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Abstract. We introduce on-the-fly composition, symbolic modelling
and lazy iterated approximation refinement for game-semantic models.
We present MAGE, an experimental model checker implementing this
new technology. We discuss several typical examples and compare MAGE
with BLAST and GAMECHECKER, which are the state-of-the-art tools in
on-the-fly software model checking, and game-based model checking.

1 Introduction and Background

Automated software verification evolved rapidly in the last few years, culminat-
ing in the development of industry-strength verification toolkits such as SLAM [0]
and BLAST [19]. These toolkits represent impressive feats of engineering, com-
bining techniques from model checking [I0] and theorem proving, especially
satisfiability. They employ various methods intended to alleviate the so-called
state-explosion problem, i.e. the fact that the space complexity of the software
verification problem is very high. Some the most effective such methods are:

On-the-fly model checking. Also known as lazy model checking [10], Sec. 9.5],
it is used whenever a larger (finite-state) model needs to be constructed
from the intersection of two (or more) models; after that, a reachability
test is performed. In lazy model checking, the test is conducted while the
intersection is performed, rather than after. If the test succeeds then the rest
of the intersection is not computed, hence the gain in efficiency.

Symbolic model checking. This terminology is overloaded. We mean repre-
senting a model by equations, rather than explicitly by concrete states and
transitions [g].

Abstract interpretation. The key idea [I1] is to construct, in a precisely de-
fined sense, best safe approzimations of systems. That is, an “abstracted”
system that is smaller than the system to be verified but has richer behaviour
than it. Very large economies of space can be achieved by this method; in-
deed, finite-state approximations can be found for infinite-state systems. The
tradeoff is that additional behaviour in the “abstracted” system may lead to
“false positives,” i.e. it may report errors that do not exist in the original.
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Iterated refinement. This technique is used in conjunction with the previous
one: if an approximation is too coarse and results in false positives, the false
positives are used to refine the approximation, i.e. to make it more precise [9].

The success of the combination of methods enumerated above has been extraor-
dinary, allowing tools to perform such feats as fully-automated verification of
device drivers and other important programs. However, to scale up automated
verification to large and complex software projects, modelling and verification
cannot remain monolithic operations. Instead, they must be done composition-
ally, but in such a way that the above methods can be utilised.

A promising new approach to software verification uses game semantics [3120].
This technique of modelling programming languages is inherently compositional,
and known to give models both sound and complete (fully abstract) for many
languages. Subsequent research showed that game models can be given effective
algorithmic representations [I5] and used as a basis for model checking.

Even a naive implementation of game-based model checking was surprisingly
effective in verifying challenging programs such as sorting, or certain abstract
data types [2]. In a step towards fully automated verification a counterexample-
guided refinement technique was adapted to the game model [I3], and a proto-
type tool was developed [14]. However, all these efforts focus on model extraction,
and use off-the-shelf back-ends for the heavy-duty model checking.

Older, more established model checking techniques benefit from elaborate
implementations. In order for games-based model checking to close the gap it
needs to adapt the state-of-the-art methods for mitigating the state-explosion
problem to the particular context of game models. We make significant steps in
this paper by introducing on-the-fly composition, symbolic modelling and lazy
iterated refinement for game models.

Game-based models are defined inductively on syntax and use composition
of models of sub-terms to generate the model of a given term. This indicates
that the scope for gains through lazy modelling is considerable. We push this
method to the extreme: we do not explicitly construct any of the component
models, only a tree of automata, then we combine a search through the tree with
searches in the models which are at the leaves of the tree using an algorithm
that is compatible with composition of game models.

We take a similar lazy approach to approximation and refinement. Rather
than refining whole models, we only refine along those paths that yield coun-
terexamples, refining further when the counterexample is potentially spurious
and backtracking whenever refinement leads into a dead end.

Last, but not least, our model-checker, MAGE, has a simple (but not simplis-
tic!) and elegant implementation. It uses no external tools or libraries, so it may
serve as a concise, self-contained, example of the most effective state-of-the-art
model checking techniques in action. Programming MAGE in Haskell allowed us
to take advantage of lazy evaluation, and naturally resulted in a compact imple-
mentation[] A compact presentation of our early results with MAGE is given in
[]. More detail on the material here is given in [5].

