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Abstract. Post’s Embedding Problem is a new variant of Post’s Correspondence
Problem where words are compared with embedding rather than equality. It has
been shown recently that adding regular constraints on the form of admissible
solutions makes the problem highly non-trivial, and relevant to the study of lossy
channel systems. Here we consider the infinitary version and its application to
recurrent reachability in lossy channel systems.

1 Introduction

Post’s correspondence problem, or shortly PCP, can be stated as the question whether
two morphisms u,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whether u(σ) =
v(σ) for some non-empty σ∈Σ+. This undecidable problem plays a central role in com-
puter science because it is very often easier and more natural to prove undecidability by
reduction from PCP than from, say, the halting problem for Turing machines.

In a recent paper, we introduced PEP, the Post Embedding Problem, a variant of PCP
where one asks whether u(σ) is a (scattered) subword of v(σ) for some σ [CS07]. The

subword relation, also called embedding, is denoted “�”: w � w′ def⇔ w can be obtained
from w′ by erasing some letters, possibly all of them, possibly none. We also introduced
PEPreg, an extension of PEP where one adds the requirement that a solution σ belongs
to a regular language R ⊆ Σ∗.

PEP is a trivial, hence not very interesting, problem. However, and quite surpris-
ingly, PEPreg behaves very differently. PEPreg is decidable but it is not primitive re-
cursive. In fact it is (non-trivially) equivalent to the reachability problem for lossy
channel systems. Thus PEPreg is a new representative of the strange computational
niche that hosts lossy channel systems and other problems in timed automata and log-
ics [LW05, ADOW05, OW06, OW07], concurrency models [AM02, Del07, LNO+07],
temporal and modal logic [DL06, GKWZ06, KWZ05, Kur06], and other areas [JL07].
We could also use PEPreg to solve open problems on unidirectional channel systems
combining one reliable and one lossy channel. These unidirectional systems, introduced
in [CS07], are currently under our active scrutiny because of their fundamental role in
the classification of channel systems that mix reliable and unreliable channels along
arbitrary network topologies [Cha07].
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The ω-regular Post Embedding Problem. In this paper we consider infinitary extensions
of PEPreg1, most prominently PEPω-reg, where one asks for an infinite σ ∈ Σω such
that u(σ) � v(σ), and where an ω-regular constraint can further be imposed upon σ.
Our motivation is twofold. Firstly, we aim at deepening our understanding of PEP and
PEPreg, two exciting new problems. Secondly, and based on the existing results for
the finitary case, we expect that connections can be established between PEPω-reg and
recurrent reachability questions on channel systems.

Our contribution. In this paper, we show the equivalence between PEPω-reg and re-
current reachability questions for unidirectional channel systems. This equivalence is
shown using the 2-dimensional correspondence+embedding problem, or 2PCEP, a new
intermediary problem that leads to a clearer, more abstract and more modular approach.
The approach handles both the finitary and the infinitary cases in a single way.

We also show that PEPω-reg can be reduced to PEPreg, so that the two problems
are equivalent. Hence PEPω-reg is decidable. This has the surprising consequence that
recurrent reachability for unidirectional channel systems is decidable. It further shows
that the links we established between unidirectional channel systems and lossy channel
systems (in [CS07]) do not carry over from reachability to recurrent reachability.

Finally, we show that recurrent reachability for lossy channel systems can be reduced
to PEP

ω-reg
dir , the variant of PEPω-reg where we look for direct solutions (informally,

solutions where v(σ) must be ahead of u(σ) at all times when σ grows from ε to its
final value). Hence PEP

ω-reg
dir is undecidable (while PEP

ω-reg
codir is decidable). Again, this

contrasts with the finitary case, where PEPreg, PEP
reg
dir and PEP

reg
codir are equivalent.

Outline of the paper. Section 2 recalls the necessary definitions and notations on em-
beddings between finite or infinite words. Section 3 states the ω-regular Post embed-
ding problem, solves it in the unconstrained case, and shows that restricting to short
morphisms is no loss of generality. Section 4 shows the equivalence between PEPreg

and PEPω-reg, before Section 5 links PEPω-reg and PEPreg with reachability and recur-
rent reachability questions for unidirectional channel systems. Finally, section 6 solves
the remaining case, PEP

ω-reg
dir , by linking it to recurrent reachability for lossy channel

systems.

2 Notations and Definitions

Words. We write u,v,w,t,σ,ρ,α,β, . . . for words, i.e., finite or infinite (i.e., ω-length)
sequences of letters such as a,b, i, j, . . . from alphabets Σ,Γ, . . .. The length of u ∈ Σ∗ ∪
Σω is written |u|, the set alph(u) is the set of letters (a subset of Σ) that occur in u. We
denote with u.v, or uv, the concatenation of u and v, with uv = u when u has ω-length.

