
When Things Go Wrong: Interrupting
Conversations

Juliana Bowles1 and Sotiris Moschoyiannis2

1 School of Computer Science, University of St Andrews
Jack Cole Building, North Haugh, St Andrews KY16 9SX, UK

jkfb@st-andrews.ac.uk
2 Department of Computing, University of Surrey

Guildford, Surrey GU2 7XH, UK
s.moschoyiannis@surrey.ac.uk

Abstract. This paper presents a true-concurrent approach to formalis-
ing integration of Small-to-Medium Enterprises (SMEs) with Web
services. Our approach formalises common notions in service-oriented
computing such as conversations (interactions between clients and web
services), multi-party conversations (interactions between multiple web
services) and coordination protocols, which are central in a transactional
environment. In particular, we capture long-running transactions with
recovery and compensation mechanisms for the underlying services in
order to ensure that a transaction either commits or is successfully com-
pensated for.

1 Introduction

Business transactions between open communities of SMEs have been highlighted
as a key area within the emerging Digital Economy [1]. A business transaction
can be a simple usage of a service (rare in Business-to-Business (B2B) rela-
tionships) or a mixture of different levels of composition of services from vari-
ous providers. Within the database community the conventional definition of a
transaction [2] is based on ACID (Atomicity, Consistency, Isolation, Durability)
properties. However, in advanced distributed applications these properties often
present considerable limitations and in many cases are in fact undesirable.

Business transactions typically involve interactions and coordination between
multiple partners. The specification of a transaction comprises a number of sub-
transactions or activities which involve the execution of several underlying ser-
vices from different providers, some of which take minutes, hours or even days
to complete - hence the term long-running transaction. Indeed a wide range of
B2B scenarios correspond to long-lived business activities and may have a long
execution period.

It is often the case that internal activities need to share results before the
termination of the transaction (commit). More generally, dependencies may arise
between activities inside a transaction due to the required ordering on the service
invocations or, simply, due the sharing of data [3]. Further, many B2B scenarios

J. Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961, pp. 131–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 J. Bowles and S. Moschoyiannis

require a transaction to release some results to another transaction, before it
commits. That is to say, dependencies may exist across transactions due to the
need for releasing partial results outside a transaction. Failure to accommodate
this may lead to unacceptable delays in related transactions and, even worse,
leave a service provider open to denial of service attacks (as data may be locked
indefinitely in a non-terminating transaction). Thus, the Isolation property must
be relaxed and this poses further challenges with regard to keeping track of the
dependencies that arise between the corresponding service executions.

The multi-service nature of transactions makes Service-Oriented Computing
(SOC) [4,5], whose goal is to enable applications from different providers to be of-
fered as services that can be used, composed and coordinated in a loosely-coupled
manner, the prevalent computing paradigm in a transactional environment. The
actual architectural approach of SOC, called SOA, is a way of reorganising soft-
ware applications and supporting infrastructure into an interconnected set of
services, each accessible through standard interfaces and messaging (coordina-
tion) protocols.

In this paper we are concerned with modelling long-running transactions, and
in particular the coordination of the underlying service executions. The chal-
lenges in exploiting the promise of SOA in a transactional environment requires
a thorough understanding of the dependencies that arise from the complex in-
teractions between services and the valid sequences of service invocations.

We have seen that business transactions involve interactions between multiple
service providers which need to be orchestrated. Business transactions also need
to deal with faults that arise at any stage of execution. In fact, a long-running
transaction should either complete successfully (commit) or not take place at
all. This means that there must be some mechanism/procedure in place, which
in the event of a failure (service unavailable, network/platform disconnection,
etc.) makes it possible to undo parts of the transaction that have actually hap-
pened so far. Therefore, in addition to formalising conversations in a transac-
tional environment we also provide constructs for compensating (earlier parts
of) conversations, in case some failure later on makes this necessary.

Our approach uses a true-concurrent model (labelled prime event structures)
which can be obtained directly from UML 2.0 sequence diagrams describing
multi-party conversations. The model is extended to capture possible faults that
result in interrupting a conversation and taking compensating action. We show
how our formal framework orchestrates conversations and associated compensa-
tions in order to achieve the desired effect - a transaction either commits or is
successfully compensated for.

This paper is structured as follows. Section 2 outlines the use of sequence
diagrams for modelling conversations within a transaction. Section 3 describes
the formal model used for long-running transactions, and Section 4 extends it to
describe interruptions and compensation whereby we distinguish between roll-
back with memory and forgetful rollback. A brief discussion on related work is
included in Section 5 and the paper finishes with some ideas for future work
given in Section 6.

When Things Go Wrong: Interrupting Conversations 133

2 Example

We consider a simple multi-party conversation within a long-running transaction
and show how it can be modelled using UML2.0 [6]. The example has been
simplified somewhat but still contains enough complexity to illustrate the key
ideas behind our formal modelling approach.

