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Abstract. This paper expands on previous work on relationships be-
tween digital lines and continued fractions (CF). The main result is a
parsimonious description of the construction of the digital line based
only on the elements of the CF representing its slope and containing
only simple integer computations. The description reflects the hierar-
chy of digitization runs, which raises the possibility of dividing digital
lines into equivalence classes depending on the CF expansions of their
slopes. Our work is confined to irrational slopes since, to our knowledge,
there exists no such description for these, in contrast to rational slopes
which have been extensively examined. The description is exact and does
not use approximations by rationals. Examples of lines with irrational
slopes and with very simple digitization patterns are presented. These
include both slopes with periodic and non-periodic CF expansions, i.e.
both quadratic surds and other irrationals.

Keywords: digital geometry, theory of digital lines, irrational slope,
continued fraction, quadratic surd.

1 Introduction

1.1 About This Paper

The aim of the present paper is to solve the following problem: given the contin-
ued fraction (CF) expansion of the slope a ∈ ]0, 1[ \ Q of a straight line, how is
the digitization of this line constructed? The description uses only the elements
of the CF and is exact, i.e. does not use the commonly applied approximations
by rationals. The method is based on simple integer computations that can be
easily applied to computer programming.

This description forms the Main Result (Theorem 4; description by CFs).
The theoretical basis for this article is Uscka-Wehlou (2007) [15]. The main re-
sult there is recalled in Sect. 2 of the present paper (Theorem 1; description by
the digitization parameters). It gives a description of digitization runs on all dig-
itization levels for lines y = ax where a ∈ ]0, 1[\Q, which is based on digitization
parameters defined in Def. 1 and the function Rega defined in Def. 2.
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Although Theorem 1 looks similar to Theorem 4, the former involves compu-
tations on irrational numbers, which is not the case in the latter.

The idea of the new description was to replace the heavy computations in-
volved in the description by digitization parameters by simple computations on
integers. In order to do that, the digitization parameters and the function Rega

for each a ∈ ]0, 1[ \ Q were expressed by the elements of the CF expansion of a.
The key role in this transform is played by the index jump function (Def. 3).

The main work leading to the successful translation of Theorem 1 into the
CF description (Theorem 4) has been done in Theorems 2 and 3. The first one
expresses the digitization parameters in terms of CFs and the second one does
the same with the function Rega. These results allowed us to replace the com-
putationally challenging conditions and formulae for run lengths by equivalent
conditions and formulae based on the elements of the CF expansion of a.

In general, it is hard to perform arithmetical operations on CFs; see Khinchin
1997 (p. 20 in [7]). However, Def. 1 and Theorem 1 involve only the operations
which form an exception to this rule. These operations are: finding the inverse to
a CF, finding the integer (fractional) part of the inverse to a CF, and subtracting
a CF from 1. The formula for the last operation is described in Lemmas 1 and 2,
the others are clearly easy to perform. This made it possible to find the simple
description formulated in Theorem 4.

The computations on irrationals did not disappear during the translation of
Theorem 1 into the CF version (Theorem 4). They were moved into the process
of finding the CF expansion of the slope. For some slopes we are able to com-
pute the CF expansions exactly, using mathematical methods; some examples
will be shown in Sect. 4, for both algebraic and transcendental numbers. For
other slopes we can use algorithms for finding CF expansions.

The present CF description of digital lines is similar to the formula of Markov
and Venkov ([16], p. 67), but since their method was not meant for descriptions
of digital lines, it does not reflect the hierarchical structure of digitization runs
on all levels, which our method does. This permits the grouping of digital lines
into classes according to properties defined by the elements of the CF expansions
of the slopes (to be presented in a forthcoming paper by the author).

The new method presented here is computationally simple, involving only
easy computations with integers, excepting the algorithm for determining the
CF expansion of the slope. The method applies to irrational slopes and gives the
exact results instead of approximations by rationals. To the author’s knowledge,
there are no previous descriptions of digital lines with irrational slopes fulfilling
all the criteria just mentioned, and reflecting the hierarchy of runs.