A morphism from Σ∗ to Γ∗ is a map h : Σ∗ → Γ∗ that respects the monoidal struc-
ture, i.e., with h(ε) = ε and h(σ.ρ) = h(σ).h(ρ). Its extension over Σω is defined in
the obvious way: note that, in general, it takes values in Γ∗ ∪Γω since h(u) = ε for
u �= ε is allowed. A morphism h is completely defined by its image h(1), h(2), . . . ,

1 Recall that the classic PCP problem is undecidable but r.e., while the infinitary extension,
denoted PCPω, is Σ1

1-complete.
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on Σ = {1,2, . . .}. We often simply write h1,h2, . . ., and hσ, instead of h(1),h(2), . . .,
and h(σ).

Embeddings. Given two words u = a1 . . .an and v = b1 . . .bm, we write u� v when u is a
subword of v, i.e., when u can be obtained by erasing some letters (possibly none) from
v. For example, abba � abracadabra. Equivalently, u � v when u can be embedded
in v, i.e., when there exists an order-preserving injective map (called an “embedding”)
h : {1, . . . ,n}→ {1, . . . ,m} such that ai = bh(i) for all i = 1, . . . ,n. Embeddings between
ω-words are defined similarly, with a strictly increasing h : N�0→N�0. We explicitly
allow the embedding of finite words into infinite ones.

It is well-known that the subword relation is a partial ordering on finite words. Ob-
serve that, between ω-words, embedding is only a (partial) quasi-ordering: u � v and
v � u together do not imply u = v. For example, (ab)ω � (bba)ω � (ab)ω. We write
u ≡ v when u � v and v � u.

Halving ω-words. For some u ∈ Σω, let inf(u) ⊆ Σ denote the set of letters that occur
infinitely many times in u. The word u can be decomposed under the form u′.u′′ where
u′ is a finite prefix and the corresponding suffix u′′ ∈ Σω, only contains letters from
inf(u). Such a decomposition is called a halving of u. There exists several (in fact,
infinitely many) halvings of any u ∈ Σω: the canonical halving is obtained by selecting
the shortest possible prefix u′.

The following lemma is a classic tool when considering embeddings between ω-
words (see, e.g., [Fin85]).

Lemma 2.1. Let u,v ∈ Σω be two ω-words with u′.u′′ and v′.v′′ two arbitrary halvings
of u and v. Then

u � v iff

{
alph(u′′) ⊆ alph(v′′), and
there exists x ∈ alph(v′′)∗ such that u′ � v′x.

Furthermore, when u � v, then x can be chosen with |x| ≤ |u′|, and for any halving
u = u′.u′′ there exists a halving v = v′.v′′ such that u′ � v′.

Corollary 2.2. Let u1,u2 be two ω-words such that inf(u1) = alph(u1) = alph(u2) =
inf(u2). Then u.u1 ≡ u.u2 for all u ∈ Σ∗.

3 Post Embedding Problems

Post embedding problems are variants of Post correspondence problems where corre-
spondence (equality between words) is replaced by embedding, and where an additional
regular constraint may be imposed over the solution.

Formally, given two morphisms u,v : Σ∗ → Γ∗ we say that σ ∈ Σ∗ is a (finite) solution
to Post’s embedding problem if uσ � vσ. If σ ∈ Σω and uσ � vσ, then σ is an infinite
solution (also called, an ω-solution).

We say that σ is a direct solution if uρ � vρ for every prefix ρ of σ. It is a codirect
solution if uρ � vρ for every suffix ρ of σ. When considering finite solutions [CS07],
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there is a symmetry between the notions of direct and codirect solutions, since a direct
solution for some u,v is a codirect solution for the mirror instance ũ, ṽ. This symmetry
does not carry over to infinite solutions because the mirror of an ω-word is not an ω-
word. Also, observe that the prefixes of a direct ω-solution are finite (direct) solutions,
and that the suffixes of a codirect ω-solution are other infinite (codirect) solutions.

The Post embedding problems we considered in [CS07] are PEPreg, PEP
reg
dir and

PEP
reg
codir that ask, given two morphisms u,v and a regular R ⊆ Σ∗, whether R contains

a solution (respectively, a direct solution, a codirect solution). The infinitary extensions
of these problems are PEPω-reg, PEP

ω-reg
dir and PEP

ω-reg
codir , that ask, given u,v and an ω-

regular R ⊆ Σω, whether there exists an ω-solution σ ∈ R (resp., a direct ω-solution, a
codirect ω-solution).

In the above definition, the regular constraint applies to σ but this is inessential and
our results still hold when the constraint applies to uσ, or vσ, or both (see [CS07]).

For complexity issues, we assume that the constraint R is given as a nondeterministic
automaton AR, that can be a FSA or a Büchi automaton depending on whether R is
finitary or not. By a reduction between two decision problems, we mean a logspace
many-one reduction, except when specified otherwise (as in Section 4). We say two
problems are equivalent when they are inter-reducible.

3.1 General Embedding for Direct Solutions

We now state a technical lemma that shows that the above definition of a direct solution,
“uρ � vρ for all prefixes ρ of σ”, can be replaced by a stronger requirement: that there
exists an embedding of uσ into vσ that embeds any uρ into the corresponding vρ.