We use sequence diagrams to represent conversations within long-running
(multi-party service) transactions. We only model the participants of the con-
versations (web services) without explicitly representing a distinction between
the initiator and a participant of a transaction. In sequence diagrams, we can
indicate any exchange with a client or coordinator using gates. Gates corre-
spond to the environment which we are not interested in capturing explicitly.
Notice that this means that we are deliberately ignoring a choice of central or
distributed coordination in our model. Indeed, our formalism works with both
architectures. The choice of architecture very much depends on the target ap-
plication - for example, in a digital business ecosystem involving SMEs a fully
distributed solution may be most appropriate since the use of a centralised co-
ordinator would violate local autonomy, as is the case with existing transaction
models (e.g., BTP[13], WS-Tx[12] are briefly discussed in Section 5), and this is
a barrier for the adoption of SOA by SMEs.

m2/c2

w1 w2 w3

m1/c1

m3/c3

par

sd t

m4

gate

interaction
fragment

operands

Fig. 1. A multi-party conversation

Fig. 1 shows three participants and the messages exchanged between them for
transaction t. All messages are exchanged asynchronously. The par fragment
indicates that the operands are executed in paralell. If a particular operation
invocation needs to be compensated for in a specific way this is given by the ap-
plication developer and is written after the name of the operation. For instance,
the construct m1/c1 indicates that m1 is the operation being invoked and c1 is
the corresponding compensation. The compensation for an operation invocation

134 J. Bowles and S. Moschoyiannis

can be complex and impose a sequence of message exchanges between services
and the environment. For example, a lock mechanism might be required to en-
sure consistency of data used in the conversation during recovery (e.g. see [3]).
If this is the case, c1 can itself be represented by a sequence diagram with the
same name (and similarly for all compensations).

We use sequence diagrams to model conversations showing only protocol-
specific message exchanges (e.g., m1, m2, and so on, in Fig. 1) and ignore initial
activation and registration exchanges to initiate the execution of a conversation.
However, within the duration of a long-running transaction there are other mes-
sages that can be sent between the participating web services and a coordinator.
These messages are sent to indicate the status of the execution of the transac-
tion and allow for compensating action to be taken whenever necessary. It may
be instructive to note that in a distributed solution, each service provider will
have its own coordinator that is responsible for the services it offers and has
knowledge of their dependencies (on other coordinators’ services that execute
immediately before or after its own). An overview of a transaction model with
local coordination can be found in [7]. In a transaction model with centralised co-
ordination, services from each service provider communicate through the central
coordinator which is typically controlled by the network provider.

Messages used for providing a transaction processing system with compensat-
ing capability include faulted, compensate and forget. A web service may fail
the execution of its invoked operation in which case it sends a message faulted
to the coordinator (or, its coordinator). All other participants need to be in-
formed in the next step as they will need to compensate or forget their parts
of the execution of the conversation so far. If a web service participating in the
conversation receives a message compensate, then the normal flow of messages
should stop immediately and all its previous actions (effects of previous message
exchanges) within the conversation need to be undone. This compensation does
not necessarily leave the web service in exactly the same state it had at the
beginning of the conversation (we call it rollback with memory). By contrast,
if a participant receives a forget message, again the normal flow of messages
is interrupted abruptly, but this time the participating service returns to the
same state as in the beginning of the conversation and all its previous actions
are simply ignored (we call it forgetful rollback).

We do not represent these additional messages when modelling the (multi-
party) conversation in Fig. 1 as it would complicate the model unnecessarily. All
possible faults and consequences are, however, considered in our formal model
as we will see in Section 4.

One example of a possible faulted scenario leading to the abortion of the long-
running transaction of our example is given in Fig. 2. In this case, w3 fails whilst
executing m4 and sends a faulted message to the corresponding coordinator.
This leads to two further messages being sent from the coordinator, namely a
forget to w3 and a compensate to w1 (the later one will possibly trigger a
further compensate message to w2 depending on the state of the execution of
the interaction in the first operand). Notice that in this particular scenario the

When Things Go Wrong: Interrupting Conversations 135

m2/c2

w1 w2 w3

m1/c1

m3/c3

m4

faulted

par

forget

compensate

sd t

Fig. 2. A multi-party conversation with faults

faulted message is sent in parallel to the conversation between w1 and w2 and
it is therefore possible that this sub-interaction has not happened and does not
need to be compensated for. This can be made explicit in our formal model of
conversations, which is described in the following sections.

3 The Model

We have used labelled event structures as an underlying model for sequence
diagrams in UML 2.0[8,9]. In this paper, we use labelled event structures to
capture conversations and coordination protocols.

3.1 Event Structures: Basic Notions

We recall some basic notions on the model we use, namely labelled prime event
structures [10].

Prime event structures, or event structures for short, allow the description
of distributed computations as event occurrences together with relations for
expressing causal dependency and nondeterminism. The first relation is called
causality, and the second conflict. The causality relation implies a (partial) order
among event occurrences, while the conflict relation expresses how the occur-
rence of certain events excludes the occurrence of others. Consider the following
definition of event structures.

Event Structure. An event structure is a triple E = (Ev, →∗, #) where Ev is
a set of events and →∗, # ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ ∧ e
′ →∗ e

′′ ⇒ e#e
′′

for all e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗

e
′ ∨ e

′ →∗ e ∨ e#e
′
).

