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Abstract. We propose a new notion of declassification policy called lin-
ear declassification. Linear declassification controls not only which func-
tions may be applied to declassify high-security values, but also how
often the declassification functions may be applied. We present a lin-
ear type system which guarantees that well-typed programs never vio-
late linear declassification policies. To state a formal security property
guaranteed by the linear declassification, we also introduce linear re-
laxed non-interference as an extension of Li and Zdancewic’s relaxed
non-interference. An application of the linear relaxed non-interference to
quantitative information flow analysis is also discussed.

1 Introduction

There have been extensive studies on policies and verification methods for infor-
mation flow security [4,16,10,7,11,13]. The standard policy for secure information
flow is the non-interference property, which means that low-security outputs can-
not be affected by high-security inputs. A little more formally, a program e is
secure if for any high inputs h1 and h2 and low input l, e(h1, l) and e(h2, l)
are equivalent for low-level observers. The standard non-interference property
is, however, too restricted in practice, since it does not allow any leakage of se-
cret information. For example, a login program does leak information about the
result of comparison of a string and a password.

To allow intentional release of secret information, a variety of notions of de-
classification have been proposed [7,12,13]. Sabelfeld and Myers [12] proposed
delimited information release, where e is secure if, roughly speaking, whenever
d(h1) = d(h2) for the declassification function d, e(h1, l) and e(h2, l) are equiva-
lent for low-level observers. As a similar criterion, Li and Zdancewic [7] proposed
a notion of relaxed non-interference (relaxed NI, in short), where e is secure (i.e.,
satisfies relaxed NI) if e(h, l) can be factorized into e′(dh), where d is a declassi-
fication function and e′ does not contain h. Both the frameworks guarantee that
a program leaks only partial information d(h) about the high-security value h.
For example, if d is the function λx.xmod 2, then only the parity information
can be leaked.

The above criteria alone, however, do not always guarantee desirable secrecy
properties. For example, consider a declassification function d

�
= λx.λs.(s = x),

which takes a high-security value x, and returns a function that takes a string
and returns whether s and x are equal. Declassifications through such a function
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often occur in practice, for instance, in a login program, which compares a user’s
password with an input string. Note that d(h) ≡ λs.(s = h) and h contain the
same quantity of information; In fact, even if e is h itself (so that it clearly leaks
the entire information), it can be factorized into:

(λg.let test(s) = if g(s) then s else test(s + 1) in test(0)) (d(h)).

Thus, the relaxed NI guarantees nothing about the quantity of information
declassified through the function d. (In the case of delimited information re-
lease [12], the problem can be avoided by choosing λx.(l = x) as d, instead of
λx.λs.(s = x); see more detailed discussion in Section 5.)

To overcome the problem mentioned above, we propose a new notion of declas-
sification called linear declassification, which controls how often declassification
functions can be applied to each high-security value, and how often a value
(which may be a function) obtained by declassification may be used. We define
a linear type system that ensures that any well-typed program satisfies a given
linear declassification policy.

To formalize the security property guaranteed by the linear declassification, we
also extend Li and Zdancewic’s relaxed non-interference [7] to linear relaxed non-
interference, which says that e is secure if e can be factorized into e′(λux.(dh)),
where e′ does not contain h and e′ can call the function λx.(dh) at most u times
to declassify the value of h.

The linear relaxed non-interference is useful for quantitative information flow
analysis [8,3,2]. For example, if a program e containing an n-bit password sat-
isfies the linear relaxed non-interference under the policy that λx.λs.(s = x) is
used at most once, we know that one has to run e O(2n) times in average to
get complete information about the password. On the other hand, if the declas-
sification function is replaced by λx.λs.(s > x), the password may be leaked
by only n runs of the program. In the paper, we show (through an example)
that the linear relaxed non-interference enables us to estimate the quantity of
information leakage (per program run) by looking at only the security policy,
not the program.

The rest of this paper is structured as follows. Section 2 introduces the lan-
guage of programs and linear declassification policies. Section 3 introduces a
linear type system which guarantees that a program adheres to linear declassifi-
cation policies. Section 4 defines linear relaxed non-interference as an extension of
Li and Zdancewic’s relaxed non-interference. Section 4 also discusses an applica-
tion of the linear relaxed non-interference to quantitative analysis of information
flow. Section 5 discusses related work and Section 6 concludes.