Let a PEPω instance be given by two morphisms u,v, and consider an infinite σ∈Σω,
of the form σ = i1.i2.i3 . . .

For k = 0,1,2, . . ., we let lk and l′k denote respectively, the lengths |ui1i2...ik | and
|vi1i2...ik |.
Lemma 3.1. The following are equivalent:

(a). σ is a direct solution,
(b). For all k ∈ N, there exists an embedding hk : {1,2, . . . , lk} → {1,2, . . . , l′k} that
witnesses ui1i2...ik � vi1i2...ik ,
(c). There exists a general embedding h : N → N that witnesses uσ � vσ and such that
its restriction to {1,2, . . . , lk} witnesses ui1i2...ik � vi1i2...ik .

Proof (Sketch). (a) and (b) are equivalent by definition of being a direct solution. (c)

obviously implies (b). We prove (c) from (b) by defining h(i) def= mink=1,2,... hk(i). ��

3.2 The Unrestricted Problems

PEP and PEPω are the special case of PEPreg and PEPω-reg where R = Σ+ (respectively,
R = Σω), i.e., where there are no regularity constraints over the form of a solution. The
remark that PEP is trivial extends to PEPω, PEPω

dir and PEPω
codir:

Proposition 3.2. Given two morphisms u,v : Σ∗ → Γ∗ defining a Post embedding
problem:
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1. There is a solution in Σ+ if and only if there is a direct ω-solution in Σω if and only if
there is some i ∈ Σ such that ui � vi.
2. There is an ω-solution in Σω if and only if there is there is a codirect ω-solution if
and only if there exists a non-empty subset Σ′ of Σ s.t. alph(u(Σ′)) ⊆ alph(v(Σ′)).

Proof. 1. Obviously, if ui � vi then i∈Σ is a solution in Σ+, and iω is a direct ω-solution.
Conversely, if there is a direct solution σ = i1i2i3 . . . in Σω, then ui1 � vi1 by definition of
directness. If there is a finite solution σ = i1i2i3 . . . im in Σ+, then either ui1 � vi1 and we
are done, or i2i3 . . . im is a shorter finite solution, and we’ll eventually encounter some
ui � vi.
2. Obviously, if alph(u(Σ′)) ⊆ alph(v(Σ′)) for some non-empty Σ′ = {i1, . . . , im}, then
(i1 . . . im)ω is an ω-solution, and even a codirect one. Conversely, given an ω-solution

σ, Lemma 2.1 entails that, letting Σ′ def= inf(σ), one has alph(u(Σ′)) ⊆ alph(v(Σ′)). ��
The corollary is:

Theorem 3.3. PEPω and PEPω
codir coincide, and are PTime-complete. PEPω

dir coin-
cides with the finitary problems PEP, PEPdir and PEPcodir, and these problems are in
LogSpace.

Proof (Sketch). There exists a simple polynomial-time decision procedure for PEPω. It
computes the largest Σ′ satisfying alph(u(Σ′))⊆ alph(v(Σ′)) and then checks that this Σ′
is not empty. This largest Σ′ is obtained by starting with Σ′:=Σ and then removing from
Σ′ every i for which alph(ui) is not included in the current Σ′, until eventual stabilization
(PTime-hardness is proved in the full version of this paper). Regarding PEPω

dir, one
only needs deterministic logarithmic space to find whether ui � vi for some i. ��

3.3 Short Morphisms

PEP
reg
≤1 (respectively PEP

ω-reg
≤1 ) is PEPreg (respectively PEPω-reg) with the constraint

that all images ui’s and vi’s have length ≤ 1, i.e., the morphisms can be seen as maps
u,v : Σ → Γ∪{ε}.

Proposition 3.4
1. PEPreg and PEP

reg
≤1 are equivalent (inter-reducible).

2. PEPω-reg and PEP
ω-reg
≤1 are equivalent (inter-reducible).

Proof. It is enough to show that PEP reduces to PEP≤1. For this, let u,v : Σ∗ → Γ∗
be a PEP instance. Let k > 0 be large enough so that, for all i ∈ Σ, ui and vi have at
most k letters. Then we can write each ui under the form u1

i . . .uk
i with u j

i ∈ Γ∪ {ε},
i.e., |u j

i | ≤ 1. Similarly, we write every vi as some v1
i . . .vk

i with |v j
i | ≤ 1. We now define

Σ′ def= Σ×{1, . . . ,k} and two morphisms u′,v′ : Σ′∗ → Γ∗ with u′(i, j) def= u j
i and v′(i, j) def=

v j
i . Observe that u′,v′ defines a PEP≤1 instance. Now, with R ⊆ Σ∗ (or R ⊆ Σω) one

associates a constraint R′ ⊆ Σ′∗ (resp., R′ ⊆ Σ′ω) by R′ def= h(R) with h : Σ∗ → Σ′∗ given
by h(i) = (i,1)(i,2) . . . (i,k). R′ is regular (resp., ω-regular) since R is, and u′,v′ admits
a solution in R′ iff u,v has one in R. ��
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4 Reducing PEPω-reg to PEPreg

Theorem 4.1 (Main result). PEPω-reg and PEPreg are equivalent (modulo elementary
reductions).

