in high dimen-
sional digital spaces ([K97],[KR01],[B99]);

— Characterizing the complexity of the problem of deciding whether a 3D dig-
ital object can be reduced to another object by sequential deletion of simple

points ([F0Q]).
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