Verification of Higher-Order Computation:
A Game-Semantic Approach

C.-H.L. Ong

Oxford University Computing Laboratory
users.comlab.ox.ac.uk/luke.ong/

Abstract. We survey recent developments in an approach to the veri-
fication of higher-order computation based on game semantics. Higher-
order recursion schemes are in essence (programs of) the simply-typed
lambda calculus with recursion, generated from uninterpreted first-order
symbols. They are a highly expressive definitional device for infinite
structures such as word languages and infinite ranked trees. As ap-
plications of a representation theory of innocent strategies based on
traversals, we present a recent advance in the model checking of trees
generated by recursion schemes, and the first machine characterization
of recursion schemes (by a new variant class of higher-order pushdown
automata called collapsible pushdown automata). We conclude with some
speculative remarks about reachability checking of functional programs.
A theme of the work is the fruitful interplay of ideas between the neigh-
bouring fields of semantics and verification.

Game semantics has emerged as a powerful paradigm for giving semantics to
a variety of programming languages and logical systems. It has been used to
construct the first syntax-independent fully abstract models for a spectrum
of programming languages ranging from purely functional languages to lan-
guages with non-functional features such as control operators and locally-scoped
references [BI26/4512512I30] etc. In this extended abstract, we present in brief
recent developments in algorithmic game semantics, which is concerned with
applying game semantics to computer-assisted verification and program analysis

Game semantics has several features which make it very promising for such
applications. It provides a very concrete way of building fully abstract models. It
has a clear operational content, which admits compositional methods in the style
of denotational semantics. The basic objects studied in game semantics are games
(between two players, called P and O), and strategies on games. As strategies
can be seen as certain kinds of highly-constrained processes, they admit the
same kind of automata-theoretic representations central to model checking and
allied methods in computer-assisted verification [43I[14]. Moreover games and
strategies naturally form themselves into intricate mathematical structures that
give very accurate models of advanced high-level programming languages, as the
various full abstraction results show. For an introduction to game semantics, see
for example [6].

S. Drossopoulou (Ed.): ESOP 2008, LNCS 4960, pp. 299 2008.
© Springer-Verlag Berlin Heidelberg 2008

300 C.-H.L. Ong

Traversal: A Representation Theory of Innocent Strategies

In game semantics, programs are modelled as P-strategies. Strategies, which
are certain sets of plays (or legal positions), are typically composed by paral-
lel composition plus hiding, in the sense of the process algebra CSP [24]. The
starting point of our work is a representation theory of the game semantics of
higher-type programs (such as recursion schemes, PCF and Idealized Algol) that
is very concrete, involving combinatorics over infinite structures defined by the
abstract syntax trees of the programs being modelled. Take a program M which
may be open. In this approach the strategy-denotation of M, written [M], is
represented by a set Tr(M) of traversals over a possibly infinite tree — called the
computation tree of M — which is generated from (a souped up version of) the
abstract syntax tree of M. (Formally a traversal over a tree is a sequence of nodes
starting from the root; quite unlike a path in the tree, a traversal can “jump”
all over the tree, and may visit certain nodes infinitely often.) A traversal over
the computation tree of M does not correspond to a play in [M], but rather
to an interaction sequence that is obtained by wuncovering [20] a play in [M]
in a hereditary fashion; and a suitable projection of 7r(M) — corresponding to
the operation of hiding — gives the strategy-denotation [M]. We call such a re-
sult a Path-Traversal Correspondence Theorem. (Denoting programs by sets of
interaction sequences obtained by hereditary uncovering was first considered by
Greenland in his DPhil thesis [20], which he has called revealed semantics.) The
set 7r(M) is defined by recursion over the syntax of M and by rule induction.
Intuitively these formation rules define what amounts to the composition algo-
rithm of innocent strategies (less the hiding) but expressed in a setting in which
moves (of the innocent game) are mapped to nodes of the computation tree. In
[12] (see also Blum’s forthcoming DPhil thesis [I0]) we give a self-contained ac-
count of the traversal-based representation theory and establish Path-Traversal
Correspondence Theorems for a number of higher-order languages including re-
cursion schemes and PCF.