2 Language

This section introduces the syntax and semantics of programs and declassifica-
tion policies.
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2.1 Syntax

Definition 1 (expressions). The set of expressions, ranged over by e, is de-
fined by:

e (expressions) ::= x | n | σ | d〈〈e〉〉 | e1 ⊕ e2 | if e1 then e2 else e3
| λux.e | fix x(y) = e | e1e2 | 〈e1, . . . , en〉 | #i(e)

u (uses) ::= 0 | 1 | ω
⊕ (operators) ::= + | − |=| · · ·

Here, the meta-variables x and n range over the sets of variables and integers
respectively. The meta-variable σ ranges over the set of special variables holding
high-security integers, to which security policies (given below) are associated. For
the sake of simplicity, we consider only integers as primitive values, and assume
that e1 = e2 returns 1 if the values of e1 and e2 are the same, and returns 0
otherwise. if e1 then e2 else e3 returns the value of e3 if the value of e1 is 0,
and returns the value of e2 otherwise. The expression λux.e denotes a function
that can be used at most u times. If u is ω, the function can be used an arbitrary
number of times.1 Note that use annotations can be automatically inferred by
standard usage analysis [17,6,9], so that programmers need not specify them
(except for those in policies introduced below). The expression fix x(y) = e
denotes a recursive function that can be used an arbitrary number of times. The
expression e1e2 is an ordinary function application. The expression d〈〈e〉〉 is a
special form of function application, where the meta-variable d ranges over the
set ND of special function variables (defined in a policy introduced below). The
expression 〈e1, . . . , en〉 returns a tuple consisting of the values of e1, . . . , en. Note
that n may be 0, in which case, the tuple is empty.

We write [e′/x]e for the (capture-avoiding) substitution of e′ for x in e. We
write SVar(e) for the set of security variables occurring in e.

Definition 2 (policies). The set of policies is defined by:

p (security levels) ::= L | H | {d1 �→ u1, · · · , dn �→ un}
D (declassification environment) ::= {d1 �→ λωx.e1, · · · , dn �→ λωx.e2}

Σ (policy) ::= {σ1 �→ p1, · · · , σn �→ pn}

A security level p expresses the degree of confidentiality of each value. If p is L,
the value may be leaked to low-security principals. If p is H, no information about
the value may be leaked. If p is {d1 �→ u1, · · · , dn �→ un}, then the value may be
leaked only through declassification functions d1, . . . , dn and each declassification
function di may be applied to the value at most ui times. For example, if the
security level of σ is {d1 �→ 1, d2 �→ ω, d3 �→ 0}, then d1〈〈σ〉〉 + d2〈〈σ〉〉 + d2〈〈σ〉〉 is
allowed, but neither d3〈〈σ〉〉 nor d1〈〈σ〉〉 + d1〈〈σ〉〉 is.

A declassification environment D defines declassification functions. A policy
Σ maps σi to its security level. Note that the use of D(di) is always ω. This is
because how often di can be used is described in Σ for each security variable σ.
1 For the sake of simplicity, we consider only 0, 1, ω as uses. It is easy to extend the

language and the type system given in the next section to allow 2, 3, . . ..
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Example 1. Let D = {d �→ λωx.λ1y.x = y} and Σ = {σ �→ {d �→ 1}}. This pol-
icy specifies that information about σ can be leaked by at most one application
of d. Since the result of the application is a linear (use-once) function λ1y.σ = y,
the policy means that σ may be compared with another integer only once.

Note that if D(d) is λωx.λωy.x = y, then the declassification may be per-
formed only once, but the resulting value λωy.σ = y can be used an arbitrary
number of times. Therefore, an attacker can obtain complete information about
σ by applying the function to different values.

2.2 Operational Semantics

This section introduces an operational semantics to define the meaning of ex-
pressions and policies formally.

A run-time state is modeled by a pair 〈H, e〉, where H is a heap given below.2

Definition 3 (heap)

H (heap) ::= {f1 �→ λu1x1.e1, . . . , fn �→ λunxn.en,
σ1 �→ (n1, p1), . . . , σm �→ (nm, pm)}

f (function pointer) ::= x | d

Here, f ranges over the set consisting of (ordinary) variables (x, y, z, . . . ) and
declassification function variables (d1, d2, . . . ,).

A heap H keeps information about how often each function may be applied and
how the value of each security variable may be declassified in the rest of the com-
putation. For example, H(σ) = (2, {d �→ 1}) means that the value of σ is 2, and
the value can be declassified only once through the declassification function d.

For a system (Σ, D, e), the initial heap is determined by Σ, D, and the actual
values of the security variables. Let g be a mapping from dom(Σ) to the set of
integers. We write HΣ,D,g for the initial heap D∪{σ1 �→ (g(σ1), Σ(σ1)), . . . , σk �→
(g(σk), Σ(σk))} (where dom(Σ) = {σ1, . . . , σk}). We use evaluation contexts to
define the operational semantics.