Corollary 4.2. PEPω-reg is decidable (but not primitive-recursive).

One direction of Theorem 4.1 is obvious: any PEPreg instance u,v,R can be seen as a
PEPω-reg instance by adding an extra symbol ⊥ to Σ and Γ, replacing R with R.⊥ω, and
letting u(⊥) = v(⊥) = ⊥.

For the other direction, we consider a PEPω-reg instance given by two morphisms
u,v : Σ∗ → Γ∗ and an ω-regular R ⊆ Σω.

Lemma 4.3. There exists σ ∈ R such that uσ � vσ if and only if there exists two finite
words ρ1 and ρ2 in Σ∗ such that

(a) ρ1.ρω
2 ∈ R,

(b) uρ1 � vρ1.ρ2 , and
(c) alph(uρ2) ⊆ alph(vρ2).

Proof. The “⇐” direction is easy since taking σ = ρ1.ρω
2 is sufficient. For the “⇒”

direction, we assume that σ = a1a2a3 . . . ∈ R satisfies uσ � vσ and show how to build
ρ1 and ρ2.

Let AR = (Q,Σ,q0,F,δ) be a Büchi automaton for R, and π = q0
a1−→ q1

a2−→ q2
a3−→ ·· ·

be an accepting run of AR over σ. This run is an ω-sequence of transitions “qi−1
ai−→ qi”,

so that π ∈ δω can be halved under the form π = π′.π′′. This gives rise to two halvings
u′.u′′ and v′.v′′ of, respectively, uσ and vσ.

Let us pick a finite prefix θ of π′′ that uses every transition from inf(π) at least once,

and that ends on the starting state of π′′. Hence θ is some qn
an+1−−→ qn+1

an+2−−→ ·· · an+k−−→ qn+k

with n = |π′|, qn = qn+k, and inf(σ) = {an+1,an+2, . . . ,an+k}. Let now ρ1
def= a1a2 . . .an

and ρ def= an+1an+2 . . .an+k. Clearly ρ1.ρω ∈ R as witnessed by the ultimately periodic
run π′.θω. Furthermore, from u′ = uρ1 and inf(u′′) = alph(u′′) = alph(uρ), we deduce
uσ = u′.u′′ ≡ uρ1.ρω using Corollary 2.2. Similarly, vσ ≡ vρ1.ρω . Hence uσ � vσ entails
uρ1.ρω � vρ1.ρω . Using Lemma 2.1, we conclude that uρ1 � vρ1.ρ2 can be obtained by

picking for ρ2 a large enough power ρ2
def= ρ.ρ . . .ρ of ρ. Such a ρ2 further ensures

ρω
2 = ρω, so that requirements (a) and (c) are inherited from ρ. ��

For the next step, we show how to state the existence of two finite ρ1 and ρ2 as in
Lemma 4.3 under the form of a PEPreg problem.

Let AR =(Q,Σ,q0,F,δ) be the Büchi automaton defining R. As is standard, for q,q′ ∈
Q, we let Lq,q′ ⊆ Σ∗ denote the (regular) language accepted by starting AR in q and
stopping in q′.

Let Σ′ = {1′,2′, . . .} be a copy of Σ = {1,2, . . .} where letters have been primed: for
x ∈ Σ∗ and L ⊆ Σ∗, we let x′ ∈ Σ′∗ and L′ ⊆ Σ′∗ denote primed versions of x and L.

We can now express condition (a) as a regularity constraint on ρ1.ρ′
2: by definition,

ρ1.ρω
2 belongs to R iff for some q ∈ Q, ρ1 ∈ Lq0,q and ρ2 ∈ (Lq,q � ε). That is, if and

only if ρ1.ρ′
2 ∈ R1 with
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R1
def=
�

q∈Q

Lq0,q.(L′
q,q � ε).

Condition (b) can be stated as an embedding property on ρ1.ρ′
2: let u′,v′ : (Σ∪Σ′)∗ →Γ∗

be the extensions of u and v given by u′i′
def= ε and v′i′

def= vi. Then

uρ1 � vρ1.ρ2 if and only if u′ρ1.ρ′2
� v′ρ1.ρ′2

.

Finally, condition (c) can be expressed as another regularity constraint. Indeed, for
X ⊆ Γ, alph(uρ2) ⊆ X and alph(vρ2) ⊆ X require ρ2 ∈ u−1(X∗) and, respectively, ρ2 ∈
v−1(X∗). These are regular conditions on ρ2 since inverse morphisms preserve regular-
ity. Let now

R2
def=
�

X⊆Γ

(
u−1(X∗)∩ v−1(X∗)∩

�

a∈X

a∈alph(vρ2 )︷ ︸︸ ︷
Σ∗{i ∈ Σ | a ∈ alph(vi)}Σ∗

)
.