! Get MAGE and a test suite at http://www.cs.bham.ac.uk/~axb/games/mage/
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2 Idealized Algol: Syntax and Semantics

We analyse IAH, the procedural programming language presented in [I3]. TA has
boolean and integer constants, the usual arithmetic and logical operators, se-
quencing, branching and iteration commands, first (base-type) and second order
(function-type) variables, A-abstraction of first-order variables, term application
and block variable declaration.

The operational semantics is standard, see [I3]. The game-semantic model
is fully abstract and can be expressed as an algebra of languages. We briefly
present this model using notation taken from [2].

Game models of terms are languages R over alphabets of moves A. They
include the standard languages consisting of: the empty language ); the empty
sequence €; concatenation R-.S; union R+ S; Kleene star R* and the elements of
the alphabet taken as sequences of unit length. In addition we use: intersection
RN S; direct image under homomorphism ¢R and inverse image ¢~ 'R. The
languages defined by these extensions are the obvious ones. It is a standard
result that languages constructed from regular languages using these operations
are regular and can be recognised by a finite automaton effectively constructable
from the language [21].

The disjoint union of two alphabets creates a larger alphabet A;+.45. Disjoint
union gives rise to canonical inclusion maps in; : A; — A; +.4s. Concretely, these
maps are tagging operations. We use the same notation for the homomorphism
in; : A; — (A1 + A2)* and take out; : A; + Az — A to be the homomorphism
defined by out;a = a; if a is in the image of in; and € otherwise. If ¢y : Ay — Bf
and ¢o : Ay — Bi are homomorphisms then their sum ¢; + ¢2 : A; + Ay —
(By + B2)* as (¢1 + ¢2)a = in;(¢p;a) if a; is in the image of in;.

Definition 1 (Composition). If R is a language over alphabet A+ B and S
a language over alphabet B + C we define the composition S o R as the lan-
guage S o R = outg(outl_l(R) N outz_l(S)), over alphabet A + C, with maps
A+B, YA+B+C,B+C¢ ’*A+B+C and A+C; *A+B+C.

uty outa outs

Type 0 is interpreted by a language over alphabet A[0], containing the moves
from the game model. Terms are functionalized, so C; D is treated as seq C' D
and intx; C is treated as newvar(Azx.C') and so on. Term I = M : 0, with typed
free identifiers I' = {x; : 0;}, is interpreted by a language R = R [I" - M : 0] over
alphabet > 4 cp A[0i]+ A[0]. This interpretation is defined compositionally,
by induction on the syntax of the functionalized language.

See [2/T13] for full details of the semantic model. Here we only emphasise the
aspect that is most relevant to the model-checking algorithm: function applica-
tion. The semantics of application is defined by

R[[VAFMN:0]=R[AFN:7[*oR[[FM:7— 0],

2 See the webpage for example programs.
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with the composition — o — of Def. [[l This application model uses three op-
erations: (1) homomorphisms (tagging and de-tagging); (2) Kleene-star; (3) in-
tersection. At the automata level: (1) is linear time; (2) the second is constant
time; (3) is O(m - n) where m,n are the sizes of the automata to be composed.
Clearly intersection dominates. For a term with k& syntactic elements, therefore,
calculating the game model needs k —1 automata intersections. Computing them
explicitly incurs a huge penalty if, in the end, we only want a safety check (e.g.
that some bad action never occurs). Hence on-the-fly techniques are particularly
useful in this context.

3 Automata Formulation: On-the-Fly Composition

We reformulate composition (Def. [[l) to be explicitly automata-oriented, in a
way that emphasises on-the-fly composition.

Let a lazy automaton A : A — B be a tuple A = (S, A, B, X, 6, so) where:
S is a set of states; A, B are sets of symbols called active symbols; X is a set
of symbols called passive symbols; 6 : (A+ B+ X) - S — N — S, where
S. =S+ {L}, such that 6msn = L implies éms(n + 1) = L is a next-state
function that gives the ith next-state (rather than giving a set of all next states);
so € S is a distinguished initial state.

