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Abstract. Preserving topological properties of objects during thinning
procedures is an important issue in the field of image analysis. This paper
constitutes an introduction to the study of non-trivial simple sets in the
framework of cubical 3-D complexes. A simple set has the property that
the homotopy type of the object in which it lies is not changed when the
set is removed. The main contribution of this paper is a characterisation
of the non-trivial simple sets composed of exactly two voxels, such sets
being called minimal simple pairs.
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1 Introduction

Topological properties are fundamental in many applications of image analy-
sis. Topology-preserving operators, like homotopic skeletonisation, are used to
transform an object while leaving unchanged its topological characteristics. In
discrete grids (Z? or Z?%), such a transformation can be defined and efficiently
implemented thanks to the notion of simple point [16]: intuitively, a point of an
object is called simple if it can be deleted from this object without altering its
topology.

A typical topology-preserving transformation based on simple points deletion,
that we call guided homotopic thinning [9I8], may be described as follows. The
input data consists of a set X of points in the grid (called object), and a subset
K of X (called constraint set). Let Xo = X. At each iteration ¢, choose a simple
point z; in X; but not in K according to some criterion (e.g., a priority function)
and set X;11 = X; \ {z;}. Continue until reaching a step n such that no simple
point for X, remains in X,, \ K. We call the result of this process a homotopic
skeleton of X constrained by K. Notice that, since several points may have the
same priority, there may exist several homotopic skeletons for a given pair X, K.

The most common example of priority function for the choice of z; is a dis-
tance map which associates, to each point of X, its distance from the boundary
of X. In this case, the points which are closest to the boundary are chosen first,
resulting in a skeleton which is “centered” in the original object. In some par-
ticular applications, the priority function may be obtained through a greyscale
image, for example when the goal is to segment objects in this image while re-
specting topological constraints (see e.g. [T022]). In the latter case, the order in

D. Coeurjolly et al. (Eds.): DGCI 2008, LNCS 4992, pp. 165-I76} 2008.
© Springer-Verlag Berlin Heidelberg 2008



166 N. Passat, M. Couprie, and G. Bertrand

ﬁ,j 0000000 OeeeeeO 0000000 OeeOeeO 0000000
OeeeeeO ®e00000Ce® OeeeeeO e00OCe®e00e® OeeOee0

OeeeeeO ®e0000O0e OeO0O00eO0 eOCeO0eOe OeO0O0Oe0

777 4ﬁ7 OeeeeeO ®e0000O0Ce OeO0OO00OCe®O0 eCeO0eOe OCeO0O0Oe0
z — Oe000eo eOCeeeCe OeeeeeO eOCeeeCe [e NeNeNeN Ne]
OeO0O00OCeO0 eOCeO0eOe OeO0O00CeO0 ®e0000O0Ce CeeeeeO

Oe000OCeO eOeCe0e Oe000OCeO e0000O0Ce OCeeeeeO

Py OeeOeeO L NN NeNoN ] OeeeeeO [ JeNeNoNeNoN ] OeeeeeO

7 0000000 OeeOeeO 0000000 OeeeeeO 0000000

Fig. 1. Left: The Bing’s house with two rooms. Right: A discrete version of the Bing’s
house, decomposed into its five planar slices for visualisation. The 26-adjacency relation
is used for object points.

which points are considered does not rely on geometrical properties, and may be
affected by noise.

In such a transformation, the result is expected to fulfil a property of min-
imality, as suggested by the term “skeleton”. This is indeed the case for the
procedure described above, since the result X,, is minimal in the sense that it
contains no simple point outside of K. However, we could formulate a stronger
minimality requirement, which seems natural for this kind of transformation:
informally, the result X,, should not strictly include any set Y which is “topo-
logically equivalent” to X, and which contains K. We say that a homotopic
skeleton of X constrained by K is globally minimal if it fulfils this condition.

Now, a fundamental question arises: is any homotopic skeleton globally mini-
mal? Let us illustrate this problem in dimensions 2 and 3. In Z2, consider a full
rectangle X of any size, and the constraint set K = ). Obviously, this object
X is topologically equivalent to a single point, thus only homotopic skeletons
which are singletons are globally minimal. A. Rosenfeld proved in [21] that any
homotopic skeleton of X is indeed reduced to a single point.