Clearly, alph(uρ2) ⊆ alph(vρ2) if and only if ρ2 ∈ R2. Hence alph(uρ2) ⊆ alph(vρ2) if,
and only if, ρ1.ρ′

2 ∈ Σ∗.(R2)′ where we observe that R2, hence Σ∗.(R2)′ too, are regular.
Finally, u,v has an ω-solution in R iff u′,v′ has a finite solution in R1 ∩ (R2)′, which

provides the reduction from PEPω-reg to PEPreg.

Remark 4.4. The automaton for R1 has size linear in |AR|. The automaton for R2 has
size exponential in |Σ|: this is because we consider all subsets X ⊆ Σ. Hence the re-
duction from PEPω-reg to PEPreg is not logspace when the constraint R is given by a
non-deterministic FSA. It is polynomial-space, which is certainly fine enough to state
“equivalence” by inter-reducibility between problems that are not primitive-recursive.

There exists other possible choices for the precise finitary way with which R is
supposed to be provided in a PEP instance: for many of these choices, from various
logical formalisms (e.g., MSO) to various automata-based framework (e.g., alternating
automata), logspace reductions from PEPω-reg to PEPreg exist. ��
We conclude this section with the following observation:

Theorem 4.5. PEP
ω-reg
codir and PEP

reg
codir are equivalent (inter-reducible).

This can be proved using the same techniques we used in this section, in particular one
can state a version of Lemma 4.3 that accounts for codirect solutions (while this is not
possible for direct solutions). Then a codirect infinite solution σ induces the existence
of a codirect ρ1.ρω

2 , and the existence of such an infinite ρ1.ρω
2 can be witnessed by a

finite ρ1.ρ′
2 that solves a derived PEP

reg
codir instance.

5 Unidirectional Channel Systems

Unidirectional channel systems, shortly UCS, are systems composed of two finite-state
machines that communicate unidirectionally via one reliable and one lossy channel,
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q1

q2q3

r!a

l!d

r!b

l!c p1 p2

p3p4

r?c

l?a

l?c

r?b

l?b

r?a

r?d

channel r (reliable)

channel l (lossy)

a b d a c

b c

Fig. 1. A unidirectional channel system with one reliable and one lossy channel

as illustrated in Fig. 1. No feedback communication from the receiver to the sender is
possible. UCS’s are a key ingredient in the complete classification of mixed channel
systems according to their network topologies [Cha07].

Formally, a UCS has the form S = (Q1,Q2,M,{r,l},Δ1,Δ2), where Q1 and Δ1 (re-
spectively, Q2 and Δ2) are the finite set of states and set of rules of the sender (re-
spectively, the receiver), M is the finite message alphabet, r and l are the names of,
respectively, the reliable and the lossy channel. The sender’s rules, Δ1, is a subset of

Q1 ×{r,l}×{!}× M∗×Q1, i.e., it contains rules of the form q
r!u−→ q′ or q

l!u−→ q′. The

receiver’s rules have the form q
r?u−→ q′ or q

l?u−→ q′ with q,q′ ∈ Q2.
A configuration of S is a tuple 〈q1,q2,v1,v2〉 with control states q1 and q2 for the

components, contents v1 for channel r, and v2 for l. The operational semantics is as ex-

pected. A rule q
r!u−→ q′ (resp. q

l!u−→ q′) from Δ1 gives rise to all transitions 〈q,q2,v1,v2〉 −→
〈q′,q2,v1u,v2〉 (resp. all 〈q,q2,v1,v2〉 −→ 〈q′,q2,v1,v2u′〉 for u′ � u). A rule q

r?u−→ q′

(resp. q
l?u−→ q′) from Δ2 gives rise to all transitions 〈q1,q,uv1,v2〉 −→ 〈q1,q′,v1,v2〉 (resp.

all 〈q1,q,v1,uv2〉 −→ 〈q1,q′,v1,v2〉). Observe that message losses only occur when writ-
ing to channel l. A run π is a sequence

π : 〈q0
1,q

0
2,v

0
1,v

0
2〉 −→ 〈q1

1,q
1
2,v

1
1,v

1
2〉 −→ 〈q2

1,q
2
2,v

2
1,v

2
2〉 −→ ·· ·

of configurations linked by valid transitions.
We consider reachability and recurrent reachability problems for UCS’s. Formally,

given a UCS S, two initial states q1
init ∈ Q1 and q2

init ∈ Q2, two sets F1 ⊆ Q1 and
F2 ⊆ Q2 of final states, the reachability problem, denoted ReachUcs, asks whether there
exists a run that starts from configuration 〈q1

init,q
2
init,ε,ε〉 and ends in some configu-

ration 〈q1
final,q

2
final,ε,ε〉 with (q1

final,q
2
final) ∈ F1 ×F2. The recurrent reachability prob-

lem, denoted RecReachUcs, asks whether there exists an infinite run starting from
〈q1

init,q
2
init,ε,ε〉 and visiting infinitely many configurations 〈qi

1,q
i
2,v

i
1,v

i
2〉 with (qi

1,q
i
2)∈

F1 ×F2.