If |S| € N then the lazy automaton is finite-state. Lazy automaton A accepts
a stringt € (A+ B+ X)* from a set of states Sg iff t = ¢ and So # D or t = m -t/
withm € A+ B+ X and ¢’ € (A+ B+ X)* such that A accepts ¢’ from a state
in 6mSy. If Sy = {so} we say just that A accepts t. We denote by L£(A) the set
of strings accepted by A.

The monotonicity of next-state function ¢ ensures that if requesting the jth
next state returns “none” then requesting any j+ kth next state returns “none”.

Definition 2 (Lazy composition of automata). Given two lazy automata
A A—B=(SA B, X,6,50) and Ay : B— C = (T,B,C,Y, \ o) their lazy
composition is Ay o0 Ay = <S xT,A,C; B+ X +Y,\-0, <so,t0>> where

(A*x8)m(s,t)(n1,n2) = ((if m € in1(A+ B + X) then démsn;y else s),

(if m € ing(B + C +Y) then Aming else t))

and X-6 = (A% 6)o (id, ~)

and L = (s, L) =(L,t)

and A+ B+ X 2L A+ B+C+X+Y

and B+C+Y “% A+B+C+ X +Y.
Above, id is the identity function and ~ : N — N x N any monotonic bijection.
The language of composed lazy automata is that requiredﬁ
Proposition 1. Given two lazy automata A1 : A — B and Ay : B — C,
outa(L(A3)) oouti (L(A1)) = out(L(Ag 0 Ay)), where A+ B+ X M2 A+ B,
B+C+Y ™ B4+C, A+B+C+X+Y 2 A+C.

3 The propositions have elementary proofs, which are omitted.
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Above, we need to “project” the languages of the composite automata on their
active symbols, because automata compose “without hiding.” This move from
the “black-box” models of game semantics to “grey-box” models allows some
exposure of internal actions and is needed to identify spurious counterexamples.

In game models it is more natural to reduce safety to event reachability rather
than to state reachability. Given lazy automaton A we say that event m is
reachable if there exists string ¢ such that ¢tm € L(A). Now we give an algorithm
for (lazy) reachability of move mg in lazy automaton A, using the composition
defined above.

Definition 3 (Lazy reachability for lazy automata)

visited := ()
frontier := [s¢]
iterate state over frontier
visited := visited U {state}
iterate move over (A + B + X)
iterate state’ over § move state
if move = myq then return REACHABLE
if state’ ¢ visited then frontier := [state'] : frontier
return UNREACHABLE.

This algorithm is a depth-first-search (DFS) through the automata tree, gen-
erating only necessary transitions. The lazy implementation of § ensures that
iteration over 6 move state returns one state at a time, rather than sets of states,
until L is produced and it stops.

3.1 Symbolic Automata

In the tree of automata that models a term, the leaves are automata representing
the constants of the language and the free identifiers. These can all be defined
symbolically, further reducing memory requirements: instead of constructing the
transition system corresponding to the leaf automata explicitly, as in the older
games-based model checkers [2IT4] we only represent the transition function of
the automaton. This may sound silly, because the transition function is the
automaton, and they have the same size (theoretically). However, many of the
automata involved have particular structures (copy-cat, arithmetic, logic) and
their transition functions have efficient implementations in the programming
language in which the model checker is implemented (and, of course, on the
underlying hardware). Addition of finite integers, for example, is implemented
far more efficiently than a table of all possible pairs of operands and their results!

For example, the symbolic automaton of any arithmetic operator @ has state
set S =N X Z x Z, initial state so = (0,0,0) and, for m,n € Z, transitions:

4q (07070) _{(17070)}7 4q (37m70) :{(47m70 }7
5q(1,0,0) ={(2,0,0)}, on (4,m,0) ={(5,m,n)},
6m (2,0,0)={(3,m,0)},  &(m@n)(5m,n)={(6,0,0)},
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3.2 Implementing Efficient Lazy Composition

The automata-theoretic formulation of lazy composition in Definition [2] omits
a key aspect of the original game model which leads to serious inefficiency if
implemented literally.