But quite surprisingly, in dimension 3, this property does not hold: if X is
e.g. a full 10 x 10 x 10 cube, we may find a homotopic skeleton of X (with empty
constraint set) which is not reduced to a single point. This fact constitutes one
of the main difficulties when dealing with certain topological properties, such as
the Poincaré conjecture. A classical counter-example is the Bing’s house with
two rooms [6], illustrated in Fig. [ (left). One can enter the lower room of the
house by the chimney passing through the upper room, and vice-versa. A discrete
version B of the Bing’s house is displayed in Fig. [I] (right). It can be seen that
the Bing’s house can be carved from a full cube by iterative removal of simple
points. It can also be seen that B contains no simple point: deleting any point
from B would create a “tunnel”.

It could be argued that objects like Bing’s houses are unlikely to appear while
processing real (noisy) images, because of their complex shape and their size.
However, we found that there exists a large class of objects presenting similar
properties, some of them being quite small (less than 50 voxels). Let us call a
lump relative to K any object X which has no simple point outside of K, and
which strictly includes a subset Y including K and topologically equivalent to X
(i.e., a homotopic skeleton which is not globally minimal). This notion of lump
is formalised and discussed in Appendix [Al One of the authors detected the
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existence of lumps while processing MRI images of the brain [19]. A simpler way
to find lumps consists of applying a guided homotopic thinning procedure to an
N x N x N cube, using different randomly generated priority functions, until no
simple point remains. The following table summarises the outcome of such an
experiment, with different values of N and for 10,000 skeletons generated using
different random priority functions. We denote by p the proportion of the cases
where the result is not a singleton set.

N 10 20 30 40
p 0.0001 0.0249 0.1739 0.5061

Motivated by these practical considerations, two questions arise: is it possible
to detect when a thinning procedure gets stuck on a lump, and then, is it possible
to find a way towards a globally minimal homotopic skeleton? For performing
the latter task, a solution consists of identifying a subset of X which can be
removed without changing topology; we call such a subset a simple set. Certain
classes of simple sets have been studied in the literature dedicated to parallel
homotopic thinning algorithms [20/[I/T2]. In these studies, the considered simple
sets are composed exclusively of simple points. In our case, the situation is
radically different since a lump relative to K does not contain any simple point
outside of K. Then, our problem may be formulated as follows: does there exist
a characterisation of certain simple sets composed of non-simple points?

We are indeed interested essentially by simple sets which are minimal, in the
sense that they do not strictly include any other simple set, since it is sufficient
to detect such sets in order to carry on thinning. Also, we hope that minimal
simple sets have a specific structure which could make them easier to analyse.

This paper is dedicated to the study of the simplest ones among such simple
sets, called simple pairs, which are those composed of two non-simple points.
Our experiments showed us that these minimal simple sets are the ones which
are most likely to appear in practical applications, hence the interest in under-
standing their structure. After proving some properties of simple pairs, we give
a characterisation of these sets which allows to detect and remove them when
performing homotopic thinning. This paper is self-contained, however the proofs
cannot be included due to space limitation. They can be found in [I§].

We shall develop this work in the framework of abstract complexes. Abstract
complexes have been promoted in particular by V. Kovalevsky [I7] in order
to provide a sound topological basis for image analysis. In this framework, we
retrieve the main notions and results of digital topology, such as the notion of
simple point.

2 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set of elements having
various dimensions (e.g. cubes, squares, edges, vertices) glued together according
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Fig. 2. (a) Four points z,y, z,t of F? such that {z,y,z,t} is a 2-face. (b,c) Two rep-
resentations of the set of faces {{z,v,z2,t}, {z,y}, {z}}. (d) A set F of faces in F?: we
see that F is not a complex. (e) The set F*, composed by the facets of F. (f) The set
F~, i.e. the closure of F', which is a complex.

to certain rules. In this section, we recall briefly some basic definitions on com-
plexes, see also [BIBI4] for more details. For some illustrations of the notions
defined hereafter, the reader may refer to Fig.