Remark 5.1. As explained in [CS07], requiring that our reachability questions have
empty channels in the initial and the target configurations is just a technical simplifi-
cation. More general reachability questions, including control-state reachability, where
the channels contents in the target configuration are existentially quantified upon, re-
duce easily to ReachUcs. ��
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Theorem 5.2 (Equivalence between UCS and Post Embedding)
1. PEPreg and ReachUcs are equivalent (inter-reducible).

2. PEPω-reg and RecReachUcs are equivalent (inter-reducible).

The finitary case was first stated and proved in [CS07]. In the rest of this section, we
develop a new and more modular proof that also applies to the ω-regular case.

We first introduce an abstract version of the UCS problems that is closer to PEP:

Definition 5.3 (2PCEP)
a. The 2-dimensional correspondence plus embedding problem asks, given two pairs
of morphisms f1,g1 : Σ∗

1 → Γ∗ and f2,g2 : Σ∗
2 → Γ∗, to find words σ1 and σ2 s.t.

f1(σ1) = f2(σ2) (correspondence) and g1(σ1) � g2(σ2) (embedding).
b. 2PCEPreg is the decision problem, where given f1,g1, f2,g2 and two regular lan-
guages R1 ⊆ Σ∗

1 and R2 ⊆ Σ∗
2, one asks whether there is a solution with σ1 ∈ R1 and

σ2 ∈ R2.
c. 2PCEPω-reg is the infinitary version of 2PCEPreg, where now R1 ⊆ Σω

1 and R2 ⊆ Σω
2

are two given ω-regular languages, and where one looks for ω-solutions with σ1 ∈ R1

and σ2 ∈ R2.

Lemma 5.4 (See Appendix)
1. ReachUcs and 2PCEPreg are equivalent.

2. RecReachUcs and 2PCEPω-reg are equivalent.

We now reduce 2-dim correspondence+embedding to Post embedding:

Lemma 5.5 (See Appendix)
1. 2PCEPreg reduces to PEPreg.

2. 2PCEPω-reg reduces to PEPω-reg.

We can now conclude the proof of Theorem 5.2: since PEPreg can be seen as a special
case of 2PCEPreg (let f1 = f2 = Id, g1 = u, g2 = v) and, similarly, PEPω-reg as a special
case of 2PCEPω-reg, Lemmas 5.4 and 5.5 entail the equivalence of PEPreg and Reach-
Ucs on the one hand, of PEPω-reg and RecReachUcs on the other hand.

6 Lossy Channel Systems

Systems composed of several finite-state components communicating via several chan-
nels (all of them lossy) can be simulated by systems with a single channel and a single
component (see, e.g., [Sch02, Section 5]). Hence we define here a lossy channel sys-
tem (a LCS) as a tuple S = (Q,M,{c},Δ) as illustrated in Fig. 2. Rules read from, or
write to, the single channel c. Configurations of S are pairs 〈q,v〉 ∈ Q× M∗ of a state
and a channel contents. Transitions between configurations are obtained from the rules
as expected, in the write-lossy spirit we just used for UCS’s (see [CS07] for a formal
definition).

ReachLcs, the reachability problem for LCS’s, is the question, given a LCS S, an
initial state qinit ∈ Q and a set F ⊆ Q of final states, whether S has a run that goes
from 〈qinit,ε〉 to 〈q,ε〉 for some q ∈ F . RecReachLcs, the recurrent reachability prob-
lem for LCS’s, is the question whether S has an infinite run 〈qinit,ε〉 −→ 〈q1,v1〉 −→
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q1

q2q3

c!a

c?d

c!b

c?c
lossy channel c

a b a d

Fig. 2. A single-component system with a single lossy channel

〈q2,v2〉 −→ ·· · with qk ∈ F for infinitely many k ∈ N. Recall that ReachLcs is decid-
able [Pac87, AJ96b, BBS06] (albeit not primitive-recursive [Sch02]) while RecReach-
Lcs is undecidable [AJ96a] (albeit r.e.).2 Furthermore, ReachUcs and ReachLcs (and
PEPreg) are inter-reducible [CS07].

In the rest of this section we prove the following theorem.

Theorem 6.1. PEP
ω-reg
dir and RecReachLcs are equivalent (inter-reducible).

Corollary 6.2. PEP
ω-reg
dir is (r.e. but) undecidable.

The two directions of Theorem 6.1 are given by Lemmas 6.3 and 6.4.

Lemma 6.3. PEP
ω-reg
dir reduces to RecReachLcs.