The problem occurs for active symbols common to the automata being com-
posed: the definition suggests that both sub-automata should be queried about
their transition for each such symbol. By analogy with abstract machines, this
is like implementing application by taking each value v in the argument type,
asking the argument term if it can produce v, and asking the function what it
will do with v, and proceeding whenever both respond positively!

The key aspect that must be restored is the “proponent/opponent” (i.e. in-
put/output) polarity of the game-semantic moves. At every composite state, one
component must be asked about its next move and the other component asked
only about particular moves. MAGE records the necessary polarity information
and acts accordingly.

Another key inefficiency in Definition [ is the iteration over all moves in
A+ B+ X. In practice, knowing which leaf in the automata tree will be asked
about its next move dramatically reduces the set of possible next moves: there
is only really a choice when a free variable reads from the environment.

4 CEGAR: On-the-Fly Approximation and Refinement

Because they involve large subsets of the integers, automata representing game-
semantic models are defined over enormous alphabets and, consequently, have
huge state sets. [I3] shows how to apply approximation-refinement in the con-
text of games. We develop the ideas there in several directions by generalising
the definition of data abstraction from games to automata in general and by
giving a general and efficient criterion for recognising genuine counterexamples
in approximated automata. This fast detection criterion plays in important role
in the efficient implementation of approximation-refinement in MAGE.

Two apparently insurmountable problems prevent us using the popular ab-
stract interpretation framework of [12]. Firstly, the automata-theoretic and
game-theoretic formulations of the model seem to be at odds with the lattice-
theoretic semantics of abstract interpretation. Secondly, abstract interpretation
is compositional but not functorial — applying the abstract interpretation of a
function to the abstract interpretation of an argument does not necessarily yield
the same as the abstract interpretation of the result of the application in the
concrete domain [I]. [I2] argues convincingly that the practical consequences of
the requirement to preserve functoriality are too restrictive.

Therefore we use a simplified framework based only on approzimation. An
approximation of language £ is a function « : £ — L. Interesting approximations
are, obviously, non-injective. An automaton approximation for automaton A =
(S,A,B,X,6,s0) isatuplea = (g : S — S, aaypix : A+B+X — A+B+X)
which defines an automaton A = a(A) = (S, A4, B, X, 6, 50) where 8y = as(so)
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and 6 is any function such that 6ms D ag(éms) for any m € A+ B, s € S,
m=aayprxm, § = ags. Approximation is sound in the following sense:

Proposition 2. If m € A+ B + X is reachable in automaton A then for any
automata approzimation o, aayptx(m) is reachable in a(A).

Given two automata A : A — B = (S, A, B, X,6,s0) and B : B — C =
(T, B,C,Y, \ to) and two approximations o and (3 the resulting automata A :
apaA — apB and (B : fpB — [cC are not immediately composable. However,
we can use a “glue” automaton I : apB — BpB to perform the composition as
indicated by the diagram below

A > C
@ / \ 5
ad oA so8 P ; e
7(AoB)

A glue automaton I: aB — (B is an approximation of the “copy-cat” automa-
ton on B — B, i.e. an automaton that accepts strings of shape (X,,cpmm)*
which uses ap to approximate the domain alphabet and Gp the co-domain al-
phabet. Using glue automata we can show that approximation is compositional.

Proposition 3. For any automata A : A — B = (S, A, B, X,6,s0) and B :
B — C =(T,B,C,Y, \ ty) and approzimations «, 3 there exists an approzima-
tion v such that 0B o aA =v(Bo A).

This flexible approximation framework allows each automaton in an automata
tree to be approximated individually, in a compositional and sound way.

Definition 4. Given a language L and approzimation a : L — ﬁ, we call o/A:
L — L' a refinement of the approximation « if there exists a map o : L' — L
such that o« = o o o

4.1 Approximating Game Automata

Approximation of our game automata is most naturally done by finitely approx-
imating the alphabets and using an approximation of the set of states induced
by the alphabet approximation.

Definition 5 (Data approximation). An approzimation «, is termed a data
approximation of automaton A if

-5 = S/, and g is its representation function, where = C S x S is the
least reflexive relation such that sy =2 sq if ) =2 85, $1 € dmys), sa € dmash
and aarp(my) = aayrp(ms).