Definition 4 (evaluation context). The set of evaluation contexts, ranged
over by E, is given by:

E (evaluation context) ::= [ ] | [ ]e | x[ ] | d〈〈[ ]〉〉 | if [ ] then e1 else e2
| [ ]⊕e | v⊕[ ] | 〈v1, . . . , vk−1, [ ], ek+1, . . . , en〉 | #i([ ])

v (values) ::= f | n | σ | 〈v1, . . . , vn〉

The relation 〈H, e〉 −→ 〈H ′, e′〉 is the least relation closed under the rules in
Figure 1. In the figure, F{x �→ v} is the mapping F ′ such that F ′(x) = v, and
F ′(y) = F (y) for any y ∈ dom(F ) \ {x}. val (H, v) is defined to be n if v = n, or
v = σ and H(σ) = (n, p).

The key rules are E-App and E-Decl. In E-App, the use of the function y
is decreased by one. Here, the subtraction u − 1 is defined by: 1 − 1 = 0 and
2 Note that unlike the usual heap-based semantics, tuples are not stored in a heap.
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y fresh

〈H,E[λux.e]〉 −→ 〈H{y �→ λux.e}, E[y]〉
(E-Fun)

H(d) = λωx.e

〈H{σ �→ (n, p)}, E[d〈〈σ〉〉]〉 −→ 〈H{σ �→ (n, p − d)}, E[[n/x]e])〉
(E-Decl)

H(d) = λωx.e

〈H,E[d〈〈n〉〉]〉 −→ 〈H,E[[n/x]e]〉
(E-Decl2)

〈H{y �→ λux.e}, E[yv]〉 −→ 〈H{y �→ λu−1x.e}, E[[v/x]e]〉 (E-App)

val(H,v) �= 0
〈H,E[if v then e1 else e2]〉 −→ 〈H,E[e1]〉

(E-IfT)

val(H,v) = 0
〈H,E[if v then e1 else e2]〉 −→ 〈H,E[e2]〉

(E-IfF)

〈H,E[v1 ⊕ v2]〉 −→ 〈H,E[val(H,v1)⊕val(H,v2)]〉 (E-Op)

z fresh
〈H,E[fix x(y) = e]〉 −→ 〈H ∪ {z �→ λωy.[z/x]e}, E[z]〉

(E-Fix)

〈H,E[#i〈v1, . . . , vn〉]〉 −→ 〈H, E[vi]〉 (E-Proj)

Fig. 1. Evaluation rules

ω − 1 = ω. Note that 0 − 1 is undefined, so that if H(y) = λ0x.e, the function y
can no longer be used (in other words, the evaluation of E[yv] get stuck).

In E-Decl, the security level p for σ changes after the reduction. Here, p − d
is defined by:

{d1 �→ u1, . . . , dn �→ un} − di = {d1 �→ u′
1, . . . , dn �→ u′

n}

where u′
j =

{
uj − 1 if j = i
uj otherwise

L − di = L

For example, if the security level p of σ is {d �→ 1}, then after the declassification,
the security level becomes p − d = {d �→ 0}, which means that the value of σ
can no longer be declassified. Note that H − di is undefined, so that an integer
of security level H can never be declassified. Rule E-Decl2 is for the case when
a declassification function d is applied to an ordinary integer.

In rule E-Op, ⊕ is the binary operation on integers denoted by the operator
symbol ⊕. The remaining rules are standard.

Example 2. Recall the security policy in Example 1: D = {d �→ λωx.λ1y.(x =
y)} and Σ = {σ �→ {d �→ 1}}.
〈HΣ,D,{σ �→3}, d〈〈σ〉〉2〉 is reduced as follows.

〈D ∪ {σ �→ (3, {d �→ 1})}, d〈〈σ〉〉2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0})}, (λ1y.(3 = y))2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ1y.(3 = y)}, z(2)〉
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−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ0y.(3 = y)}, 3 = 2〉
−→ 〈D ∪ {σ �→ (3, {d �→ 0}), z �→ λ0y.(3 = y)}, 0〉

On the other hand, both 〈d〈〈σ〉〉, d〈〈σ〉〉〉 and (λωf.〈f(1), f(2)〉)(d〈〈σ〉〉) get stuck.

�

3 Type System

This section introduces a linear type system, which ensures that if 〈Σ, D, e〉 is
well-typed, then e satisfies the security policy specified by Σ and D.

3.1 Types

Definition 5 (types). The set of types, ranged over by τ , is defined by:

τ (types) ::= intp | τ1
ϕ→u τ2 | 〈τ1, . . . , τn〉

ϕ (effects) ::= t | nt

The integer type intp describes integers whose security level is p. For example,
int{d �→1} is the type of integers that can be declassified through the function d at
most once. The function type τ1

ϕ→u τ2 describes functions that can be used at
most u times and that take a value of type τ1 as an argument and return a value
of type τ2. The effect ϕ describes whether the function is terminating (when
ϕ = t) or it may not be terminating (when ϕ = nt). The effect will be used for
preventing leakage of information from the termination behavior of a program.
The type 〈τ1, . . . , τn〉 describes tuples consisting of values of types τ1, . . . , τn.