Proof. The reduction from PEP
ω-reg
dir to RecReachLcs is illustrated in Fig. 3, where the

“rules” of the form q
c!xc?y−−−→ q′ are just a shorthand description for two consecutive rules

q
c!x−→ q? and q?

c?y−→ q′ that traverse an anonymous intermediary state q?. Simply put, the
LCS Su,v,R mimics the Büchi automaton AR that defines the constraint R ⊆ Σω. A run
of the LCS that visits F infinitely often will performs steps 1,2,3, . . ., writing to the
channel some v′1, v′2, v′3, . . . , that are subwords (because of message losses) of vi1 , vi2 ,
vi3 , . . . (the writes prescribed by the rules). During these same steps, it reads ui1 , ui2 ,
ui3 , . . . , from the channel. These read letters must have been written earlier, hence for
k = 1,2,3, . . ., ui1 . . .uik is a prefix of v′1 . . .v′k, hence a subword of vi1 . . .vik . Finally,

σ def= i1.i2.i3 . . . is a direct solution.
Reciprocally, given a direct solution σ = i1.i2.i3 . . ., it is possible (using the general

embedding provided by Lemma 3.1) to find subwords v′1, v′2, v′3, . . . of vi1 , vi2 , vi3 , . . .
s.t., for all k = 1,2, . . ., ui1 . . .uik is a prefix of v′1 . . .v′k. Using these v′k, one easily obtains
an infinite run of the LCS that shows the associated RecReachLcs is positive. ��
Lemma 6.4. RecReachLcs reduces to PEPω-reg

dir .

Proof. Consider a RecReachLcs instance S = (Q,M,{c},Δ) with given qinit and F . With
it, we associate a PEP

ω-reg
dir instance where Σ = Δ and where R ⊆ Σω is given by the

Büchi automaton that is exactly like S, with the difference that any rule δ between some

2 For Turing machines, the reachability problem is undecidable albeit r.e., while the recurrent
reachability problem is Σ1

1-complete.
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qinit

q2q3

i1

i2

i3

i2

From AR

⇒

qinit

q2q3

c!v1

c?u1

c!v2c?u2

c!v3

c?u3

c!v2 c?u2

To an LCS Su,v,R

c

Fig. 3. Reductions between PEP
ω-reg
dir and RecReachLcs

states q and q′ is now a transition q
δ−→ q′ in AR. The morphisms u,v are defined by

u(δ) def= “what rule δ reads in channel c”, v(δ) def= “what δ writes in c”. Since u(δ) = ε or
v(δ) = ε for every rule (LCS’s rules either read or write to c, not both), S (essentially)
coincides with Su,v,R (Fig. 3). Hence the proof of Lemma 6.3 shows that u,v,R is a
positive PEPω-reg instance iff the original RecReachUcs instance is positive. ��

7 Concluding Remarks

We introduced infinitary versions of PEPreg, a new and exciting variant of Post Corre-
spondence Problem based on embedding rather than equality, which also is an abstract
representative of the LCS complexity niche.

Our main result is that two such infinitary versions, PEPω-reg and PEP
ω-reg
codir , are

equivalent to the finitary PEPreg. Hence they are decidable albeit not in primitive-
recursive time. Since one can link PEPω-reg and RecReachUcs, the recurrent reachabil-
ity problem for unidirectional channel systems, we obtain the decidability of RecReach-
Ucs. In fact, and quite surprisingly, RecReachUcs and PEP or ReachLcs are equivalent.
The last version, PEP

ω-reg
codir , is equivalent to RecReachLcs, the recurrent reachability

problem for lossy channel systems, which is undecidable albeit r.e. Finally, the PTime-
complete unconstrained PEPω is harder that the unconstrained PEP that can be solved
in logspace.
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[LNO+07] Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with to-
kens which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 301–320. Springer, Heidelberg (2007)

[OW06] Ouaknine, J., Worrell, J.: On metric temporal logic and faulty Turing machines.
In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–
230. Springer, Heidelberg (2006)

[OW07] Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Comp. Science 3(1), 1–27 (2007)

[Pac87] Pachl, J.K.: Protocol description and analysis based on a state transition model
with channel expressions. In: Proc. PSTV 1987, pp. 207–219. North-Holland,
Amsterdam (1987)

[Sch02] Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letters 83(5), 251–261 (2002)



The ω-Regular Post Embedding Problem 109

A Proofs for Section 5

A.1 Commuting UCS Steps

We first state a trivial but important property about runs of unidirectional systems.

Let S = (Q1,Q2,M,{r,l},Δ1,Δ2) be some UCS, and 〈q1,q2,x,y〉 δ2−→ 〈q1,q′2,x
′,y′〉 δ1−→

〈q′1,q′2,x′′,y′′〉 be two consecutive steps with δ1 ∈ Δ1 and δ2 ∈ Δ2, i.e., where the re-
ceiver performs the first step, and the sender the second step. Then it is possible to fire
δ1 before δ2 and reach the same configuration. More precisely, there exists x′′′ and y′′′

with 〈q1,q2,x,y〉 δ1−→ 〈q′1,q2,x′′′,y′′′〉 δ1−→ 〈q′1,q′2,x′′,y′′〉.
The corollaries are

Lemma A.1. If S has a run 〈q1,q2,x,y〉 Δ1∪Δ2−−−→ ∗〈q′1,q′2,x′,y′〉 then it has one such run
of the form

〈q1,q2,x,y〉 Δ1−→ ∗〈q′1,q2,x
′′,y′′〉 Δ2−→ ∗〈q′1,q′2,x′,y′〉.