In the following we consider (higher-order) recursion schemes as a definitional
device for infinite structures (mainly ranked trees, but also word languages and
directed graphs). We sketch two applications of a Path-Correspondence Theo-
rem for recursion schemes: the first concerns the verification of (possibly infinite)
ranked trees generated by recursion schemes, and the second is a machine char-
acterization of recursion schemes.

Recursion schemes of order 1, originally known as recursive program schemes,
were first formalized and studied in the early 70’s [I7I35] (although the basic
ideas of program schemes and fixpoint theory go further back to David Park in
the late 60’s); they were an influential formalism for the semantical analysis of
both imperative and functional programs [35/15]. We fix a (ranked) alphabet X.
Types are generated from a base type o using the arrow constructor —. A (higher-
order) recursion scheme is a finite set of equations of the form Fxy---x, = e,
where F' : A} — .-+ — A, — o0 is a typed non-terminal, each z; : A; is a
typed variable, and e is an applicative term of type o constructed from the

Verification of Higher-Order Computation 301

non-terminals (which include a distinguished start symbol), terminals (which
are the X-symbols), and variables x1, - -, x,. The scheme is said to be order-k
if the highest order of the non-terminals is k. We use (deterministic) recursion
schemes here as generators of possibly infinite term-trees. The tree generated by
a recursion scheme is defined to be the (possibly infinite) term-tree built up from
the first-order terminal symbols by applying the (equations gua) rewrite rules
ad infinitum, replacing the formal parameters by the actual parameters, starting
from the start symbol. Note that in essence, recursion schemes are programs of
the simply-typed lambda calculus with recursion (generated from uninterpreted
1st-order symbols).

Model-Checking Trees Generated by Recursion Schemes

In a FOSSACS’02 paper [28], Knapik, Niwiriski and Urzyczyn studied the infinite
hierarchy of term-trees generated by higher-order recursion schemes that are ho-
mogeneously typed and satisfy a syntactic constraint called safet. They showed
that for every n > 0, the trees that are generated by order-n safe schemes have
decidable monadic second-order (MSO) theories. Later in the year at MFCS’02
[13], Caucal introduced a tree hierarchy and a graph hierarchy that are defined by
mutual recursion, using a pair of powerful transformations that preserve decid-
ability of MSO theories. Caucal’s tree hierarchy coincides with the hierarchy of
trees generated by higher-order safe recursion schemes. In [28] Knapik et al. asked
if the safety assumption is really necessary for their MSO decidability result. A
partial answer was subsequently obtained by Aehlig, de Miranda and Ong; in a
TLCA’05 paper [7], they showed that trees that are generated by order-2 recur-
sion schemes, whether safe or not, have decidable MSO theories. Independently,
Knapik, Niwinski, Urzyczyn and Walukiewicz obtained a sharper result: in an
ICALP’05 paper [29], they proved that the modal mu-calculus model-checking
problem for trees generated by order-2 recursion schemes (whether safe or not) is
2-EXPTIME complete. A year later in a LICS’06 paper [37], we gave a complete
answer to the question:

Theorem 1 (Decidability). The modal mu-calculus model-checking problem
for trees generated by order-n recursion schemes (whether safe or not, and
whether homogeneously typed or not) is n-EXPTIME complete, for every n > 0.
Thus these trees have decidable MSO theories.

Our approach to the decidability result is to transfer the algorithmic analysis
from the tree generated by a recursion scheme, which we call value tree, to the
computation tree, which is itself a tree generated by a related order-0 recursion
scheme (equivalently, a regular tree). The computation tree recovers useful in-
tensional information about the computational process behind the construction
of the value tree. Paths in the value tree correspond exactly to plays in the game

! The safety condition may be presented as a set of rules that determine where a
variable may occur as a subterm of a term, depending on both the order of the
variable and the order of the term (see [I1I10]).