136 J. Bowles and S. Moschoyiannis

From the two relations defined on the set of events, a further relation is
derived, namely the concurrency relation co. As stated, two events are concurrent
if and only if they are completely unrelated, i.e., neither related by causality nor
by conflict.

In our approach to inter-object behaviour specification, we will consider a
restriction of event structures sometimes referred to as discrete event structures.
An event structure is said to be discrete if the set of previous occurrences of an
event in the structure is finite.
Discrete Event Structure. Let E = (Ev, →∗, #) be an event structure. E is
a discrete event structure iff for each event e ∈ Ev, the local configuration of e
given by ↓ e = {e

′ | e
′ →∗ e} is finite.

The finiteness assumption of the so-called local configuration is motivated by
the fact that system computations always have a starting point, which means that
any event in a computation can only have finitely many previous occurrences.

Consequently, we are able to talk about immediate causality in such struc-
tures. Two events e and e

′
are related by immediate causality if there are no

other event occurrences in between. Formally, if ∀e′′∈Ev(e →∗ e
′′ →∗ e

′ ⇒ (e
′′

=
e ∨ e

′′
= e

′
)) holds. If e →∗ e

′
are related by immediate causality then e is said

to be an immediate predecessor of e
′
and e

′
is said to be an immediate successor

of e. We may write e → e
′

instead of e →∗ e
′

to denote immediate causality.
Furthermore, we also use the notation e →+ e

′
whenever e →∗ e

′
and e
= e

′
.

Hereafter, we only consider discrete event structures.
Configuration. Let E = (Ev, →∗, #) be an event structure and C ⊆ Ev. C is
a configuration in E iff it is both (1) conflict free: for all e, e

′ ∈ C, ¬(e#e
′
), and

(2) downwards closed: for any e ∈ C and e
′ ∈ Ev, if e

′ →∗ e then e
′ ∈ C. A

maximal configuration denotes a run. A run is sometimes called life cycle.
Finally, in order to use event structures to provide a denotational semantics

to languages, it is necessary to link the event structures to the language they
are supposed to describe. This is achieved by attaching a labelling function to
the set of events. A generic labelling function is as defined next.
Labelling Function. Let E = (Ev, →∗, #) be an event structure, and L be an
arbitrary set. A labelling function for E is a total function l : Ev → L mapping
each event into an element of the set L.

An event structure together with a labelling function defines a so-called la-
belled event structure.

Labelled Event Structure. Let E = (Ev, →∗, #) be an event structure, L be
a set of labels, and l : Ev → L be a labelling function for E. A labelled event
structure is a pair (E, l : Ev → L).

Usually, events model the occurrence of actions, and a possible labelling func-
tion maps each event into an action symbol or a set of action symbols. In this
paper, we use labelled event structures in the context of long-running transac-
tions. As we will see, in our case, and since we use UML models of conversations
within a transaction, the labelling function indicates whether an event represents
sending or receiving a message, the beginning or end of an interaction fragment.

When Things Go Wrong: Interrupting Conversations 137

3.2 Event Structures for Transactions

In this paper, we use sequence diagrams to model transactions. We first need to
understand how to obtain a labelled event structure for the sequence diagram
(without faults), and then can move to show how compensation mechanisms can
be integrated. In [8] we have shown how labelled event structures can be used to
provide a model for sequence diagrams. Here we only provide the general idea.

To obtain the corresponding event structure model, we want to associate
events to the locations of the diagram and determine the relations between those
events to reflect the meaning of the diagram. Fig. 3 shows the relation between
the locations in a simple sequence diagram (which could for example correspond
to the interaction between a client and a service) and the corresponding event
structure model (where we depict immediate causality). Asynchronous commu-
nication is captured as immediate causality as well, hence the two locations for
sending and receiving message m2/c2 are captured by two consecutive events.
The labels become clearer later when we define the labelling function used.

locations
WS1 events

e2

e3

e0

(ws1,((m2,c2),r,ws1))

(ws1,((m2,c2),s,ws1))

(ws1,t2)

(ws1,((m1,c1),r,g))e1

(ws1,(completed,s,g))e4

e5 (ws1,t2)

eg0

eg1

(g,(completed,r,ws1))

(g,((m1,c1),s,ws1))

completed

m2/c2

m1/c1

sd t2

Fig. 3. A simple sequence diagram and its corresponding model

However, for more complex diagrams with fragments the correspondence be-
tween locations and events is not always so obvious.

The locations within different operands of an alt fragment are naturally as-
sociated to events in conflict. However, the end location of an alt fragment is
problematic. If it corresponded to one event then this event would be in conflict
with itself due to the fact that in a prime event structure conflict propagates
over causality. This would, however, lead to an invalid model since conflict is
irreflexive. We are therefore forced to copy events for locations marking the end
of alt fragments, as well as for all locations that follow. Events associated to
locations that fall within a par fragment are concurrent. Synchronous commu-
nication is denoted by a shared event whereas asynchronous communication is
captured by immediate causality between the send event and receive event.

As mentioned earlier, for representing sequence diagrams we use a labelling
function to indicate whether an event represents sending or receiving a message,
a condition, the beginning or end of an interaction fragment. The only considered
fragments in this paper is par and alt. For more details on further fragments
please see [8,9].