1.2 Earlier Developments

The use of CFs in modelling digital lines was discussed by R. Brons [3] as early as
in 1974. Already then it was clear that the patterns generated in the digitization
process of straight lines were related to the CF expansions of the slopes. However,
the algorithm provided by Brons is only valid for rational slopes.
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Some other researchers describing the construction of digital lines with ra-
tional slopes in terms of CFs were J. P. Reveillès (1991) [11], K. Voss (1993:
153–157) [18] - the splitting formula, I. Debled (1995: 59–66) [5] - description by
the Stern-Brocot tree, P. D. Stephenson (1998) [13] - an algorithmic solution, F.
de Vieilleville and J.-O. Lachaud (2006) [17] - a combinatoric approach. See also
the review of R. Klette and A. Rosenfeld from 2004 [8].

Irrational numbers have been less central in research on digital line construc-
tion, possibly because irrational slopes must appear not to have direct appli-
cations for computer graphics. Nevertheless, irrational numbers may play an
important role in our understanding of computer graphics theory which has a
basis in digital geometry.

A CF description of digital lines was presented by L. Dorst and R. P. W.
Duin (1984) [6]. Although their solution can be applied to irrational slopes, it is
formulated as an algorithm. Since it is not a mathematical theorem, it will not
result in descriptions of digital lines as mathematical objects, or help research
on their abstract properties.

L. D. Wu formulated in 1982 a theorem describing digital straightness. Proofs
of this theorem based on CFs were published in 1991 independently by A. M.
Bruckstein and K. Voss; see Klette and Rosenfeld (2004: 208–209) [8]. A. M.
Bruckstein described digital straightness in [4] by a number of transformations
preserving it. Some of these transformations were defined by CFs.

Some work on the subject has also been done outside digital geometry and
computer graphics, however, the solutions obtained in other fields do not reflect
the hierarchical structure of digitization runs, which is an important feature of
digital lines as mathematical objects.

For example, as far back as in 1772, astronomer Johan III Bernoulli applied
the CF expansion of a to the solution of the problem of describing the sequence
(�na�)n∈IN+ for an irrational a. The problem is clearly equivalent to finding the
digitization of y = ax. Bernoulli failed to provide any proofs. Venkov catalogued
the entire history of the problem and its solution (including the solution by
Markov from 1882) in [16] (pp. 65–71).

Stolarsky (1976) described in [14] applications of CFs to Beatty sequences.
Last but not least, we have to mention the research on Sturmian words, be-

cause this is very closely related to the research on digital lines with irrational
slopes; see chapter 2 in [9] (by J. Berstel and P. Séébold).

2 Earlier Results by Uscka-Wehlou (2007) [15]

This section presents results obtained by the author in [15]. In the current paper,
as in [15], we will discuss the digitization of lines with equations y = ax where
a ∈ ]0, 1[ \ Q. Also here, like in [15], the standard Rosenfeld digitization (R-
digitization) is replaced by the R′-digitization. The R′-digitization of the line
with equation y = ax is equal to the R-digitization of y = ax + 1

2 . For the
definitions of both digitizations see [15]. The R′-digitization of y = ax was
obtained there using the following digitization parameters.
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Definition 1. For y = ax, where a ∈ ]0, 1[ \ Q, the digitization parameters are:

σ1 = frac
( 1

a

)
, (1)

and for all natural numbers k > 1

σk = frac
(
1/σ∧

k−1
)
, where σ∧

k−1 = min(σk−1, 1 − σk−1) ∈
]
0, 1

2

[
\ Q . (2)

For j ∈ IN+, σj and σ∧
j are the digitization parameters and modified digitization

parameters of the digitization level j, respectively.

For each a ∈ ]0, 1[\Q, an auxiliary function Rega was introduced. This function
gives for each k ≥ 2 the number of all the digitization levels i, where 1 ≤ i ≤ k−1,
with digitization parameters fulfilling the condition σi < 1

2 .