The sub-effect relation ≤ on effects is the partial order defined by t ≤ nt. The
sub-level relation 
 on security levels and the subtyping relation τ1 ≤ τ2 are the
least relations closed under the rules in Figure 2. For example, int{d �→1}

t→ω

int{d �→ω} is a subtype of int{d �→ω}
nt→1 int{d �→1}. We write ϕ1 ∨ ϕ2 for the least

upper bound of ϕ1 and ϕ2 (with respect to ≤), and p1 � p2 for the least upper
bound of p1 and p2 with respect to 
.

L 	 p 	 H
u′

i ≤ ui for each i ∈ {1, . . . , m}
{d1 �→ u1, . . . , dm �→ um, . . .} 	 {d1 �→ u′

1, . . . , dm �→ u′
m}

p1 	 p2

intp1 ≤ intp2

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2 u′ ≤ u ϕ ≤ ϕ′

τ1
ϕ→u τ2 ≤ τ ′

1
ϕ′
→u′ τ ′

2

τi ≤ τ ′
i for each i ∈ {1, . . . , n}

〈τ1, . . . , τn〉 ≤ 〈τ ′
1, . . . , τ

′
n〉

Fig. 2. Subtyping rules
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3.2 Typing

A type environment is a mapping from a finite set consisting of extended vari-
ables (ordinary variables, security variables, and declassification function names)
to types. We have two forms of type judgment: � 〈Σ, D, e〉 for the whole system
(consisting of a policy, a declassification environment, and an expression), and
Γ � e : τ & ϕ for expressions. The judgment � 〈Σ, D, e〉 means that e satisfies
the security policy specified by Σ and D. Γ � e : τ & ϕ means that e evaluates
to a value of type τ under an environment described by Γ . If ϕ = t, then eval-
uation of e must terminate. If ϕ = nt, then e may or may not terminate. For
example, σ : int{d �→1}, f : int{d �→1}

t→ω int{d �→1} � fσ : int{d �→1} & t is a valid
judgment, but neither σ : int{d �→1}, f : int{d �→ω}

t→ω int{d �→1} � fσ : int{d �→1} & t

nor σ : int{d �→1}, f : int{d �→1}
nt→ω int{d �→1} � fσ : int{d �→1} & t is. (In the former,

the security level of σ does not match that of the argument required by f . In
the latter, the type of f says that f may not terminate, but the conclusion says
that fσ terminates.)

Figure 3 shows the typing rules. Two auxiliary judgments � Σ : Γ and � D : Γ
are used for defining � 〈Σ, D, e〉. The definitions of the operations used in the
typing rules are summarized in Figure 4.

We explain some key rules below.

– T-Op: Suppose e1 has type int{d �→1}. Then, the value of e1 can be declassified
through the function d, but that does not necessarily imply that e1 ⊕ e2 can
be declassified through the function d. Therefore, we raise the security level
of e1 ⊕ e2 to H unless both of the security levels of e1 and e2 are L.

– T-If: Since information about the value of e0 indirectly flows to the value
of the if-expression, the security level of the if-expression should be greater
than or equal to the ceil of security level of e0. For the sake of simplicity, we
require that the values of if-expressions must be integers.

– T-Fun: The premise means that free variables are used according to Γ each
time the function is applied. Since the function may be applied u times, the
usage of free variables is expressed by u · Γ in total.

– T-Dcl: The premise ensures that e must have type intd �→1, so that e can
indeed be declassified through d.

Example 3. Let τd = intL
t→ω intL

t→1 intL. d〈〈σ〉〉2 is typed as follows.

σ : int{d �→1} � σ : int{d �→1} & t

d : τd, σ : int{d �→1} � d〈〈σ〉〉 : intL
t→1 intL & t ∅ � 2 : intL & t

d : τd, σ : int{d �→1} � d〈〈σ〉〉2 : intL & t

Example 4. Let e be fix f(x) = if d〈〈σ〉〉x then x else f(x + 1). Let Σ1 = {σ �→
{d �→ ω}}, Σ2 = {σ �→ {d �→ 1}}, and D = {d �→ λωx.λ1y.(x = y)}. Then,
� 〈Σ1, D, e(0)〉 : intL holds but � 〈Σ2, D, e(0)〉 : intL does not.
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Γ � e : τ

Γ, x : τ � x : τ & t (T-Var)

Γ � n : intL & t (T-Const)