302 C.-H.L. Ong

semantics of the recursion scheme; a traversal is then (a representation of) the
uncovering of such a play. By appealing to the Path-Traversal Correspondence
Theorem, we prove that a given alternating parity tree automaton (APT) [18]
has an accepting run-tree over the value tree if and only if it has an accepting
traversal-tree over the computation tree. Our problem is then reduced to finding
an effective way of recognizing a set of infinite traversals (over a given computa-
tion tree) that satisfy the parity condition. This requires a new idea as a traversal
is most unlike a path. Our solution again exploits the game-semantic connection.
It is a property of traversals that their P-views are paths (in the computation
tree). This allows us to simulate a traversal over a computation tree by (the
P-views of its prefixes, which are) annotated paths of a certain kind in the same
tree. The simulation is made precise in the notion of traversal-simulating APT.
We establish the correctness of the simulation by proving that a given propert

APT has an accepting traversal-tree over the computation tree if and only if the
associated traversal-simulating APT has an accepting run-tree over the compu-
tation tree. Note that the decidability of the modal mu-calculus model-checking
problem for trees generated by recursion schemes follows at once since compu-
tation trees are regular, and the APT acceptance problem for regular trees is

decidable [40I18].

A Machine Characterization of Higher-Order Recursion Schemes

Another application of the Path-Traversal Correspondence Theorem concerns a
fundamental question about higher-order recursion schemes: Can we characterize
their expressivity by a class of machine models? Knapik, Niwiriski and Urzyczyn
[28] have shown that as generators of ranked trees, higher-order safe recursion
schemes are equi-expressive with higher-order pushdown automata [31]. Their
result and an earlier result by Damm and Goerdt [16] may be viewed as attempts
to answer the question; they both had to impose somewhat unnatural syntactic
constraints (of safety and derived types respectively) on recursion schemes in
order to establish their characterizations.

A partial answer was recently obtained by Knapik, Niwinski, Urzyczyn and
Walukiewicz. In an ICALP’05 paper [29], they proved that order-2 homogeneously-
typed (but not necessarily safe) recursion schemes are equi-expressive with a vari-
ant class of order-2 pushdown automata called panic automata. In a preprint [21],
we give a complete answer to the question. We introduce a new kind of higher-order
pushdown automata (which generalize pushdown automata with links [8], or equiv-
alently panic automata, to all finite orders), called collapsible pushdown automnata
(CPDA), in which every symbol in the stack has a link to a (necessarily lower-
ordered) stack situated somewhere below it. In addition to the higher-order stack
operations push,; and pop,, CPDA have an important operation called collapse,
whose effect is to “collapse” a stack s to the prefix as indicated by the link from
the top;-symbol of s. In [21] we prove the following result:

2 Property APT because the APT corresponds to the property described by a given
modal mu-calculus formula.

Verification of Higher-Order Computation 303

Theorem 2 (Equi-Expressivity). CPDA are equi-expressive with recursion
schemes as generators of (possibly infinite) ranked trees.

In one direction, we give a simple algorithm that transforms an order-n CPDA to
an order-n recursion scheme that generates the same tree, uniformly for all n > 0.
In the other direction, using ideas from game semantics, we give an effective
transformation of order-n recursion schemes (not assumed to be homogeneously
typed, and hence not necessarily safe) to order-n CPDA that compute traversals
over the computation tree of the scheme, and hence paths in the tree gener-
ated by the scheme. Our equi-expressivity result is the first automata-theoretic
characterization of higher-order recursion schemes. Thus CPDA are also a char-
acterization of the simply-typed lambda calculus with recursion (generated from
uninterpreted 1st-order symbols) and of (pure) innocent strategies.

Verifying PCF Programs: Reachability Checking

As a further direction (and a possible application of path-traversal correspon-
dence), we consider the problem of reachability checking of higher-order compu-
tation. In the simplest form, reachability is the problem: Given a state of a tran-
sition system, is it reachable from the start state? Reachability is arguably the
most important test in the computer-assisted verification of computing systems.
Reachability (in its various forms) is expressible in standard temporal logics such
as EF, LTL, CTL, etc., but it is typically computationally more tractable than
the model checking of any of these logics (e.g. for pushdown systems, reachabil-
ity is polytime [I], whereas EF-, LTL- and CTL-model checking are respectively
PSPACE-complete, EXPTIME-complete and EXPTIME-complete [27]). In re-
cent years, reachability checkers (such as SLAM [9], Blast [23], etc.) for first-order
imperative programs have had a major impact in the verification community.
Perhaps because of its simplicity and ease of use, reachability is now a standard
approach to checking safety properties in the industry. It is therefore somewhat
surprising that no reachability checker has been developed for higher-order pro-
gramming languages such as Ocaml, Haskell and F'#. Indeed, to our knowledge,
reachability of higher-order computation does not appear to have been studied
in the literature.