Definition 2. For a given line with equation y = ax, where a ∈ ]0, 1[ \ Q, we
define a function Rega : IN+ −→ IN as follows:

Rega(k) =
{

0 if k = 1
∑k−1

i=1 χ]0,1/2[(σi) if k ∈ IN+ \ {1} ,
(3)

where χ]0,1/2[ is the characteristic function of the interval ]0, 1
2 [.

The digitization runs of level k for k ∈ IN+ were defined recursively as sets of runs
of level k−1 (if we define integer numbers as runs of level 0). We used to call runk(j)
for k, j ∈ IN+ a run of digitization level k. We used notation runk or in plural
runsk, meaning runk(j) for some j ∈ IN+, or, respectively, {runk(i); i ∈ I} where
I ∈ P(IN+). We also defined the length of a digitization run as its cardinality.

Function Rega defined in Def. 2 was very important in the description of the
form of runs. It helped to recognize which kind of runs was the most frequent (also
called main) on each level and which kind of runs was first, i.e., beginning in (1, 1).
We showed that for a given straight line l with equation y = ax, where a ∈ ]0, 1[\Q,
the R′-digitization of the positive half line of l is the following subset of ZZ2:

DR′(l) =
⋃

j∈IN+

{run1(j) × {j}} . (4)

This was a part of the main result achieved in [15].
The main theorem of [15] was a formalization of the well-known conditions the

digitization runs fulfill. On each level k for k ≥ 1 we have short runs Sk and long
runs Lk, which are composed of the runs of level k − 1. Only one type of the runs
(short or long) on each level can appear in sequences, the second type always oc-
curs alone.

Notation. In the present paper we will use the notation Sm
k Lk, LkSm

k , Lm
k Sk

and SkLm
k , where m = �1/σ∧

k � − 1 or m = �1/σ∧
k �, when describing the form of

digitization runsk+1. For example, Sm
k Lk means that the runk+1 we are talking

about consists of m short runsk (abbreviated Sk) and one long runk (abbreviated
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Lk) in this order, so it is a runk+1 with the most frequent element short. The
length of such a runk+1, being its cardinality, i.e., the number of runsk contained
in it, is then equal to m + 1. We will also use the notation ‖Sk+1‖ and ‖Lk+1‖
for the length of the short resp. long runsk+1.

We will use the following reformulation of the main result from [15].

Theorem 1 (Main Result in [15]; description by the digitization pa-
rameters). For a straight line with equation y = ax, where a ∈ ]0, 1[ \ Q, we
have ‖S1‖ =

⌊ 1
a

⌋
, ‖L1‖ =

⌊ 1
a

⌋
+ 1, and the forms of runsk+1 (form runk+1) for

k ∈ IN+ are as follows:

form runk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Sm
k Lk if Rega(k + 1) = Rega(k) + 1 and Rega(k) is even

SkLm
k if Rega(k + 1) = Rega(k) and Rega(k) is even

LkSm
k if Rega(k + 1) = Rega(k) + 1 and Rega(k) is odd

Lm
k Sk if Rega(k + 1) = Rega(k) and Rega(k) is odd ,

where m =
⌊

1
σ∧

k

⌋
− 1 if the runk+1 is short and m =

⌊
1

σ∧
k

⌋
if the runk+1 is long.

The function Rega is defined in Def. 2, and σk for k ∈ IN+ in Def. 1.

Theorem 1 shows exactly how to find the R′-digitization of the positive half line
y = ax for a ∈ ]0, 1[ \ Q. We get the digitization by calculating the digitization
parameters and proceeding step by step, recursively. The knowledge about the
kind of the first run on each level allows us go as far as we want in the digitization.
The only problem was in the heavy computation of the σ-parameters, but this
will be solved now, in Sect. 3.

3 Main Result

Before presenting the description of the digitization, we provide a brief intro-
duction on CFs. For more details see e.g. [7].