Γ, σ : intp � σ : intp & t
(T-SVal)

Γ1 � e1 : intp1 & ϕ Γ2 � e2 : intp2 & ϕ

Γ1 + Γ2 � e1 ⊕ e2 : int�p1���p2� & ϕ
(T-Op)

Γ, x : τ1 � e : τ2 & ϕ

u · Γ � λux.e : τ1
ϕ→u τ2 & t

(T-Fun)

Γ, x : τ1
nt→ω τ2, y : τ1 � e : τ2 & ϕ

ω · Γ � fix x(y) = e : τ1
ϕ→ω τ2 & t

(T-Fix)

Γ1 � e1 : τ1
ϕ0→1 τ2 & ϕ1

Γ2 � e2 : τ1 & ϕ2

Γ1 + Γ2 � e1 e2 : τ2 & ϕ0 ∨ ϕ1 ∨ ϕ2

(T-App)

Γ � e : int{d �→1} & ϕ1

(d : intL
ϕ0→ω τ) + Γ � d〈〈e〉〉 : τ & ϕ0 ∨ ϕ1

(T-Dcl)

Γ � e : τ ′ & ϕ′ τ ′ ≤ τ ϕ′ ≤ ϕ

Γ � e : τ & ϕ
(T-Sub)

Γ1 � e0 : intp0 & ϕ0 Γ2 � e1 : intp1 & ϕ1 Γ2 � e2 : intp2 & ϕ2

ϕ1 = ϕ2 = t if �p0� = H

Γ1 + Γ2 � if e0 then e1 else e2 : int�p��p1�p2 & ϕ0 ∨ ϕ1 ∨ ϕ2
(T-If)

Γi � ei : τi & ϕi (for each i ∈ {1, . . . , n})
Γ1 + · · · + Γn � 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉 & ϕ1 ∨ · · · ∨ ϕn

(T-Tuple)

� Σ : Γ

� {σ1 �→ p1, . . . , σn �→ pn} : (σ1 : intp1 , . . . , σn : intpn) (T-Policy)

� D : Γ

∅ � λωx.ei : τi & ϕi for each i ∈ {1, . . . , n}
� {d1 �→ λωx.e1, · · · , dn �→ λωx.en} : (d1 : τ1, . . . , dn : τn)

(T-DEnv)

� 〈Σ, D, e〉

� Σ : Γ1 � D : Γ2 Γ1, Γ2 � e : τ & ϕ
all the security levels in Γ2 are L

� 〈Σ, D, e〉 : τ
(T-Sys)

Fig. 3. Typing rules

3.3 (Partial) Type Soundness

The following theorem means that evaluation of a well-typed program never gets
stuck. A proof is given in the extended version of this paper [5].
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u1 + u2 =

⎧⎨
⎩

0 if u1 = u2 = 0
1 if (u1, u2) ∈ {(0, 1), (1, 0)}
ω otherwise

intL + intL = intL intH + intH = intH
int{d1 �→u1,...,dn �→un} + int{d1 �→u′

1,...,dn �→u′
n} = int{d1 �→(u1+u′

1),...,dn �→(un+u′
n)}

(τ1
ϕ→u τ2) + (τ1

ϕ→u′ τ2) = τ1
ϕ→(u+u′) τ2

〈τ1, . . . , τn〉 + 〈τ ′
1, . . . , τ

′
n〉 = 〈τ1 + τ ′

1, . . . , τn + τ ′
n〉

(Γ1 + Γ2) (x) =

⎧⎨
⎩

Γ1 (x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2 (x) if x ∈ dom(Γ2) \ dom(Γ1)
Γ1 (x) + Γ2 (x) if x ∈ dom(Γ1) ∩ dom(Γ2)

u1 · u2 =

⎧⎨
⎩

0 if u1 = 0 or u2 = 0
1 if u1 = u2 = 1
ω otherwise

u · intL = intL u · intH = intH

u · int{d1 �→u1,...,dn �→un} = int{d1 �→u·u1,...,dn �→u·un}
u · (τ1 →u′ τ2) = τ1 →u·u′ τ2 u · 〈τ1, . . . , τn〉 = 〈u · τ1, . . . , u · τn〉
(u · Γ ) (x) = u · Γ (x)

�p� =
{

L if p = L
H otherwise

Fig. 4. Operations on policies, types, and type environments

Theorem 1. Suppose that dom(Σ) = {σ1, . . . , σk}.
If � 〈Σ, D, e〉 and 〈HΣ,D,{σ1 �→n1,...,σk �→nk}, e〉 −→∗ 〈H, e′〉 �−→, then e′ is a value.