— 61mé = ag(bms).
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This means that the states of S are the equivalence classes of S under =. So states
are identified by a data abstraction only when they are targets of transitions with
identified moves from already identified states.

The definition of data approximation is not algorithmic, because it depends
in a non-trivial way on the automaton itself. However, the following property
along with the fact that we can rather easily find data approximations for the
particular automata that represent game-semantic models ensures that we can
use data approximation in our models:

Proposition 4. If automata A : A — B and B : B — C' are data-approximated
as a(A) and B(B) then there exists a data approzimation ~y for B o A such that
a(B)olof(A) = y(BoA), withI : aB — (B a data-approximated glue
automaton.

In other words, a composition of data-approximate automata is itself a data-
approximated automaton. Data-approximation can lead to finite-state automata.

Proposition 5. For any automaton A representing a game-semantic model of
IA and for any data approzimation such that |rangeaatpyx| € N, the automa-
ton A is finite-state.

We approximate game automata using data approximation. More precisely, we
use partitions of the set of integers into a finite set of intervals, wherever nec-
essary. The refinement of such an approximation using intervals is the obvious
one: using smaller intervals.

This approximation is compatible with the symbolic representation discussed
in Sec. Bl Moreover, approximate symbolic automata can be parameterized
lazily by the approximation scheme. This is only interesting for arithmetic and
logical operators. To implement their lazy and symbolic approximations we ex-
tend the operators from acting on integers to intervals, in the obvious way.
Every arithmetic operation @ : Z — Z — Z becomes a finite relation & C
oZ x o'Z x o7, defined as follows: ([m1, m}], [mz, mb], [m,m]) € ® if and only
if [m,m'] € o’ ([min{z1 ® 22 | x; € [mi, m}]}, max{w1 & x2 | ; € [my, ml]}]).

4.2 Fast Early Detection of Counterexamples

As is well known, the converse of Prop. 2lis not true, since approximation can
introduce new behaviour. A reachability test in an approximate automaton will
return a string that needs to be “certified” for authenticity, i.e. that it indeed is
the image, under approximation, of a string in the original automaton.

The usual approach in model checking is to analyse a counterexample trace
using a SAT solver. We could follow that approach. However, by using domain-
specific knowledge about the automata and the approximations we obtain a
simpler and more efficient solution. A trivial test for identifying valid counterex-
amples can be implemented starting from the following fact:

Proposition 6. For any interface automaton A and data approzimation «, if
o -1k € L(A) and o= (1) = {m;} then mg---my € L(A).
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Fig. 1. Data-approximated automaton

In words, a trace is valid if it contains no approximated symbols. This is only
true of data-approximated automata. This test is linear time, but it requires a
very “deep” refinement of a model. MAGE uses a test that accepts traces with
approximate symbols when the approximation does not cause non-determinism
in the approximated automaton for transitions that are deterministic in the pre-
cise version. Fig. [l shows a simple data approximation of an automatony that
checks for equality on the set {—1,0,1} by accepting two symbols then ¢ if they
are equal and f otherwise; if f, we mark “success” by symbol v and otherwise we
mark “failure” by z. The data approximation is induced by a = {—1+— —, 0 —
+,1— 4+, t—t, f+— f,z+— x,v— v}. The precise automaton is greyed out and
the approximated version superimposed. Approximated transitions that intro-
duce nondeterminism are dashed (e.g. +.4.f.x); approximated transitions not
introducing non-determinism (and which pass the test) are solid (e.g. +.—.f.x).

To apply this new criterion the counterexample must contain the visited states
(as well as the symbols in the trace), but that only adds a constant-factor time
and space algorithmic overhead.

Definition 6. Given an automaton A, a state s € S is said to be forced if for
all (s,m’,s"),(s,m”,s") €6, m"=m" and s’ = §".

Proposition 7. For any automaton A, data Aapproximation « and sequence
(80,mM0) - - - (8K, M) such that (85,1, 841) € 0, if & is forced whenever some
state s € ag'(3;) is forced then mg---my € L(A).