Let a be an irrational number. The following algorithm gives the regular (or
simple) CF for a, which we denote by [a0; a1, a2, a3, . . .]. We define a sequence
of integers (an) and a sequence of real numbers (αn) by:

α0 = a; an = �αn� and αn = an +
1

αn+1
for n ≥ 0 .

Then an ≥ 1 and αn > 1 for n ≥ 1. The natural numbers a0, a1, a2, a3, . . . are
called the elements of the CF. They are also called the terms of the CF, see p. 20
in [1]; or partial quotients, see p. 40 in [16]. We use the word elements, following
Khinchin (p. 1 in [7]).

If a is irrational, so is each αn, and the sequences (an) and (αn) are infinite.
A CF expansion exists for all a ∈ IR and is unique if we impose an additional
condition that the last element (if a is rational) cannot be 1; see [7], p. 16.

The following two lemmas concern subtracting CFs from 1.

Lemma 1. Let bi ∈ IN+ for all i ∈ IN+ and b1 ≥ 2. Then

1 − [0; b1, b2, b3, . . .] = [0; 1, b1 − 1, b2, b3, . . .] . (5)
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Proof. Let b = [0; b1, b2, b3, . . .] and b1 ≥ 2. Then 1
b = [b1; b2, b3, . . .] and we get

1−b = 1/(1+1/(1
b −1)) = 1/(1+1/([b1; b2, b3, . . .]−1)) = [0; 1, b1−1, b2, . . .] . 	


Lemma 2. If ai ∈ IN+ for all i > 1, then 1−[0; 1, a2, a3, . . .] = [0; a2+1, a3, . . .].

Proof. Put b1 − 1 = a2, b2 = a3, b3 = a4, . . . , bi = ai+1, . . . in Lemma 1. 	


Because clearly [0; 1, a2, a3, . . .] > 1
2 for all sequences (a2, a3, . . .) of positive

integers, Lemma 2 illustrates the modification operation for the σ-parameters
according to Def. 1. This leads us to define the following index jump function,
which will allow us describe the digitization in terms of CFs.

Definition 3. For each a ∈ ]0, 1[ \ Q, the index jump function ia : IN+ → IN+

is defined by ia(1) = 1, ia(2) = 2 and ia(k + 1) = ia(k) + 1 + δ1(aia(k)) for

k ≥ 2, where δ1(x) =
{

1, x = 1
0, x �= 1 and a1, a2, . . . ∈ IN+ are the CF elements of a.

The following theorem translates Def. 1 into the language of CFs. It is a very
important step on the way of translating our earlier results into a simple CF
description. This will also serve as a springboard for future research on the
connection between the sequences of the consecutive digitization parameters for
given a ∈ ]0, 1[ \ Q and the iterations of the Gauss Map G(a) = frac

( 1
a

)
.

Theorem 2. Let a ∈ ]0, 1[ \ Q and a = [0; a1, a2, . . .]. For the digital straight
line with equation y = ax, the digitization parameters as defined in Def. 1 are

σk = [0; aia(k+1), aia(k+1)+1, . . .] for k ≥ 1 , (6)

where ia is the index jump function defined in Def. 3.

Proof. The proof will be by induction. For k = 1, the statement is σ1 =
[0; a2, a3, . . .], because ia(2) = 2. From Def. 1 and because a = [0; a1, a2, . . .],
we have σ1 = frac

( 1
a

)
= [0; a2, a3, . . .], so the induction hypothesis for k = 1 is

true. Let us now suppose that σk = [0; aia(k+1), aia(k+1)+1, . . .] for some k ≥ 1.
We will show that this implies that σk+1 = [0; aia(k+2), aia(k+2)+1, . . .]. From
Def. 3 we have ia(k + 2) = ia(k + 1) + 1 + δ1(aia(k+1)). According to Def. 1,
σk+1 = frac (1/σ∧

k ). We get two cases:

• aia(k+1) �= 1 (thus δ1(aia(k+1)) = 0). This means that σk < 1
2 , so σ∧

k = σk.
We get the statement, because
σk+1 = frac (1/σk) = [0; aia(k+1)+1, . . .] = [0; aia(k+2), . . .].