Note that Theorem 1 alone does not necessarily guarantee that e satisfies the
security policy. In fact, the evaluation of 〈H∅,∅,{σ �→2}, σ + 1〉 does not get stuck
(yields the value 3), but it does leak information about σ. The security property
satisfied by well-typed programs is formalized in the next section.

4 Linear Relaxed Non-interference

In this section, we define linear relaxed non-interference (linear relaxed NI, in
short) as a new criterion of information flow security, and prove that well-typed
programs of our type system satisfy that criterion. Linear relaxed NI is an ex-
tension of relaxed NI [7]. We first review relaxed NI and discuss its weakness
in Section 4.1. We then define linear relaxed NI and show that our type sys-
tem guarantees linear relaxed NI. Section 4.3 discusses an application of linear
relaxed NI to quantitative information flow analysis.

4.1 Relaxed Non-interference

Relaxed non-interference [7] is an extension of non-interference. Suppose that
Σ = {σ �→ {d �→ ω}}. Informally, an expression e satisfies relaxed NI under the
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policy Σ if e can be factorized (up to a certain program equivalence) into e′(dσ),
where e′ does not contain σ. If d is a constant function λx.0, then the relaxed
NI degenerates into the standard non-interference.

As already discussed in Section 1, the relaxed NI does not always guarantee
a desired secrecy property. For example, consider the case where d = λx.λy.x =
y. Then, any expression containing σ can be factorized into e′(dσ) up to the
standard contextual equivalence. In fact, σ is contextually-equivalent to:3

(λωg.(fix test(s) = if g(s) then s else test(s + 1)) 0)(d〈〈σ〉〉)

4.2 Linear Relaxed Non-interference

We first define the notion of (typed) contextual equivalence. For the sake of sim-
plicity, we consider only closed terms (thus, it suffices to consider only contexts
of the form e[ ]). We write 〈H, e〉 ⇓ n if 〈H, e〉 −→∗ 〈H ′, n〉 for some n.

Definition 6 (contextual equivalence). Suppose that ∅ � e1 : τ & ϕ and
∅ � e2 : τ & ϕ. e1 and e2 are contextually equivalent, written e1 ≈τ,ϕ e2, if, for
any e such that ∅ � e : τ

nt→ω intL, 〈∅, ee1〉 ⇓ 0 if and only if 〈∅, ee2〉 ⇓ 0.

Note that in the above definition, the initial heap is empty, so that neither secu-
rity variables σ nor declassification functions are involved; thus, the contextual
equivalence above should coincide with standard typed equivalence for linear
λ-calculus.

We now define the linear relaxed non-interference.

Definition 7 (linear relaxed non-interference). Let Σ = {σ1 �→ {d1 �→
u11, . . . , dk �→ u1k}, . . . , σm �→ {d1 �→ um1, . . . , dk �→ umk}}. Suppose also that
SVar(e) ⊆ {σ1, . . . , σm}. 〈Σ, D, e〉 satisfies linear relaxed non-interference at
τ if there exists e′ such that the following equivalence holds for any integers
n1, . . . , nm:

[n1/σ1, . . . , nm/σm]D(e) ≈τ,nt e′ 〈λu11x.(D(d1)n1), . . . , λu1kx.(D(dk)n1)〉
· · ·
〈λum1x.(D(d1)nm), . . . , λumkx.(D(dk)nm)〉

Here D(e) denotes the term obtained from e by replacing each occurrence of a
declassification expression d〈〈e〉〉 with D(d)e.

Intuitively, the above definition means that if 〈Σ, D, e〉 satisfies linear relaxed
non-interference, then e can leak information about the security variables σ1, . . . ,
σm only by calling declassification functions at most the number of times speci-
fied by Σ. Note that in the above definition, e′ cannot depend on the values of
the security variables n1, . . . , nm.
3 Actually, Li and Zdancewic [7] uses a finer equivalence than the contextual equiva-

lence, so that the above factorization is not valid. However, if σ ranges over a finite
set, then a similar factorization is possible by unfolding the recursion: consider a
program if σ = 0 then 0 else if σ = 1 then 1 else if σ = 2 then 2 else · · ·.
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We now show that well-typed programs satisfy linear relaxed non-interference.

Theorem 2. If � 〈Σ, D, e〉 : τ and all the security levels in τ are L, then
〈Σ, D, e〉 satisfies the linear relaxed non-interference at τ .

A proof of the above theorem is given in [5].