Let Z be the set of integers. We consider the families of sets F}, F}, such that
F{ = {{a} | a € Z}, F} = {{a,a+ 1} | a € Z}. A subset f of Z" (n > 1) which
is the Cartesian product of exactly m elements of F1 and (n — m) elements of
F§ is called a face or an m-face of Z™, m is the dimension of f, and we write
dim(f) = m.

We denote by F” the set composed of all m-faces of Z" (m = 0 to n). An
m-face of Z" is called a point if m = 0, a (unit) interval if m = 1, a (unit) square
if m =2, a (unit) cube if m = 3. In the sequel, we will focus on F3.

Letfbeafacemlﬁ‘3 Wesetf—{g€F3|ng} and f* = f\ {f}. Any
g e f is a face of f, and any g € f* is a proper face of f. If I is a finite set of
faces of F3, we write F~ = |J{f | f € F}, F~ is the closure of F.

A set F of faces of F3 is a cell or an m-cell if there exists an m-face f € I
such that F = f. The boundary of a cell f is the set f*.

A finite set F' of faces of F3 is a complex (in F3) if for any f € F, we have
f C F,i.e., if F = F~. Any subset G of a complex F' which is also a complex is
a subcomplezr of F. If G is a subcomplex of F', we write G < F. If F is a complex
in F3, we also write F' < 3.

A face f € F'is a facet of I if there is no g € I such that f € §*. We denote
by F'T the set composed of all facets of F. Observe that (F7)™ = F~ and thus,
that (F'T)~ = F whenever F is a complex.

The dimension of a non-empty complex F € F3 is defined by dim(F) =
max{dim(f) | f € F*}. We say that F' is an m-complez if dim(F) = m.

Two distinct faces f and g of F? are adjacent if fNg # 0. Let F < F? be a
non-empty complex. A sequence (f;)f_, of faces of F' is a path in F (from fo to
fe) if f; and f; ;1 are adjacent, for all i € [0,£—1]. We say that F' is connected if,
for any two faces f, ¢ in I, there is a path from f to g in F. We say that G' # ()
is a connected component of F' if G = F, G is connected and if G is maximal
for these two properties (i.e., we have H = G whenever G < H < F and H is
connected). We denote by C[F] the set of all the connected components of F.
We set C[0] = 0.
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3 Topology Preserving Operations

Collapse

The collapse, a well-known operation in algebraic topology [13], leads to a notion
of homotopy equivalence in discrete spaces, which is the so-called simple homo-
topy equivalence [7]. To put it briefly, the collapse operation preserves topology.

Let F be a complex in F? and let f € FT. If there exists a face g € f* such
that f is the only face of F' which includes g, then we say that the pair (f,g)
is a free pair for F. If (f,g) is a free pair for F, the complex F \ {f, g} is an
elementary collapse of F.

Let F, G be two complexes. We say that F' collapses onto G if there exists a
collapse sequence from F to G, i.e., a sequence of complexes (Fy,..., Fy) such
that Fy = F, Fy = G, and F; is an elementary collapse of F;_1, 1 =1,... /.
Steps of elementary collapse of a 3-D complex are illustrated in Fig.

B8 B~ B

(a) (b) (c) (d)

Fig. 3. (a) A complex F < F?. (b), (c), (d) Three steps of elementary collapse of F

Let F,G be two complexes. Let H such that F NG < H < G, and let
f,g € H\ F. The pair (f, g) is a free pair for F'U H if and only if (f, g) is a free
pair for H. Thus, by induction, we have the following proposition.

Proposition 1 ([2]). Let F,G =< F3. The complex F UG collapses onto F if
and only if G collapses onto F'NG.

Topological Invariants

Let F be a complex in F3, and let us denote by n; the number of i-faces of F,
i =20,...,3. The Euler characteristic of F, written x(F), is defined by x(F) =
no —n1 +ngs —ns. The Euler characteristic is a well-known topological invariant,
in particular, it is easy to see that the collapse operation preserves it. This
invariant will play an essential role in the proofs of this paper.

Let F,G < F3. A fundamental and well-known property of the Euler charac-
teristic, analog to the so-called inclusion-exclusion principle in set theory, is the
following: x(FFUG) = x(F) + x(G) — x(F N G).