• aia(k+1) = 1 (δ1(aia(k+1)) = 1). This means that σk > 1
2 , so σ∧

k = 1 − σk.
Lemma 2 and Def. 3 give us the statement, because
σk+1 = frac (1/(1 − σk)) = [0; aia(k+1)+2, . . .] = [0; aia(k+2), . . .].

This completes the proof. 	


In order to get a CF description of the digitization, we will express the function
Rega (determining the form of the digitization runs on all the levels) using the
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function ia defined in Def. 3. The translation of Def. 2 into the following CF
version results in a very simple relationship between the complicated Rega and
the simple ia. It is a very important step in translating Theorem 1 into a CF
version.

Theorem 3. For a given a ∈ ]0, 1[\Q, there is the following connection between
the corresponding functions Rega and ia. For each k ∈ IN+

Rega(k) = 2k − ia(k + 1) . (7)

Proof. For k = 1 a direct check gives the equality. Let us assume that Rega(k) =
2k − ia(k + 1) for some k ≥ 1. We will show that this implies Rega(k + 1) =
2k + 2 − ia(k + 2), which will, by induction, prove our statement.

It follows from Def. 2, that for k ≥ 1

Rega(k + 1) = Rega(k) + χ]0,1/2[(σk) . (8)

Moreover, according to Def. 3, for k ≥ 1

ia(k + 2) = ia(k + 1) + 1 + δ1(aia(k+1)) . (9)

Putting (8) and (9) in the induction hypothesis for k + 1, we see that we have
to show the following:

Rega(k) + χ]0,1/2[(σk) = 2k + 2 − (ia(k + 1) + 1 + δ1(aia(k+1))) . (10)

Due to the induction hypothesis for k, it is enough to show that for all k ≥ 1

χ]0,1/2[(σk) = 1 − δ1(aia(k+1)) . (11)

To prove this, we use Theorem 2, which says that σk = [0; aia(k+1), . . .]:

χ]0,1/2[(σk) = 1 ⇔ [0; aia(k+1), aia(k+1)+1, . . .] <
1
2

⇔ aia(k+1) �= 1 ⇔ 1 − δ1(aia(k+1)) = 1 .

This completes the proof. 	


Now we are ready to formulate our main theorem. The theorem is more parsimo-
nious from a computational standpoint than Theorem 1, because the function ia
is very simple and contains only computations with integers. This is an important
advantage for efficient computer program development. The entire description
uses only one function: the index jump function.

Theorem 4 (Main Result; description by CFs). Let a ∈ ]0, 1[ \ Q and
a = [0; a1, a2, . . .]. For the digital straight line with equation y = ax, we have
‖S1‖ = a1, ‖L1‖ = a1 +1, and the forms of runsk+1 (form runk+1) for k ∈ IN+

are as follows:

form runk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Sm
k Lk if aia(k+1) �= 1 and ia(k + 1) is even

SkLm
k if aia(k+1) = 1 and ia(k + 1) is even

LkSm
k if aia(k+1) �= 1 and ia(k + 1) is odd

Lm
k Sk if aia(k+1) = 1 and ia(k + 1) is odd ,

(12)
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where m = bk+1 − 1 if the runk+1 is short and m = bk+1 if the runk+1 is long.
The function ia is defined in Def. 3 and bk+1 = aia(k+1) +δ1(aia(k+1))aia(k+1)+1.

Figure 1 illustrates the connection between the hierarchy of runs (the first five
levels), the index jump function and the digitization parameters for y = ax,
where a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . .] for some a8, a9, . . . ∈ IN+.
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Fig. 1. The index jump function, digitization parameters and hierarchy of runs

Proof. Theorem 4 follows from Theorems 1, 2 and 3. From Theorem 1 we know
that the length of the short runsk+1 is

⌊
1

σ∧
k

⌋
. According to Theorem 2, σk =

[0; aia(k+1), aia(k+1)+1, . . .]. We have to consider two possible cases:

• aia(k+1) > 1. This means that σk < 1
2 and σ∧

k = σk, so the length of the
short runs on the level k +1 is aia(k+1). Because δ1(aia(k+1)) = 0, we get the
statement about the run lengths.