138 J. Bowles and S. Moschoyiannis

Let D be a set of diagram names corresponding to conversations, transactions
or the detailed description of compensations, Wt be the set of web services
participating in the interaction described by t ∈ D, and g denote a gate or
the environment (i.e., a client or coordinator) with g ∈ Wt for all t ∈ D. Let
Ct ⊂ D be the set of compensations associated to messages in t ∈ D. Let Ft =
{t, par, alt} ∪ Ct with t ∈ D and Ft = {t, par, alt} ∪ Ct where Ct = {c | c ∈ Ct}.
We use par (or par) as a label of an event associated to the location marking the
beginning (or end) of a par fragment. In particular, events associated to initial
(or end) locations of a diagram t have labels t (or t). Similarly for compensation
diagrams (i.e., diagrams representing the behaviour of compensations). Let Mweb

be the set of messages exchanged between web services and/or the environment,
and Menv be a predefined set of messages exchanged only between a service
and the environment. Menv consists of messages such as exited, completed,
faulted (sent by a web service to the environment), and close, complete,
compensate and forget (sent by the environment to a web service). Let Mest =
Mwebt

× (Ct ∪{−})∪Menvt
be the complete set of message labels for t ∈ D. The

labelling function for diagram t is a total function defined over events as follows:

μt : Ev → Wt × (Mest × {s, r} × Wt ∪ Ft ∪ Ft)

Each event is associated to a unique web service involved in t and can denote
sending a message, receiving a message or indicating the beginning/end of a frag-
ment. This labelling function has been simplified to capture only asynchronous
messages as this is the only form of communication we use in this paper. In the
example of Fig. 3, event e1 has label (ws1, ((m1, c1), r, g)) indicating it belongs
to service ws1 and corresponds to the receipt of message m1 with compensation
c1 from g. Certain operation invocations may not have a compensation defined in
case of failure, in which case the label is written (s1, ((m, −), r, s2)). An example
of a label for predefined messages is (ws1, (completed, s, g)). We write (μt(e))1
to indicate the first projection of the label for e (e.g., associated service).

Finally, for t ∈ D, a model is a labelled event structure Mt = (Et, μt).

4 Modelling Interruptions

In the previous section, we have seen how for a (multi-party) conversation of
a long-running transaction captured as a sequence diagram, we can obtain the
underlying formal model as a labelled event structure. In this section, we are
going to see how the model can be extended to incorporate possible faults in
transaction executions.

Recall the sequence diagram of Fig. 1 showing the interaction between three
web services w1, w2 and w3. The labelled event structure that models the be-
haviour represented in the sequence diagram is given by Fig. 4. This model only
takes into account the correct behaviour of all parties involved in the interac-
tion. However, any of the operations invoked (m1, m2, m3 or m4) could possibly
fail during execution, for example, as in the scenario of Fig. 2. If that happens,
the corresponding service would need to inform its coordinator (in Fig. 2, w3

When Things Go Wrong: Interrupting Conversations 139

(w1,((m4,−),s,w3))

(w1,((m1,c1),r,g))

(w3,par)

(g,((m1,c1),s,w1))

(w2,par)

(w2,par) (w3,par)(w1,par)

(w1,par)

(w3,((m4,−),r,w1))

(w1,t) (w2,t) (w3,t)e11 e21 e31

e12

eg1

e22

e23

e32

e33

e13

(w1,((m3,c3),r,w2))

(w2,((m2,c2),r,w1))(w1,((m2,c2),s,w2))

e14

Fig. 4. LES for the multi-party conversation of Fig. 1

sends a message faulted to the environment) which would need to inform all
parties of the correct compensation mechanism (in Fig. 2, the environment sends
a message forget to w3, and compensate to w1). Consequently, we need to be
able to represent the faults that can occur during an interaction and as well as
their effects.

Initial Configuration. Let Mt = (Et, μt) be a model for a transaction t. An
initial configuration for Mt is Q0 = {e ∈ Evt | μt(e) = (w, t), w ∈ Wt}.

The initial configuration basically corresponds to the set of events associated
to the initial location of every web service participating in the interaction. In
Fig. 4, the initial configuration corresponds to the set of events {e11, e21, e31}.

Immediate Configurations. Let Mt = (Et, μt) be a model for a transaction t.
For any two configurations Q1
= Q2 in Et, we say that Q1 and Q2 are immediate
configurations (or Q2 is an immediate postconfiguration for Q1, and Q1 is an
immediate preconfiguration of Q2) iff (1) Q1 ⊂ Q2 and for any e1, e2 ∈ Q2 \ Q1
e1 co e2, and (2) if (μt(e))1 = w for w ∈ Wt and e ∈ Q2 \ Q1, then there is a
maximal event e

′ ∈ Q1 such that e
′ → e and (μt(e

′
))1 = w .