The Euler-Poincaré formula shows a deep link between the Euler character-
istic and the Betti numbers, which are topological invariants defined from the
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homology groups of a complex. IntuitivelyEl the Betti numbers by, b1, bs corre-
spond respectively to the number of connected components, tunnels and cavities
of F. The Euler-Poincaré formula, in the case of a complex F in 3, states that
X(F) = by — b1 + ba. Betti numbers are also preserved by collapse.

Simplicity

Intuitively, a part of a complex F is called simple if it can be “removed” from
F while preserving topology. We recall here a definition of simplicity (see [2])
based on the collapse operation, which can be seen as a discrete counterpart of
the one given by T.Y. Kong [I5].

Definition 2. Let G X F <F3. We set FOG = (F*\GT)~. The set FO G
1s a complex which is the detachment of G from F'.

We say that G is simple for F' if F' collapses onto F' O G. Such a subcomplex G
1s called a simple subcomplex of F' or a simple set for F.

It has to be noticed that this definition of simple set is different (and more
general) than the one proposed in [12[T4].

Let G = F =< F3. The attachment of G for F is the complex defined by
Att(G, F) = GN(F © G). This notion of attachment leads to a local character-
isation of simple sets: Prop. Blis a special case of Prop.Mas (FOG)UG = F.

Proposition 3. Let G = F < F3. The complex G is simple for F if and only if
G collapses onto Att(G, F).

4 Minimal Simple Pairs in F3

In the image processing literature, a digital image is often considered as a set
of pixels in 2-D or voxels in 3-D. A voxel is an elementary cube, thus an easy
correspondence can be made between this classical view and the framework of
cubical complexes. In the sequel of the paper, we call vozel any 3-cell. If a
complex F < F3 is a union of voxels, we write F C F3. If F,G C F? and G < F,
then we write G C F. From now on, we consider only complexes which are
unions of voxels.

Notice that, if F C F? and if f is a voxel of F, then FF © f C F3. There
is indeed an equivalence between the operation on complexes that consists of
removing (by detachment) a simple voxel, and the removal of a 26-simple voxel
in the framework of digital topology (see [T4I4]).

As discussed in the introduction, the minimal simple sets which are most
likely to appear in thinning processes are those which are composed of only two
voxels. In this paper, we will concentrate on this particular - but very frequent
- case, and provide a definition, some properties and a characterisation of these
sets.

1 An introduction to homology theory can be found e.g. in [13].
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Definition 4. Let G C F,G # 0. The subcomplex G is a minimal simple set
(for F) if G is a simple set for F and G is minimal with respect to the relation
C (i.e. H= G whenever H C G and H is a non-empty simple set for F).

Let P be a minimal simple set for F' which is composed of two voxels. Then,
we call P a minimal simple pair, or MSP (for F).

Observe that, if a voxel is a simple cell for F, then it is also a (minimal) simple
set for F. Thus, any minimal simple set which contains strictly more than one
voxel cannot contain any simple voxel. In particular, if P is a simple set which
contains only two voxels, then P is a MSP if and only if it does not contain any
simple voxel.

() (d) (e)

Fig. 4. Example of a MSP (voxels z and y). (a), (b): Two representations of the same
complex F. (¢), (d), (e): Effect of removing either z, y or both (see text).

Fig. 5. Left: two complexes composed of non-simple voxels. Right: another represen-
tation of these complexes. The subset {z,y} is a MSP for both of them (the removal
of {z,y} will not alter their topology).

Before beginning the study of MSPs (next section), let us show an example
of such a configuration. Consider the complex F depicted in Fig. @h. Another
representation of this object is shown in Fig. @b, where each cube (voxel) is
represented by a black dot. It can easily be seen that the complex F' is connected
and has no cavity and no tunnel; furthermore it can be reduced to a single voxel
by iterative deletion of simple voxels. Let us now concentrate on the set formed
by the two voxels x and y.
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In Fig. Bk, we can see that removing x from F' creates a tunnel. Thus z is not
a simple voxel. The same can be said about y (see Fig. @d). But if both x and y
are removed (see Fig. @), then we see that we obtain a complex G which has no
tunnel. It is easily verified that the union of the cells x and y is in fact a simple
subcomplex of F', so that it is a MSP for F.