As before, this criterion is only valid for data approximation, and it spares the
need for an expensive SAT test. Instead, we can use a simple, linear-time test.
When automata compose, forced states in the components correspond to forced

4 For brevity, it is more concise than the corresponding IA game model.
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states in the composite automaton. It thus suffices to recognise when forced
states become non-forced through approximation in leaf automata, and record
this information whenever such states are visited, in order to indicate a trace
that fails the test of Prop. [ and requires further refinement.

5 Mage: Empirical Results and Comparisons

We present a small selection of simple case studies to illustrate our main tech-
niques; and to compare MAGE with both non-lazy game-based model checking
and lazy non-game-based model checking. The example programs are given in
the appendix. They and many more are also available on the webpage.

5.1 Lazy Precise Models

uflo : com, // exception called when empty stack popped
oflo : com, // exception called when full stack pushed
input : natil, // free var in {0,1} supplying pushed values
output : natil, // free var in {0,1} receiving popped values
check : com -> com -> com // arbitrary context
|-
new nat32[size] buffer in // fixed-size stack of numbers
new nat(log size) top := 0 in // first free buffer element
let push be

if top=size then oflo // raise oflo if full

else buffer[top] := input; top := top+l fi // push and inc top
in let pop be

if top=0 then uflo // raise uflo if empty

else top := top-1; output := buffer[top] fi // pop and dec top
in check(pop,push) // context can do any seq of pushes and pops

The first example searches the model of the fixed-size integer stack ADT above
for sequences of calls of its push and pop methods that will result in uflo (i.e.
'pop empty’) or oflo (i.e. 'push full’), for different stack sizes. This example is
a classic model checking problem with a history in the games-literature making
it suitable for comparison in later sections, as well as being a good example
of how we can verify open terms. It is also a good example for testing our lazy
techniques because it presents a huge model in which a few specific paths exhibit
the properties of interest.

While checking the unapproximated model we make the stack elements be
naturals in {0,1} — bigger integer types makes the precise models far too big.
Table [I] presents the time for MAGE to search the lazy model for various stack
sizesf The rapid generation of counterexamples clearly demonstrates the benefit
of lazy model building. The times depend on stack size and model search order:
with the pop method given priority, the obvious uflo counterexample (“pop”)
is generated immediately. With push prioritised, a longer counterexample that

5 MAGE is compiled with GHC6.4.2 and run with a 250MB heap on a 1.86GHz PC.
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Table 1. Lazy precise stack model verification with MAGE

stack fixed-order search times (sec) randomized search
size push prioritised pop prioritised averaged times (sec)
oflo uflo oflo uflo oflo uflo
2 0.04 0.04 0.04 0.03 0.04 0.03
4 0.05 0.05 0.06 0.03 0.06 0.03
8 0.08 0.09 0.10 0.03 0.09 0.04
16 0.17 0.21 0.21 0.04 0.20 0.06
32 0.49 0.61 0.77 0.04 0.64 0.22
64 1.57 2.05 1.96 0.05 1.78 0.82
128 5.96 7.62 7.13 0.06 6.38 1.43
256 23.20 30.44 28.09 0.08 25.57 7.35
512 96.42 127.14 115.73 0.14 106.37 22.91
1024 433.43 575.56 525.27 0.30 501.02 189.26

fills then empties then underflows the stack is found. Similarly, search order af-
fects the harder oflo search problem. MAGE can mitigate this effect by choosing
transitions (when iterating over frontier in the terminology of Def. [3)) in a ran-
domised order instead; the last two columns in Table [I] show how this tends to
average out differences in search time caused by order.

5.2 Approximated Models and On-Demand Refinement

Switching from precise to approximate model building cuts model size, introduces
non-determinism and introduces possible false counterexamples. The MAGE ap-
proximation/refinement scheme begins by setting the approximated domain of
each program variable to contain one value (the full range, determined by declared
size).

In the very best cases, searching the starting approximated model quickly
reveals safety. The starting approximated model of the term
new nat32 x := i in assert (x<1000000000 | x>1000)
exhibits a typical false counterexample. After three refinement iterations the
domain of x is precise enough for MAGE to prove the assertion.