A configuration can have more than one possible immediate postconfigura-
tion due to conflict or the possible concurrency between events corresponding to
different services (for example, events e22, e32 and eg1). From one configuration
to the next we can add either a single event or a set of events in concurrency.
If two or more concurrent events appear in the same immediate postconfigura-
tion we say they occur simultaneously. Otherwise their occurrence is effectively
being interleaved. The initial configuration in Fig. 4 has seven immediate post-
configurations given by {eg1, e11, e21, e31}, {e11, e21, e22, e31}, {e11, e21, e31, e32},
{eg1, e11, e21, e22, e31},{eg1, e11, e21, e31, e32}, {e11, e21, e22, e31, e32} and finally
{eg1, e11, e21, e22, e31, e32}. Notice that {e11, e12, e21, e31} is not a configuration
(it does not satisfy the condition of being downwards closed) and can thus not
be an immediate postconfiguration for the initial configuration. For the same
reason, we know that receiving a message can never happen before the corre-
sponding send.

140 J. Bowles and S. Moschoyiannis

Configuration Path. Let Mt = (Et, μt) be a model for a transaction t. A
configuration path in Mt is a sequence of immediate configurations Q0 · Q1 ·
Q2 · · ·Qn in Et starting with the initial configuration and ending in a maximal
configuration or run.

Given our definition of immediate configurations and provided there is con-
currency in the model, we always have several paths starting from an initial
configuration and leading to a maximal configuration. In our example of Fig. 4
we have several paths but only one maximal configuration and consequently all
paths lead to the same final configuration. If a model has conflict (due to al-
ternatives given as alt fragments in the sequence diagram) we have as many
maximal configurations as there are alternatives.

Models Mt for transactions that have more than one maximal configuration
can be useful for providing forward recovery - that is, including capability for
completing the transaction following an alternative path of execution rather
than aborting in the event of a failure in some service of the corresponding
conversation. We return to this discussion in the concluding section of the paper.

The difference between two immediate configurations is given by a set of events
which corresponds to the occurrence of some action, i.e., sending/receiving a mes-
sage or entering/exiting an interaction fragment. This can be seen as a transition
between the two configurations labelled by the set of occurring action(s).
Configuration Transitions. Let Mt = (Et, μt) be a model for a transaction t,
and Q1, Q2 be immediate configurations in Et with Q1 the preconfiguration of
Q2. Let Q2 \ Q1 = {e1, e2, . . . , en} and μt(ei) = li with 1 ≤ i ≤ n. A transition

from Q1 to Q2 is labelled by 〈l1, l2, . . . , ln〉 and written Q1
〈l1,l2...ln〉−→ Q2.

Consider the model of Fig. 4. The transition between Q0 = {e11, e21, e31}
and Q1 = {eg1, e11, e21, e31} is labelled by 〈(g, ((m1, c1), s, w1))〉. To simplify the
label notation, we sometimes write (w, m/c!, q) to denote w sending message
m/c to q, and (q, m/c?, w) to denote q receiving message m/c from w. Labels
denoting entering/exiting fragments are often omitted (written 〈−〉). A possible
path in the model of Fig. 4 could be given by the following transitions:

Q0
〈(g,m1/c1!,w1)〉−→ Q1

〈(w1,m1/c1?,g)〉−→ Q2
〈−〉−→ Q3

〈(w1,m4!,w3)〉−→ Q4

Q4
〈(w3,m4?,w1)〉−→ Q5

〈(w1,m2/c2!,w2)〉−→ Q6
〈(w2,m2/c2?,w1)〉−→ Q7

Q7
〈(w2,m3/c3!,w1)〉−→ Q8

〈(w1,m3/c3?,w2)〉−→ Q9
〈−〉−→ Q10

〈−〉−→ Et

We now want to add to the model possible faults that can happen in the
execution of transactions. This corresponds to adding transitions labelled by the
predefined messages seen earlier between a web service and the environment or
vice versa (e.g., faulted, compensate, forget).

The execution of a message m for a web service w can only fail after m was in-
voked (the message was received), and before a subsequent message is sent by w.
For the path in our example, m4 could fail after configuration Q5. The question
now is what is the result of such a transition, namely what immediate postconfig-

uration(s) do we get for Q5 that satisfy Q5
〈(w3,faulted!,g)〉−→ Q

′

6
〈(g,faulted?,w3)〉−→ Q

′

7.
We assume that faulted messages have priority and thus the send is always
followed by the receipt. Moreover, once a path is faulted no further normal

When Things Go Wrong: Interrupting Conversations 141

transitions are allowed. Notice, that after a faulted message occurs the configu-
rations are no longer configurations in Mt but in an extended model for t with
fault events.
Faulted Transitions and Faulted Path. Let Mt = (Et, μt) be a model
for a transaction t, and Q0 · Q1 · Q2 · · ·Qn in Et be a configuration path in

Mt. Let Qi
〈(w2,m/c?,w1)〉−→ Qi+1 be a transition. The faulted transitions asso-

ciated to message (w2, m/c?, w1) at Qi+1 correspond to Qi+1
〈(w2,faulted!,g)〉−→

Q
′

i+2
〈(g,faulted?,w2)〉−→ Q

′

i+3 where the new configurations are defined as follows
Q

′

i+2 = Qi+1∪{e2 | e2
∈ Qi+1, μt(e2) = (w2, (faulted, s, g))} with e1 → e2 where
e1 is the maximal event in Qi+1 with (μt(e1))1 = w2; and Q