Of course, the complex F' of Fig. b is not a lump since it contains simple
voxels (on its border). In Fig. [l (1st row), we show that the same configuration
can appear in a complex which has no simple voxel but is however topologically
equivalent to a single voxel. This lump can be homotopically reduced by deletion
of the simple pair {z,y}. The obtained result could then be further reduced
to a singleton set by iterative simple voxel removal. Notice that this complex
(generated by randomised homotopic thinning from a 5 voxel-width cube) is
made of only 32 voxels.

There exist examples containing less points: the smallest one we found until
now is composed of only 14 voxels and has some tunnels (see Fig. Bl 2nd row).
We conjecture that 14 is the smallest size for a lump containing a MSP.

We conclude this section by quoting a characterisation of 3-D simple voxels
proposed by Kong in [I5], which is equivalent to the following theorem for sub-
complexes of F3; this characterisation will be used in the next section. Remind
that |C[X]| denotes the number of connected components of X.

Theorem 5 (Adapted from Kong [15]) Let F CF3. Let g € F*. Then g is
a simple vozel for F if and only if |C[Att(g, F)]| = 1 and x(Att(g, F)) = 1.

5 Some Properties of Minimal Simple Pairs

We are now ready to state some properties about the structure of MSPs: first of
all, a simple set need not be connected, but any MSP is indeed connected.

Proposition 6. Let P C F be a MSP for F. Then:
|CIP]| = 1.

As discussed before, the voxels constituting a MSP cannot be simple voxels. In-
tuitively, the attachment of a non-simple voxel f can either: i) be empty (isolated
voxel), ii) be equal to the boundary of f (interior voxel), iii) be disconnected, iv)
have at least one tunnel. Notice that iii) and iv) are not exclusive, the attachment
of a non-simple voxel can both be disconnected and contain tunnels.

We will see that some of these cases cannot appear in a MSP. First, we prove
that 1) and iii) cannot hold for such a voxel, i.e., the attachment of a voxel in a
MSP is non-empty and connected.

Proposition 7. Let P C F be a MSP for F. Then:
Vg € P*,|ClAt(g, F)]| = 1.

Then, with the next proposition, we show that ii) cannot hold, hence, the at-
tachment to F' of any voxel g in a MSP has no cavity.
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Fig. 6. Attachments of configurations of Fig.[d From left to right: attachment of {z, y},
attachment of x, attachment of y.

Proposition 8. Let P C F be a MSP for F. Then:
Vg € P A3, F) # §".

Recall that, according to the Euler-Poincaré formula, x(Att(g, F)) = by — b1 + ba,
where by (resp. by) is the number of connected components (resp. cavities) of
Att(g, F'). From the two previous propositions, we have by = 1 and b = 0. The
Betti number by, which represents the number of tunnels, is positive. Thus, we
have x(Att(g, F)) =1 —0b; < 1. But from Theorem [ and Prop. [[l we must have
X(Att(g, F')) # 1, otherwise g would be a simple voxel. This proves the following
proposition, which (with Prop. [ and Prop. ) implies that the attachment to F
of any voxel in a MSP has at least one tunnel.

Proposition 9. Let P C F be a MSP for F. Then:
Vg € PT,x(Att(g, F)) <0.

From Prop. [0l we know that a MSP is necessarily connected. The following
proposition tells us more about the intersection of the two voxels which compose
any MSP.

Proposition 10. Let P C F be a MSP for F, and let g1, g2 be the two voxels
of P. Then, g1 N go is a 2-face.

This proposition is indeed an easy consequence of the following lemma: it may be
seen that Lemma[[Tlimplies that the intersection of Att(P, F) with g1 Ngs has at
least three connected components. This is possible only when dim(g; N g2) = 2.

Lemma 11. Let P T F be a MSP for F, and let g1, g2 be the two vozxels of P.
Then, x(Att(P,F) N gi Nga) > 3.

To illustrate the above properties, let us consider the attachment of the pair
P = {z,y} of Fig. @h, which is displayed in Fig. [ (left), and the attachments
of z and y displayed in Fig. [ (middle and right, respectively). We can see in
particular that the intersection of Att(P, F') with x Ny is indeed composed of
three connected components (the 0-cells u, v and w), as implied by Lemma [T1]
The two following propositions are necessary conditions for a MSP, which are
similar to the conditions of Theorem [0l which characterise simple voxels.
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From Prop. Bl P collapses onto Att(P, F) whenever P is a MSP. We have
x(P) =1, and from Prop.[d |C[P]| = 1. Since collapse preserves the number of
connected components and the Euler characteristic, we have the following.