In addition to the early stopping, refinement is lazy in that only paths in the
automata that indicate potential counterexamples get refined. Spurious coun-
terexample makes the search backtrack to the next most-precise potential coun-
terexample and forget recent refinements. Consider this constraint problem:

Bill is twice as old as Ben was when Bill was as old as Ben is now.
Their combined ages are 84.

bill:nat7, ben:nat7 |- // T7T-bit natural inputs
new nat7 y := bill in new nat7 ny := ben in // read the inputs
(y +ny =84) & (y =2 (ay - (y - ny))) // age constraint

The above program returns true when its inputs are a solution. Searching its
precise model with MAGE finds the correct ages in 256.5 seconds. Using approx-
imation/refinement, the ages are found in only 6.5 seconds after four backtracks
and six refinement iterations.
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5.3 Comparison of Precise vs. Approximate Modelling in Mage

Returning to the stack example, we make the elements realistic 32-bit integers
and show in Table [2] the iterated-refinement times. This exposes some pros and
cons of approximation-refinement, compared to the precise model verification
in Table Il uflo search is even quicker, despite the increase in element domain
size. The oflo searches get somewhat slower than the precise search. While the
increased element size would make the precise search task impossible, this is not
a major factor in the time increase seen here because, as with uflo, repeatedly
pushing any value causes an oflo — indeed, the times are not much changed
by reducing the element type right down to nat1. What is going on instead, is
that each iteration identifies that a chain of pushes (of any value) could lead to
oflo so the refinement “learns” to keep the approximation domain of the array
elements vague, and each iteration makes the array index domain more precise;
each array index must be written for an oflo, so over log(size) iterations the
array index types are refined to be fully precise; this roughly doubles the number
of distinct indices each time, so the refinement amounts to the same thing as
searching for oflo in arrays with a tiny element domain and an index domain
of size 2¢ for each i from 0 to log(size).

It happens that the oflo counterexample is easy to find in that no back-
tracking from false counterexamples is needed. However, the search algorithm
retains a backtrack queue, so search with approximation/refinement tends to
incur further slowing as the memory gradually fills with the backtrack queue.
There is clearly potential to optimise the search process, perhaps with significant
performance gains.

5.4 Comparison with GameChecker

GAMECHECKER [13/14] is a recent game-based model checker that incorporates
approximation and refinement. The main theoretical difference is that it does
not use our on-the-fly or symbolic techniques; the main practical difference
is that it is a Java front-end coupled to an industrial model checker whereas
MAGE is implemented directly in Haskell. For a fair comparison we modify the
stack ADT program so the stack elements are 32-bit integers and search for
oflo’s and uflo’s using MAGE with approximation/refinement on, and with
GAMECHECKER using counterexample-guided refinement (on infinite integers).
The results in Table 2 support the expectation that the lazy techniques should
reap massive rewards: the GAMECHECKER times show that building even ap-
proximate full models before analysing them incurs a severe penalty. As stack
size increases, building a full model of stack behaviour before searching is almost
all wasted work.

A secondary reason for GAMECHECKER's poorer performance is that it always
uses infinite integers, and to avoid infinite refinement of spurious counterexam-
ples it uses clever refinement schedules. This involves finding the smallest coun-
terexample relative to a rather complex order. This is not an issue with the
finite types in MAGE, and the resultant performance gain seems to vindicate the
decision to use realistically large (i.e. 32-bit or more) integers.
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Table 2. CEGAR stack verification with MAGE, GAMECHECKER and BLAST

stack MAGE GAMECHECKER Brast
size oflo (iters) uflo (iters) oflo (iters) uflo (iters) oflo (iters)
2 01 (2) 003 (2 101 (4) 531 (2) 16 (2
4 01 (3 003 (2 216 (6) 821  (2) 33 (4
8 02 (4 003 (20 1126 (10) 2029  (2) 46 (8
16 04 (5 003 (2) 7807 (18) 7826  (2) 7.8 (16)
32 1.2 (6) 003  (2) 12,2681  (36) 49420  (2) 17.3  (32)
64 39  (7) 003  (2) >Thrs 898213 (2) 437 (64)
128 139  (8) 0.03 (2 - - >Thrs - 1453 (128)
224 191 (9) 003 (2 - - - 506.4 (224)
225 193 (9) 0.03  (2) . ; - . -
256 548  (9) 003 (2 - - - - -
512 2153 (10) 003  (2) - - - - -
1024 864.7  (11) 0.03  (2) - - - - -