′

i+3 = Qi+2 ∪ {e3 |
e3
∈ Evt ∪ {e2}, μt(e3) = (g, (faulted, r, w2))} with e2 → e3. The sequence
Q0 · Q1 · Q2 · · · Qi · Qi+1 · Q′

i+2Q
′

i+3 is a faulted path for extended Mt.
Once a faulted message has been sent to and received by the environment (in

effect the coordinator of the failed web service), the environment can respond
with one or more forget or compensate. Similarly to faulted messages, sending
and receiving a forget or compensate always happen successively. The definitions
below reflect that a forget/compensate does not have to happen immediately
after a faulted transition (there can be j pairs of configurations in between).
Forget Transitions. Let Mt = (Et, μt) be a model for a transaction t, and
Q0 · Q1 · Q2 · · ·Qi−1 · Qi · Qi+1 be a faulted path for extended Mt where the

faulted transitions are Qi−1
〈(w,faulted!,g)〉−→ Qi

〈(g,faulted?,w)〉−→ Qi+1. The pair of
forget transitions associated to the faulted transitions at Qi+1 correspond to

Qi+2j−1
〈(g,forget!,w)〉−→ Qi+2j

〈(w,forget?,g)〉−→ Qi+2j+1 where j ∈ N and the new con-
figurations are defined as follows Qi+2j = Qi+2j−1 ∪ {e2
∈ Qi+2j−1 | μt(e2) =
(g, (forget, s, w))} with e1 → e2 where e1 is an event in Qi+2j−1 with μt(e1) =
(g, (faulted, r, w)). Let O = {w1, . . . , wn ∈ Wt | ∃ewk

,e′
wk

∈Qi
(μt(ewk

))1 =

wk, (μt(e
′

wk
))1 = w and e

′

wk
→∗ ewk

for all 1 ≤ k ≤ n}. Qi+2j+1 = Qi+2j ∪
{p1, . . . , pn
∈ Qi+2j | μt(pk) = (wk, t), wk ∈ O for all 1 ≤ k ≤ n} and e2 → pk

for all 1 ≤ k ≤ n.
After a service w receives a forget message, all its previous executions are

undone and it returns to the configuration it had at the beginning. The other
services remain unaffected, unless a service w

′
received a request from w during

the conversation (w
′ ∈ O). If that is the case it also needs to reverse to its initial

configuration. Further services that were not in (direct or indirect) interaction
with w are unaffected and wait for a forget or compensate message from the en-
vironment. For space reasons, we omit the proof that the obtained configuration
Qi+2j+1 after the forget transitions is a valid immediate configuration for Qi+2j .

We now describe how to deal with compensation.
Compensate Transitions. Let Mt = (Et, μt) be a model for a transaction t,
and Q0 · Q1 · Q2 · · ·Qi−1 · Qi · Qi+1 be a faulted path for extended Mt where

the faulted transitions are Qi−1
〈(w1,faulted!,g)〉−→ Qi

〈(g,faulted?,w1)〉−→ Qi+1. A pair
of compensate transitions correspond to a sequence of configurations Qi+2j ·

142 J. Bowles and S. Moschoyiannis

Qi+2j+1 · Q
′

kj
· · · Q′

k0
where Qi+2j−1

〈(g,compensate!,w2)〉−→ Qi+2j
〈(w2,compensate?,g)〉−→

Qi+2j+1, j ∈ N and the new configurations are defined as follows:

– Qi+2j = Qi+2j−1 ∪ {e2
∈ Qi+2j−1 | μt(e2) = (g, (compensate, s, w2))} with
e1 →∗ e2 for e1 ∈ Qi+1 with μt(e1) = (g, (faulted, r, w1)).

– Qi+2j+1 = Qi+2j ∪{e3
∈ Qi+2j | μt(e3) = (w2, c)} with e → e3 where e is the
maximal event in Qi+2j satisfying (μt(e))1 = w2, and where e

′
is the maximal

event in Qk for the largest k ≤ i − 1 satisfying μt(e
′
) = (w2, ((m, c), r, w))

for some w ∈ Wt and (m, c) ∈ Mest.
– Let {Qk0 , . . . , Qkp | for every Qkm with 1 ≤ km < i and 0 ≤ m ≤ p such that

there is a maximal event ekm with μt(ekm) = (w2, ((m, ckm), r, w)) for some
w ∈ Wt and (m, ckm) ∈ Mest}. We define Q

′

km
= Q

′

km+1
∪ {ekm
∈ Q

′

km+1
|

μt(ekm) = (w2, ckm)} with ekm+1 → ekm and where Q
′

kp+1
= Qi+2j+1.

If instead of a forget message the environment responds with a compensate
message, then the affected service needs to undo all its actions in reverse order
by doing all associated compensation actions. We obtain a succession of new
configurations for each compensation performed. We omit the proof that the
obtained sequence is a valid sequence of configurations in an extended model
Mt. Furthermore, if the compensations denote complex behaviour described in
another sequence diagram, we can obtain the refined model by applying the
categorical construction of [9].