• aia(k+1) = 1. This means that σk > 1
2 and (from Def. 1) σ∧

k = 1 − σk =
[0; 1+ aia(k+1)+1, aia(k+1)+2, . . .], so the length of the short runs on the level
k + 1 is 1 + aia(k+1)+1 = aia(k+1) + δ1(aia(k+1)) · aia(k+1)+1.

Theorem 3 gives the statement concerning the form of runs on all levels. It says
that Rega(k) = 2k − ia(k + 1) and Rega(k + 1) = 2k + 2 − ia(k + 2), so the
condition Rega(k + 1) = Rega(k) is equivalent to ia(k + 2) = ia(k + 1)+ 2, thus,
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according to Def. 3, to δ1(aia(k+1)) = 1, so aia(k+1) = 1. In the same way we
show that the condition Rega(k +1) = Rega(k)+1 is equivalent to aia(k+1) �= 1.
Moreover, because Rega(k) = 2k− ia(k +1), the parity of Rega(k) and ia(k +1)
is the same for all k, so we can replace “Rega(k) is even” from Theorem 1 by
“ia(k + 1) is even” in the CF description. 	


4 Some Applications of the Main Result

4.1 Slopes with Periodic CF Expansions

Period Length 1. We are looking for numbers a ∈ ]0, 1[ \ Q having periodic
CF expansion with period length 1, i.e., a = [0; n, n, . . .] = [0; n]. This means
that a is a root of equation a = 1

n+a , thus of a2 + na − 1 = 0, which gives
a = 1

2 (
√

n2 + 4 − n), because a ∈ ]0, 1[. We have two groups of lines:

• when n = 1, we get a one-element group, containing the line y = 1
2 (

√
5−1)x

with the Golden Section as slope. Here we have ia(1) = 1 and for k ≥ 2 there
is ia(k) = 2k − 2, which is always even. Moreover, b1 = 1 and for k ≥ 1 we
have bk+1 = a2k + a2k+1 = 2. According to Theorem 4, we get the following
digitization: ‖S1‖ = 1, ‖L1‖ = 2; for k ∈ IN+ Sk+1 = SkLk, Lk+1 = SkL2

k.
• when n ≥ 2, we have ia(k) = k for each k ∈ IN+ and bk+1 = ak+1 = n for

all k ∈ IN. This means, according to Theorem 4, that for all the lines y =
1
2 (

√
n2 + 4−n)x where n ∈ IN+ \{1}, we get the following description of the

digitization: ‖S1‖ = n, ‖L1‖ = n+1; for k ∈ IN+: S2k = Sn−1
2k−1L2k−1, L2k =

Sn
2k−1L2k−1, S2k+1 = L2kSn−1

2k , L2k+1 = L2kSn
2k.

Period Length 2. Now we are looking for numbers a ∈ ]0, 1[\Q having periodic
CF expansion with period length 2, i.e., a = [0; n, m]. This means that a is a
root of equation a = [0; n, m + a], thus of na2 + mna − m = 0, which gives
a = 1

2n (
√

m2n2 + 4mn − mn), because a ∈ ]0, 1[. If m = n, see the description
for period length 1. If m �= n, we get three possible classes of lines:

• when m, n ≥ 2, we have ia(k) = k for each k ∈ IN+ and bk+1 = ak+1 for all
k ∈ IN. This means, from Theorem 4, that for all the lines y = ax, where
a = 1

2n (
√

m2n2 + 4mn−mn) for some n, m ∈ IN+ \{1}, we get the following
description of the digitization: ‖S1‖ = n, ‖L1‖ = n + 1; for k ∈ IN+ : S2k =
Sm−1

2k−1L2k−1, L2k = Sm
2k−1L2k−1, S2k+1 = L2kSn−1

2k , L2k+1 = L2kSn
2k.