4.3 Application to Quantitative Information Flow Analysis

In this subsection, we discuss how linear relaxed NI can be applied to quanti-
tative information flow analysis [8,2]. Unlike the classical information flow anal-
ysis, which obtains binary information of whether or not a high-security value
is leaked to public, the quantitative analysis aims to estimate the quantity of
the information leakage based. Recently, definitions and methods of the quanti-
tative information flow analysis have been extensively studied by Malacaria et
al. [8,2], based on Shannon’s information theory [15]. The quantitative analysis
is generally more expensive than the classical information flow analysis, and has
not been fully automated. As discussed below, the linear relaxed NI enables us
to estimate the quantity of information leakage per program run by looking at
only the security policy, not the program itself. Since the security policy of a
program is typically much smaller than the program itself, this reduces the cost
of quantitative information flow analysis.

For the sake of simplicity, we consider below only a single high security variable
σ and the declassification environment D = {d �→ λωx.λ1y.x⊕y}, with the fixed
security policy Σ = {σ �→ {d �→ 1}}.

Suppose that 〈Σ, D, e〉 satisfies linear relaxed NI at intL. Let us consider the
quantity of information that flows from σ to the value of e. By Definition 7, there
exists an e′ such that for any n and n1, 〈{σ �→ (n, p)} ∪ D, e〉 ⇓ n1 if and only
if 〈{σ �→ (n, p)} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉 ⇓ n1, where e′ does not contain σ. More-
over, since e′(λ1x.d〈〈σ〉〉) is well-typed, if 〈{σ �→ (n, p)} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉 −→∗

〈H, n1〉 and the value of σ is used during the reduction, then the reduction
sequence must be of the following form:4

〈{σ �→ (n, {d �→ 1})} ∪ D, e′〈λ1x.d〈〈σ〉〉〉〉
−→∗ 〈{σ �→ (n, {d �→ 1})} ∪ H1, E1[λ1x.d〈〈σ〉〉]〉
−→∗ 〈{σ �→ (n, {d �→ 1}), z �→ λ1x.d〈〈σ〉〉} ∪ H2, E2[z〈 〉]〉
−→∗ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ1y.n ⊕ y} ∪ H3, E3[w(m)]〉
−→ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H3, E3[n ⊕ m]〉
−→ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H3, E3[m′]〉
−→∗ 〈{σ �→ (n, {d �→ 0}), z �→ λ0x.d〈〈σ〉〉, w �→ λ0y.n ⊕ y} ∪ H4, n1〉

Here, since e′ does not contain σ, Hi and Ei (i = 1, 2, 3) are independent of the
value n of σ.

4 For the sake of simplicity, we consider only terminating programs. Non-terminating
programs can be treated in a similar manner, by introducing a special value ⊥ for
representing non-termination.
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Let L be a random variable representing e′ above, H be a random variable
representing the value n of σ, and O be a random variable representing the final
value n1. Then, by the reduction sequence above, O can be expressed as follows.

O = f0(f1(L), H⊕f2(L))

Here, f1(L) corresponds to the pair (H3, E3) and f2(L) corresponds to m in the
reduction step above. The function f0 represents the computation of n1 from
the configuration 〈{σ �→ (n, {d �→ 0}), . . .} ∪ H3, E3[m′]〉.

According to [8,2], the leakage of information is expressed by:5

I(O; H | L) = H(O | L) = H(O, L) − H(L)

Here, H( 	X) is defined as ΣxP ( 	X = 	x) log 1
P ( �X=�x)

(and P ( 	X = 	x) denotes the

probability that the value of 	X is 	x).
Using O = f0(f1(L), H⊕f2(L)), I(O; H | L) is estimated as follows.

I(O; H | L) = H(O, L) − H(L)
= H(f0(f1(L), H⊕f2(L)), L) − H(L)
≤ H(f1(L), H⊕f2(L), L) − H(L) (by H(f(X)) ≤ H(X))
= H(H⊕f2(L), L) − H(L) (by the definition of H)
= H(H⊕f2(L) | L) (by the definition of H(X | Y))
≤ H(H⊕f2(L) | f2(L))

Thus, I(O; H | L) is bound by the maximum information leakage by the operation
⊕ (more precisely, the maximum value of H(H⊕X | X) obtained by changing the
distribution for X).

If ⊕ is the equality test for k-bit integers, then

H(H⊕X | X) = P (H = X) log 1
P (H=X) + P (H �= X) log 1

P (H 	=X)

= 1
2k log 2k + 2k−1

2k log 2k

2k−1 ≤ k+1
2k

Thus, the maximum leakage is bound by k+1
2k (which is considered safe if k is

sufficiently large).
On the other hand, if ⊕ is the inequality test <, then, the maximum value of

H(H⊕X | X) is obtained by letting P (X = 2k−1) = 1.

H(H⊕X | X) = P (H < 2k−1) log 1
P (H<2k−1) + P (H ≥ 2k−1) log 1

P (H≥2k−1) = 1

Thus, we know that 1 bit of information about σ may be leaked by each run of
the program.