If we go back to the example configuration path given earlier for the example
of Fig. 4, we can obtain the faulted path in accordance with the scenario of Fig. 2
as follows. A fault can happen after the invocation of m4 at configuration Q5,
namely after

Q0
〈(g,m1/c1!,w1)〉−→ Q1

〈(w1,m1/c1?,g)〉−→ Q2
〈−〉−→ Q3

〈(w1,m4!,w3)〉−→ Q4
〈(w3,m4?,w1)〉−→ Q5

leading to

Q5
〈(w3,faulted!,g)〉−→ Q

′

6
〈(g,faulted?,w3)〉−→ Q

′

7
〈(g,forget!,w3)〉−→ Q

′

8
〈(w3,forget?,g)〉−→ Q

′

9

and further

Q
′

9
〈(g,compensate!,w1)〉−→ Q

′

10
〈(w1,compensate?,g)〉−→ Q

′

11

In this case, only message m1 for w1 needs to be compensated and the faulted
path thus finished at Q

′

11 where a new event e11 has a label μ(e11) = (w1, c1).
Once faults and associated forget/compensate mechanisms are done for all

configuration paths over Mt, we can derive a complete model from both config-
uration paths and faulted paths for the conversation t.

5 Related Work

We have seen that the need for releasing partial results outside a transaction may
not happen as often as sharing results inside a transaction, but is nevertheless

When Things Go Wrong: Interrupting Conversations 143

a primary requirement if long-running transactions are to cover a wide range
of business models. Conventional transaction models such as Sagas [11] or the
more recent models targeting web services such as Web Services Transactions
(WS-Tx) [12] and Business Transaction Protocol (BTP) [13] do not provide ca-
pability for partial results and inevitably make it the business process designer’s
responsibility. This often means that new transactions are added that do not
reflect the exact needs of the business activity itself but rather are added to get
round the problem. Further, existing transaction models seem to be geared to-
wards centralised control (WS-Coordination framework [12]) which means that,
especially during compensation, access to the local state of service execution
is required. This violates the primary requirement of SOA for loosely-coupled
services and may not be possible or acceptable in a business environment as it
does not respect the local autonomy of participating SMEs. Further, there is no
capability for forward recovery and no provision for covering omitted results.

Part of the problem seems to be that multi-party conversations are involved
and such frameworks are lacking a formal model for the coordination of the
underlying interactions between services. It is only recently that long-running
transactions have received the attention of the formal methods community.

The authors in [14] define a set of primitives for long-running transactions
in flow composition languages concerned with structured control flows, given in
terms of sequencing and branching. Their approach to modelling long-running
transactions is driven by the understanding of long-running transactions as in
Sagas [11]. The Sagas model is a point of reference for long-lived database trans-
actions, nevertheless its applicability in conducting long-running business trans-
actions is questioned (e.g. see [15]).

Furthermore, the basic idea is that a long-running transaction is modelled
using CSP sequential processes. The fact there is no communication between
sequential processes that are composed in parallel in [14] means that the par-
allel composition operator simply generates all nondeterministic interleavings
of the actions from each process, and this may cause unnecessary overhead in
compensating for parallel processes. In fact, the extension of CSP with com-
pensations to produce the so-called compensating CSP (cCSP) [16] appeals to a
non-interleaving semantics [17] when performing the compensations for sequen-
tial processes that are composed in parallel.

In the approach taken in [16] a long-running transaction is modelled as a
sequential process, with the usual operators for sequential composition, choice
of action, parallel composition. The authors incorporate constructs for writing
compensable processes and then introduce a cancellation semantics for compens-
able processes. The resulting cCSP framework provides a blueprint for a process
algebra that models long-running transactions. The notion of a long-running
transaction considered however draws upon the concept found in Sagas, and
this comes with potential pitfalls, as mentioned before.

In cCSP transactions are understood as sequences of isolated activities and no
communication is allowed between internal activities of a transaction. The only
communication allowed is that of synchronising on terminal events of sequential

144 J. Bowles and S. Moschoyiannis

processes that have been composed in parallel. As a result of prohibiting com-
munication, there is no provision for partial results but also it is not possible to
trigger the compensating procedure in one process as soon as a failure occurs in
some other process. This is not remotely satisfactory when modelling real prob-
lems which require activities within a transaction to be executed in parallel,
since it may result in a situation where one process fails early on in its execution
and the other processes have to complete their execution until they reach their
terminal event in order to be notified (via synchronisation) that they need to
compensate the activities performed due to a failure in the other process.

6 Conclusions

We have described a formal model for the coordination of multi-party conversa-
tions in the context of long-running transactions. In particular, we showed how to
model interrupting conversations in the presence of faults and described the com-
pensating sequences of operation invocations that are required to undo the (for-
ward) operation invocations or conversations. We considered two ways in which
to model interruptions: forgetful rollback and rollback with memory. Moreover,
our approach allows communication between web services (multi-party conver-
sation) of a transaction and these interactions may happen concurrently. The
corresponding compensations, in case the conversation is interrupted, also take
place concurrently.