• when m = 1 and n ≥ 2, we have ia(1) = 1 and b1 = n. For k ∈ IN+ there
is ia(k + 1) = 2k and bk+1 = a2k + a2k+1 = n + 1. The digitization is thus:
‖S1‖ = n, ‖L1‖ = n + 1; for k ∈ IN+ : Sk+1 = SkLn

k , Lk+1 = SkLn+1
k .

• when m ≥ 2 and n = 1, we have ia(1) = 1, ia(2) = 2 and ia(k+1) = 2k−1 for
k ≥ 2, which means that ia(k) is odd for all k �= 2. Moreover, b1 = 1, b2 = m
and bk+1 = a2k−1 +a2k = 1+m for k ≥ 2. The digitization is thus as follows:
‖S1‖ = 1, ‖L1‖ = 2, S2 = Sm−1

1 L1, L2 = Sm
1 L1, and for k ≥ 2 we have

Sk+1 = Lm
k Sk and Lk+1 = Lm+1

k Sk.
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Generally - Quadratic Surds. Let us recall that an algebraic number of degree
n is a root of an algebraic equation a0x

n + a1x
n−1 + · · · + an−1x + an = 0 of

degree n with integer coefficients, but is not a root of any algebraic equation of
lower degree with integer coefficients. Algebraic numbers of the second degree
are called quadratic irrationals or quadratic surds. The following theorem is a
merge of Lagrange’s theorem from 1770 with Euler’s theorem from 1737 (see
[1], pp. 66–71). Quadratic surds, and only they, are represented by periodic CFs,
meaning purely or mixed periodic ([1], p. 66). It follows from this theorem that
all the lines with quadratic surds from the interval ]0, 1[ as slopes have simple
digitization patterns, which can be described by general formulae for all of the
digitization levels. Moreover, in [10] on p. 88, we find the following theorem.

If d is a positive, non-square integer, then
√

d = [x0; x1, x2, . . . , x2, x1, 2x0],
where each partial quotient is a positive integer.
The CFs of pure quadratic irrationals all have the same structure, involving
palindromes. Sequence A003285 in [12] shows for each n ∈ IN+ the length of
the period of CF for

√
n (0 if n is a square). Also in [10], on p. 89, we find some

patterns in the CF expansions of quadratic surds, for example
√

k2 + 1 = [k; 2k],√
k2 + 2 = [k; k, 2k],

√
k2 + m = [k; 2k/m, 2k]. These patterns make it very easy

to construct the digitization of the lines with slopes
√

k2 + 1 − k,
√

k2 + 2 − k,
or, generally,

√
k2 + m − k, using Theorem 4 from the present paper. See [10],

pp. 83–91, for both theory and examples on this subject.

4.2 Slopes with Non-periodic CF Expansions

Quadratic irrationals are not the only numbers showing simple patterns in their
CF expansion. There also exist transcendental numbers with simple patterns. CF
sequences for some transcendental number have periodic forms. Some examples
can be found, among others, on p. 97 in [2]. The examples were given by Euler
in 1737, but the first of them was, according to Brezinski, already given by R.
Cotes in the Philosophical Transactions in 1714.

e − 2 = [0; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . , 1, 2k, 1, . . .] = [0; 1, 2k, 1]∞k=1 , (13)

e + 1
e − 1

− 2 = [0; 2 + 4k]∞k=1 ,
e − 1

2
= [0; 1, 2 + 4k]∞k=1 . (14)

On p. 124 in [10] we find the following. For n ≥ 2

n
√

e − 1 = [0; (2k − 1)n − 1, 1, 1]∞k=1 . (15)

On p. 110 in [2] we find the following formula, obtained by Euler in 1737 and
Lagrange in 1776, but each using different methods:

e2 − 1
e2 + 1

= [0; 1, 3, 5, . . . , 2k − 1, . . .] = [0; 2k − 1]∞k=1 . (16)

This means that we are able to describe exactly, i.e., not by using approximations
by rationals, the construction of the digital lines y = ax, where a is equal to
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e − 2, e+1
e−1 − 2, e−1

2 ,
√

e − 1, 3
√

e − 1 or e2−1
e2+1 , using Theorem 4 from the present

paper. Because of the repeating pattern in the CF expansions of the slopes, we
are able to obtain general formulae for all of the digitization levels.