Note that the above discussion, we used only the fact that 〈Σ, D, e〉 satisfies
linear relaxed NI; the discussion applies to any program e that satisfies the policy
Σ and D. Thus, the quantity of information leakage can be estimated only by
looking at Σ and D.
5 Note that we are considering deterministic programs. Note also that we do not

consider timing attacks. It is possible to hide timing attacks to some extent, by
using Agat’s technique, for instance [1].
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5 Related Work

There have been many studies on information flow security and declassification
policies: see [11,13] for a general survey and comparison of declassification poli-
cies. Most closely related to our work is Sabelfeld and Myers’ work on delimited
information release [12], and Li and Zdancewic’s work on relaxed NI [7]. They
control what functions can be used for declassification, but not how often the de-
classification functions may be used. Controlling what declassification functions
are used is sufficient if the declassification functions do not return functions.
In fact, in delimited information release, one can use λx.(l = x) (where l is a
low security variable) for the password example; No matter how often declassi-
fication is performed, the leaked information is the one bit information h = l.
(In the relaxed NI [7], this is not allowed since policies must be closed terms.)
If the declassification functions return functions (as in the password example
in this paper), however, controlling what declassification functions are used is
not sufficient for bounding the quantity of information leakage. In the case of
the password example, if one wants to specify that the password can be com-
pared with some string but does not to want to specify which string should be
compared with the password, then one should use λx.λs.(s = x) as the declas-
sification function. We should therefore control how often functions are used to
bound the quantity of information leakage.

Another approach to extending relaxed NI would be to replace the equivalence
relation in the definition of relaxed NI with a complexity-preserving relation, as
discussed in [13]. Let us write e � e′ if e′ is more efficient than e (see [14]
for formal discussion of such a relation). Then, if e � e′(d h) holds for some e′

that does not contain h, e cannot declassify information about h much faster
than by calling the declassification function d. In the password example (where
d = λx.λs.(x = s)), e � e′(d h) implies that it takes a time exponential in the bit
length of h for e to leak the entire information about h. Thus, this approach is
useful for estimating the speed of information leakage. The approach, however,
sometimes gives too conservative estimation of the rate of information leakage.
For example, PIN code for a bank account typically consists of only 4 digits,
hence knowing that a program satisfies the complexity-preserving relaxed NI
for the declassification function λx.λs.(x = s) does not give enough security
assurance (because calling the declassification function 104 times would not take
a second). On the other hand, if the program satisfies the linear relaxed NI,
the PIN code can be tested only once per program run, so that we can obtain
reasonable security assurance by controlling how often the program can be run.

Li and Zdancewic’s type system for relaxed NI [7] allows more flexible declassi-
fication than ours; for example, if a declassification function for σ is λx.((x+1) =
2), then declassification can be performed in two steps, by first applying λx.x+1
and then λy.y = 2. We think it is possible to extend our linear type system to
allow such flexible declassification.

Quantitative analysis of information flow has been recently studied by
Malacaria et al. [8,3,2] for imperative languages. As demonstrated in Section 4.3,
the linear relaxed non-interference allows us to apply quantitative analysis only
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to declassification functions instead of the whole program, by which enabling
a combination of traditional information flow analysis (with linearity analysis)
and quantitative information flow analysis. A limitation of our approach is that
only 0, 1, ω uses are considered, so that if a declassification is performed inside
a recursive function, the number of declassifications is always estimated as ω.
To remove that limitation, we need to generalize uses, possibly using dependent
types (for example, we can write Πn : intL.int{d �→n} → intL for the type of
functions that takes an integer n and a high-security value x, and applies the
declassification function d to x, n times).

Our type system can be considered an instance of linear type systems [17,6,9].
In the usual linear type systems, the type of an integer is annotated with how
often the integer is accessed. In our type system, the type of an integer is anno-
tated with how often each declassification function may be applied to the integer.
We did not discuss a type inference algorithm in this paper, but a type inference
algorithm (that is quadratic in the program size, provided that the number of
declassification functions is constant) can be developed in a standard manner [9].

6 Conclusion

We introduced a new notion of declassification called linear declassification,
which not only controls what functions can be used for declassifying high-security
values but also how often the declassification functions may be applied. We have
also introduced linear relaxed non-interference to formalize the property guar-
anteed by linear declassification. The linear relaxed non-interference enables in-
tegration of traditional type-based information flow analysis and quantitative
information flow analysis, by allowing us to apply quantitative analysis locally
to declassification functions.

In the paper, we used password checking as the motivating example. It is left
for future work to study more applications of linear declassification. We used a
static type system to guarantee linear relaxed NI. Combining our approach with
dynamic analysis (for counting of how often functions are called) would also be
an interesting direction for future work.
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