The simplest (though already challenging) setting is PCF (generated from
finite base types). We propose the following decision problem:

PCF-REACHABILITY: Given a (possibly open) PCF term M and a sub-
term N of M, is there a program context C[] such that the evaluation of

C[M] entails the evaluation of N 2 (Precisely, is there a program context
C1] such that C[M] —* E[N] for some evaluation context E[]?)

For which fragment of PCF is the problem decidable? If there are positive
answers, it would be interesting to consider the “global version” of the problem
i.e. is it possible to compute a finite description of the set of contexts C[] for a
given pair of M and N7

304 C.-H.L. Ong

An approach that seems promising is to appeal to the Path-Traversal Theorem
for PCF [10], and consider traversals over the computation tree of M. The idea
is to use appropriate alternating tree automata to “guess” a set of paths in the
computation tree simulating traversals that witness yes-instances of the problem
(see [37]). If this works out, it would be interesting to present the algorithm in
terms that functional programmers can readily understand and appreciate.

Remark 1. (1) It is not clear if there is any connection between reachability (in
our sense) and control flow analysis (e.g. [42]) of functional programs. In the
past couple of years there have been several interesting developments in the
verification and flow analysis of functional language. Xu and Peyton Jones have
studied contract checking in Haskell (see Xu’s forthcoming PhD thesis). A recent
project of Shivers et al. [32] used abstract interpretation (specifically abstract
counting) to build more precise flow analysers by garbage collecting “dead”
environment structure in the abstract state space traversed by the functional
programs.

(ii) When restricted to finitary (i.e. recursion-free) PCF, the problem is re-
lated to the atoms case of the Interpolation Problem, which is decidable [3§].
(The Interpolation Problem is equivalent to the Higher-Order Matching Problem

[ATU39].)

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: International Conference on Concurrency The-
ory, pp. 135-150 (1997)

2. Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general
reference. In: Proceedings of IEEE Symposium on Logic in Computer Science, 1998,
Computer Society Press (1998)

3. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163 (2000)

4. Abramsky, S., McCusker, G.: Linearity, sharing and state: A fully abstract game
semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent,
R.D. (eds.) Algol-like languages, Birkhauser (1997)

5. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997.
LNCS, vol. 1414, Springer, Heidelberg (1998)

6. Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U.
(eds.) Logic and Computation: Proceedings of the 1997 Marktoberdorf Summer
School, Springer, Heidelberg (1998)

7. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The monadic second order theory of
trees given by arbitrary level two recursion schemes is decidable. In: Urzyczyn, P.
(ed.) TLCA 2005. LNCS, vol. 3461, pp. 39-54. Springer, Heidelberg (2005)

8. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: Safety is not a restriction at level
2 for string languages. In: Proceedings of the 8th International Conference on
Foundations of Software Science and Computational Structures (FOSSACS 2005).
LNCS, vol. 3411, pp. 490-501. Springer, Heidelberg (2005)

9. Ball, T\, Rajamani, S.K.: The SLAM Project: Debugging system software via static
analysis. In: Proc. POPL, pp. 1-3. ACM Press, New York (2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Verification of Higher-Order Computation 305

Blum, W.: The Safe Lambda Calculus. PhD thesis, University of Oxford (in prepa-
ration, 2008)

Blum, W., Ong, C.-H.L.: Safe lambda calculus. In: Della Rocca, S.R. (ed.) TLCA
2007. LNCS, vol. 4583, pp. 39-53. Springer, Heidelberg (2007)

Blum, W.,; Ong, C.-H.L.: Path-correspondence theorems and their applications
(preprint, 2008)

Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165-176. Springer, Heidelberg

(2002)
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)
Damm, W.: The IO- and Ol-hierarchy. Theoretical Computer Science 20, 95-207
(1982)

Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-
hierarchy. Information and Control 71, 1-32 (1986)

de Roever, W.-P., de Bakker, J.W.: A calculus for recursive program schemes. In:
Nivat, M. (ed.) Proc. IRTA symposium on Automata, Languages and Programming,
North-Holland, Amsterdam (1972)

Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of FOCS 1991, pp. 368-377 (1991)

Ghica, D.R., McCusker, G.: Reasoning about Idealized ALGOL Using Regular
Languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 103-116. Springer, Heidelberg (2000)

Greenland, W.: Game semantics for region analysis. PhD thesis, Oxford University
Computing Laboratory (2005)

Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown au-
tomata and recursion schemes. Technical report, Oxford University Computing
Laboratory, p. 59 (preprint, 2007), http://users.comlab.ox.ac.uk/luke.ong/
Hankin, C., Malacaria, P.: A new approach to control flow analysis. In: Koskimies,
K. (ed.) CC 1998. LNCS, vol. 1383, pp. 95-108. Springer, Heidelberg (1998)
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Proc. 10th SPIN Workshop (2003)

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation (ex-
tended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)

Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III.
A fully abstract and universal game model. Information and Computation 163,
285-408 (2000)

Walukiewicz, I.: Model Checking CTL Properties of Pushdown Systems. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, Springer, Hei-
delberg (2000)

Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy.
In: Nielsen, M., Engberg, U. (eds.) ETAPS 2002. LNCS, vol. 2303, pp. 205-222.
Springer, Heidelberg (2002)

Knapik, T., Niwinski, D., Urzyczyn, P., Walukiewicz, I.: Unsafe Grammars and
Panic Automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450-1461. Springer, Heidelberg (2005)

http://users.comlab.ox.ac.uk/luke.ong/

306

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

C.-H.L. Ong

Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh
(1998)

Maslov, A.N.: Multilevel stack automata. Problems of Information Transmis-
sion 12, 38-43 (1976)

Might, M., Chambers, B., Shivers, O.: Model Checking Via I'CFA. In: Cook, B.,
Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 59-73. Springer, Heidelberg
(2007)

Murawski, A., Walukiewicz, I.: Third-Order Idealized Algol with Iteration Is Decid-
able. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202-218. Springer,
Heidelberg (2005)

Murawski, A.S., Ong, C.-H.L., Walukiewicz, I.: Idealized Algol with ground re-
cursion and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917-929.
Springer, Heidelberg (2005)

Nivat, M.: On the interpretation of recursive polyadic program schemes. Symp.
Math. XV, 255-281 (1975)

Ong, C.-H.L.: Observational equivalence of third-order Idealized Algol is decidable.
In: Proceedings of IEEE Symposium on Logic in Computer Science, Copenhagen,
Denmark, July 22-25, 2002, pp. 245-256. Computer Society Press (2002)

Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings 21st Annual IEEE Symposium on Logic in Computer
Science, Seattle, pp. 81-90. Computer Society Press (2006),
users.comlab.ox.ac.uk/luke.ong/

Padovani, V.: Decidability of all minimal models. In: Berardi, S., Coppo, M. (eds.)
TYPES 1995. LNCS, vol. 1158, pp. 201-215. Springer, Heidelberg (1996)
Padovani, V.: Decidability of fourth-order matching. Math. Struct. in Comp. Sci-
ence 10, 361-372 (2000)

Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Maths. Soc. 141, 1-35 (1969)

Schubert, A.: A linear interpolation for the higher-order matching problem. In:
Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997.
LNCS, vol. 1214, pp. 441-452. Springer, Heidelberg (1997)

Shivers, O.: Control-flow analysis of higher-order languages. PhD thesis, Carnegie-
Mellon University (1991)

Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. IEEE Annual Symposium on Logic in Computer Science,
IEEE Computer Society Press (1986)

users.comlab.ox.ac.uk/luke.ong/

	Verification of Higher-Order Computation: A Game-Semantic Approach

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