For example, if the slope a is equal to one of the following e+1
e−1 −2, e−1

2 , e2−1
e2+1 ,

then the digitization patterns can be described for all of them in the following
way. For all k ∈ IN+ there is ia(k) = k, thus bk = ak, because there are no
elements ak = 1 for k ≥ 2 in the CF expansions. This gives the following
digitization pattern for these lines: ‖S1‖ = a1, ‖L1‖ = a1 + 1 and for k ∈ IN+

(Sk+1, Lk+1) =

{
(Sak+1−1

k Lk, S
ak+1
k Lk) if k is odd

(LkS
ak+1−1
k , LkS

ak+1
k ) if k is even .

(17)

The only difference in the digitization patterns for the three slopes are different
run lengths, defined by the elements ak of the CF expansions (14) and (16).

Formula (13) gives the digitization of the line y = ax with a = e − 2. Here
ia(2k) = 3k − 1 (aia(2k) = 2k �= 1) and ia(2k +1) = 3k (aia(2k+1) = 1) for k ∈
IN+, so we get b1 = 1, b2k = 2k and b2k+1 = 2 for k ∈ IN+, and the
digitization pattern is as follows: ‖S1‖ = 1, ‖L1‖ = 2 and for k ∈ IN+

(Sk+1, Lk+1) =

⎧
⎪⎪⎨

⎪⎪⎩

(Sk
kLk, Sk+1

k Lk) if k ≡ 1 (mod 4)
(SkLk, SkL2

k) if k ≡ 0 (mod 4)
(LkSk

k , LkSk+1
k ) if k ≡ 3 (mod 4)

(LkSk, L2
kSk) if k ≡ 2 (mod 4) .

(18)

For example, S5 = S4L4 = (L3S
3
3)(L3S

4
3) = (L2

2S2)(L2S2)3(L2
2S2)(L2S2)4 =

(S2
1L1)2(S1L1)[(S2

1L1)(S1L1)]3(S2
1L1)2(S1L1)[(S2

1L1)(S1L1)]4 , where ‖S1‖ = 1
and ‖L1‖ = 2.

5 Conclusion

We have presented a computationally simple description of the digitization of
straight lines y = ax with slopes a ∈ ]0, 1[ \ Q, based on the CF expansions
of the slopes. The description reflects the hierarchical structure of digitization
runs. Moreover, it is exact, avoiding approximations by rationals.

The theoretical part of the paper was based on [15] and the examples were
based on the literature concerning CFs ([2] and [10]). The examples show how
to use the theory in finding digitization patterns. This description can also be
useful in theoretical research on digital lines with irrational slopes. The present
study may serve as a springboard for future research on some classes of digital
lines, defined by the CF expansions of their slopes.

The new method gives a special treatment to the CF elements equal to 1,
which makes it very powerful for some slopes with 1’s in the CF expansion.
To our knowledge, there exist no other methods of describing digital lines with
irrational slopes by CFs which give a special treatment to CF elements equal to
1, which makes our method original.
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A comparison between our new method and some other CF methods will be
presented in a forthcoming paper by the author. We will show for example how
to construct a slope a ∈ ]0, 1[ \ Q so that for each n ≥ 2 the difference between
the length of the digital straight line segment (its cardinality as a subset of ZZ2)
of y = ax produced in the nth step of our method and the length of the digital
straight line segment of y = ax produced in the nth step of the method by
Venkov (described in [16] on p. 67) is as large as we decide in advance.

Acknowledgments. I am grateful to Christer Kiselman for comments on earlier
versions of the manuscript.
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