Proposition 12. Let P C F be a MSP for F. Then:
|C[Att(P, F)]| = 1.

Proposition 13. Let P C F be a MSP for F. Then:
x(Att(P, F)) = 1.

Finally, we give a characterisation of MSPs, which summarises and extends the
properties shown before.

Proposition 14. Let P T F be a pair. Then P is a MSP for F if and only if
all the following conditions hold:

the intersection of the two vozels of P is a 2-face, (1)
Vg € P*,|ClAM(G, F))l = 1, 2)

vg e P x(Ati(g, F)) <0, 3)

|C[AtH(P, F)]| = 1, (4)

x(Att(P, F)) = 1. (5)

Remark 15. Conditions (1), (3), @), and [3) are sufficient to characterise a
MSP, since condition (2) may be deduced from (1), (3), {@l). Moreover, if P is
a pair of non-simple vozels, then P is a MSP for F if and only if conditions ()
and [A) both hold. We retrieve a characterisation similar to Theorem [4

6 Conclusion

The notion of simple voxel (or simple point), which is commonly considered
for topology-preserving thinning, is sometimes not sufficient to obtain reduced
objects being globally minimal. The detection of MSPs (and more generally of
minimal simple complexes) can then enable to improve the thinning procedures
by “breaking” specific objects such as the ones studied here.

For example, let us consider again the experiment described in the introduc-
tion. Among 10,000 objects obtained by applying a homotopic thinning proce-
dure guided by a random priority function to a 20 x 20 x 20 full cube, we found
249 lumps. In 212 of these 249 cases, further thinning was made possible by the
detection of a MSP. In 203 of these 212 cases, it has been possible to continue
the thinning process until obtaining a single voxel.

It has to be noticed that the search of MSPs in a complex F C F3 does not
present an algorithmic complexity higher than the search of simple voxels (both
being linear with respect to the number of facets of the processed complex).
Consequently, it is possible to create new thinning procedures based on the
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detachment of both simple voxels and pairs and whose runtimes have the same
order of growth as the runtimes of thinning procedures that are based only on
simple voxels. Such new algorithms would be able to produce skeletons having
less points than standard ones.
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A Appendix: Simple Equivalence and MSPs

We define here the notion of lump, informally introduced in Section [Il

Definition 16. Let F,G T F3. We say that F and G are simple-equivalent if
there exists a sequence of complexes (Fy, ..., Fy) such that Fy = F, F; = G, and
for any i € {1,...,¢}, we have either

i) F; = F;_1 O x;, where x; is a vozxel which is simple for F;_q1 ; or

it) F;_1 = F; O x;, where x; is a vozel which is simple for F.

Definition 17. Let G C F C F3, such that F and G are simple-equivalent. If
F # G and F does not contain any simple vozel outside of G, then we say that
F is a lump relative to G, or simply a lump.

For example, the Bing’s house of Fig.[lis a lump (relative to any one of its vox-
els), which is composed of 135 voxels. Another example of lump, much simpler,
if given in Fig. [ (left) (see in [I§], Appendix C, some steps of a sequence which
shows that Fig. [0 (left) and Fig. [ (right) are simple-equivalent).

Remark 18. The preceding example invites us to consider a notion based on
simple-equivalence, which is more general than the one of simple set. A subcom-
plex G C F is called SE-simple for F' if F' and F © G are simple-equivalent.
For example, the voxel x in the complex F of Fig.[] (left) is SE-simple for F,
although it is not a simple vozel for F (this kind of configuration has been anal-
ysed in [T1)]). Of course, any simple set is SE-simple, and the preceding example
proves that the converse is not true in general. However, it is not possible to char-
acterise locally, in the manner of Prop.[d, a voxel or a set which is SE-simple.
This is why we use Def.[D as the definition of a simple set.

Fig. 7. On the left, the smallest lump found so far. It contains no simple voxel, and is
simple-equivalent to the complex on the right, made of 10 voxels. Both objects have
three tunnels.
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