The abortion of a transaction, even if it is successfully compensated for, can be
very costly especially in a business environment where accountability and trust
are major concerns. Rolling back the whole system may lead to chains of compen-
sating activities that are time-consuming and impact on network traffic. For this
reason it is important to add diversity into the system and allow for alternative
paths of execution in cases where the path chosen originally encountered a failure.
Our approach can be extended to handle forward recovery by examining the runs
(maximal configurations) of a conversation and working out the extent to which
a faulted path should be compensated until it reaches another configuration path
that can lead to a run which allows the transaction to commit.

In previous work [18], which draws upon the translation of sequence diagrams
in [8] outlined in this paper, we have looked at reasoning about scenario-based
specifications using vector languages [17] and have shown how this can uncover
additional scenarios which are potentially faulty (e.g. due to race conditions) or
simply unthought in the initial design [19]. This provides interesting perspectives
with regard to identifying the complete set of behaviours of a given multi-party
conversation, and on that basis determine alternative scenarios of execution for
the transaction.

Finally, we are currently extending our distributed temporal logic interpreted
over labelled event structures (cf. [8]) to be able to express properties about
(interrupted) conversations. The distributed nature of the logic is crucial in a
context of loosely-coupled web services. With the logic we will also be able to
analyse whether our extended models with faults are complete and possibly
reveal further faulted paths.

When Things Go Wrong: Interrupting Conversations 145

References

1. Digital Business Ecosystem (DBE), EU-FP6 IST Integrated Project No 507953
(2006), http://www.digital-ecosystem.org

2. Date, C.J.: An Introduction to Database Systems, 5th edn. Addison-Wesley, Read-
ing (1996)

3. Razavi, A., Moschoyiannis, S., Krause, P.: Concurrency Control and Recovery Man-
agement in Open e-Business Transactions. In: Proc. WoTUG Communicating Pro-
cess Architectures (CPA 2007), pp. 267–285. IOS Press, Amsterdam (2007)

4. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 24–28 (2003)

5. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.J.: Service-
Oriented Computing Research Roadmap. In: Dagstuhl Seminar Proc. 05462,
Service-Oriented Computing (SOC), pp. 1–29 (2006)

6. O.M.G.: UML 2.0 Superstructure Specification. document ptc/04-10-02 (2004),
http://www.uml.org

7. Razavi, A., Moschoyiannis, S., Krause, P.: A Coordination Model for Distributed
Transactions in Digital Business Ecosystems. In: Digital Ecosystems and Technolo-
gies (DEST 2007), IEEE Computer Society Press, Los Alamitos (2007)

8. Küster-Filipe, J.: Modelling concurrent interactions. Theoretical Computer Sci-
ence 351(2), 203–220 (2006)

9. Bowles, J.K.F.: Decomposing Interactions. In: Johnson, M., Vene, V. (eds.)
AMAST 2006. LNCS, vol. 4019, pp. 189–203. Springer, Heidelberg (2006)

10. Winskel, G., Nielsen, M.: Models for Concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4, pp. 1–148. Oxford Science Publications (1995)

11. Garcia-Molina, H., Salem, K.: Sagas. In: ACM SIGMOD, pp. 249–259 (1987)
12. Cabrera, F.L., Copeland, G., Johnson, J., Langworthy, D.: Coordinating Web

Services Activities with WS-Coordination, WS-AtomicTransaction, and WS-
BusinessActivity (January 2004),
http://msdn.micorsoft.com/webservices/default.aspx

13. Furnis, P., Dalal, S., Fletcher, T., Green, A., Ceponkus, A., Pope, B.: Business
Transaction Protocol, version 1.1.0 (November 2004),
http://www.oasis-open.org/committees/download.php/9836

14. Bruni, R., Melgatti, H., Montanari, U.: Theoretical Foundations for Compensations
in Flow Composition Languages. In: Principles of Programming Languages (POPL
2005), pp. 209–220. ACM Press, New York (2005)

15. Furnis, P., Green, A.: Choreology Ltd. Contribution to the OASIS WS-Tx Tech-
nical Committee relating to WS-Coordination, WS-AtomicTransaction, and WS-
BusinessActivity (November 2005),
http://www.oasis-open.org/committees/download.php/15808

16. Butler, M., Hoare, A.C.R., Ferreira, C.: Trace Semantics for Long-Running Trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

17. Shields, M.W.: Semantics of Parallelism. Springer, London (1997)
18. Moschoyiannis, S., Krause, P., Shields, M.W.: A True Concurrent Interpretation of

Behavioural Scenarios. In: FESCA 2007. ENTCS, Elsevier, Amsterdam (to appear)
19. Moschoyiannis, S.: Specification and Analysis of Component-Based Software in a

Concurrent Setting. PhD thesis, University of Surrey (2005)

http://www.digital-ecosystem.org
http://www.uml.org
http://msdn.micorsoft.com/webservices/default.aspx
http://www.oasis-open.org/committees/download.php/9836
http://www.oasis-open.org/committees/download.php/15808

	When Things Go Wrong: Interrupting Conversations
	Introduction
	Example
	The Model
	Event Structures: Basic Notions
	Event Structures for Transactions

	Modelling Interruptions
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