5.5 Comparison with Other Model Checkers

From the multitude of non-game-based approaches to model checking, in this
section we focus on what we regard as the leading tool based on predicate ab-
straction, BLAST. This is a useful comparison because BLAST has achieved signif-
icant performance improvements over SLAM, by incorporating laziness into the
cycle of abstraction, verification and refinement. Thus we can think of MAGE
vs. GAMECHECKER as a game-based analogue of BLAST vs. SLAM.

Of course, the game-based tools are experiments in pure model checking for
a simple language whereas SLAM and BLAST are quite mature tools that handle
the C language. As a simple example of a defect of pure model checking compared
to the predicate abstraction tools, verifying the following with MAGE requires a
search of all 232 possible inputs whereas BLAST can declare the corresponding
C code safe in a fraction of a second.

input : nat32 |- new nat32 x := input in assert (x != 1+x)

Approaches to laziness. Laziness in BLAST consists in rearranging the perfectly
eager CEGAR cycle of SLAM which: (1) constructs a predicate-abstraction of
the program [7]; (2) model-checks; (3) refines the abstraction using the coun-
terexample. Instead, BLAST updates the predicate-abstraction while construct-
ing the model, informed by a continuous examination of the counterexamples
yielded.This makes tremendous savings by zooming in on program parts that
need close examination and leaving the rest suitably abstract.

The incremental model building in MAGE is very different but like BLAST it
builds and refines only the parts needed. The other big separation is that MAGE
does not pick up “interesting” predicates from the program as a starting point; it
just partitions the integers. Then refinement requires no syntactic manipulation
of source code; instead we just change the model semantics. This allows spurious
counterexamples to be identified without using an external theorem prover. In
BLAST the theorem prover ends up dominating the verification process [I8, p. 3.
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The potential disadvantage is that the initial approximation in MAGE is blind
to any useful features in the program being analysed.

Stacks. Like MAGE, BLAST can detect uflo’s in less than a second for stack
sizes into billions of elements. BLAST detects oflo in a stack of size n after n
iterations. Table [ shows that we were able to do this without exhausting our
resources for stacks up to 224 elements. Much of the poor performance of BLAST
with larger stacks is because it only generates a precise analysis of the first n
iterations of a loop, and only extends n by one at each refinement iteration, so
failures occurring only after very large numbers of iterations can be hard for it
to find. By comparison, the MAGE data refinement tends to home loop counters
in on the number needed to generate the failure.

6 Conclusion

Games-based software model checking offers the advantage of compositionality,
which we believe essential for scaling to larger programs. Early work in this area
showed how the technique can be used in principle [2], and how the essential
method of iterated refinement can be adapted to the model [I3]. The present
paper takes the next step in making this technique practical by incorporating
lazy /on-the-fly modelling techniques, with apparent massive efficiency gains. We
implemented, and made available, the first model checker specifically targeted
to take advantage of the multi-layered compositional nature of game models.

Our choice of target language was dictated by a desire to compare MAGE to
previous work; a switch to call-by-value can be easily accomplished. Concurrency
can be also added using the work in [16]. Genuinely new developments that seem
compatible with our approach are the introduction of recursion and higher-order
functions, the game models of which admit finite-state over-approximations.

Comparison with the state-of-the art model checker BLAST suggests that for
unsafe programs MAGE is able to zoom in on the error faster. On safe programs
MAGE’s total ignorance of specific predicates used in the program gives BLAST a
substantial edge. It should be noted that MAGE consists of 2,250 lines of Haskell
code, whereas BLAST’s source distribution is 64MB, excluding the required ex-
ternal theorem prover. Finding common ground between the semantic-direct
approach of MAGE and the syntax-oriented techniques of predicate abstraction
might be the best way forward in automated software verification.
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