Lemma A.2. If S has an infinite run from 〈q1
0,q

2
0,x0,y0〉 of the form

〈q1
0,q

2
0,x0,y0〉 −→ 〈q1

1,q
2
1,x1,y1〉 −→ 〈q1

2,q
2
2,x2,y2〉 −→ ·· ·

with q1 = q1
i for infinitely many i’s, and q2 = q2

i for infinitely many i’s (not necessarily
the same), then it has one such run with (q1,q2) = (q1

i ,q
2
i ) for infinitely many i’s.

A.2 Proof of Lemma 5.4

2PCEPreg reduces to ReachUcs, and 2PCEPω-reg to RecReachUcs

For this, consider a 2PCEPreg instance f1,g1, f2,g2,R1,R2 as in Definition 5.3.b. Further
assume that, for i = 1,2, Ri is given by some FSA Ai = (Qi,Σi,qi

init,Fi,δi).
With this instance, we associate an UCS where the the sender is obtained from A2 by

replacing transitions q
i−→ q′ ∈ δ2 with rules q

r! f2(i) l!g2(i)−−−−−−−→ q′, and the receiver is obtained

from A1 by replacing transitions q
i−→ q′ ∈ δ1 with rules q

r? f1(i) l?g1(i)−−−−−−−→ q′.
If the 2PCEPreg instance is positive, then a solution σ1,σ2 can be used in a straight-

forward way to build, out of σ2, a run in the UCS that will start from 〈q2
init,q

1
init,ε,ε〉,

will reach some 〈q2
final,q

1
init, f2(σ2),x〉 for some q2

final ∈ F2, and where, using message
losses, we can choose to reach any x � g2(σ2). By picking x = g1(σ1), we can now
continue the run, using σ1, and reach 〈q1

final,q
2
final,ε,ε〉 for some q1

final ∈ F1.
Reciprocally, using Lemma A.1, a run from 〈q2

init,q
1
init,ε,ε〉 to some 〈q1

final,q
2
final,ε,ε〉

can be reordered into some

〈q2
init,q

1
init,ε,ε〉 r1−→ r2−→ ·· · rn−→︸ ︷︷ ︸

rules from Δ1

〈q2
final,q

1
init,x,y〉

r′1−→ r′2−→ ·· · r′m−→︸ ︷︷ ︸
rules from Δ2

〈q1
final,q

2
final,ε,ε〉

where all sender’s steps occur first, followed by the receiver steps. This translates into a

path q2
init

σ2−→ q2
final in A2, and q1

init
σ1−→ q1

final in A1 where f2(σ2) = x = f1(σ1), and where
g2(σ2) � y = g1(σ1), solving the 2PCEPreg instance.
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Finally, the 2PCEPreg instance is positive iff the associated ReachUcs instance is.
Hence 2PCEPreg reduces to ReachUcs.

The same association of an UCS with f1,g1, f2,g2,A1,A2 shows that 2PCEPω-reg

reduces to RecReachUcs.
Indeed, an infinite solution σ1,σ2 in some ω-regular languages R1 and R2, can be

used to build an infinite run of the UCS that visit infinitely many configurations
〈q2

final,q
1
i ,xi,yi〉 with some q2

final ∈F2, and infinitely many configurations 〈q2
i ,q

1
final,x

′
i,y

′
i〉

with some q1
final ∈ F1. Using Lemma A.2, this run can be reordered into a run visiting

infinitely many configurations 〈q2
final,q

1
final,x

′′
i ,y′′i 〉, showing the RecReachUcs instance

is positive.
Reciprocally, from an infinite run of the UCS that visits infinitely many configura-

tions of the form 〈q2
final,q

1
final,x

′′
i ,y

′′
i 〉, one extracts two solutions σ1,σ2 that show that

the 2PCEPω-reg instance is positive.

ReachUcs reduces to 2PCEPreg, and RecReachUcs to 2PCEPω-reg

Consider an ReachUcs instance with some UCS S = (Q1,Q2,M,{r,l},Δ1,Δ2), some
initial states q1

init,q
2
init, and some sets of final states F1,F2.

With this instance, we associate a 2PCEPreg instance where Σ1
def= Δ2 and Σ2

def= Δ1

are the set of rules. Automata A1 and A2 for R1 and R2 are obtained from the control
graph of the receiver (resp., the sender) in the obvious way. (Note that we extract FSA’s
from an ReachUcs instance, and Büchi automata from an RecReachUcs instance.) The
morphisms are defined in the obvious way:

f1(δ) def= x and g1(δ) def= y for δ = q
r?x l?y−−−→ r in Δ2,

f2(δ) def= x and g2(δ) def= y for δ = q
r!x l!y−−−→ r in Δ1.

A.3 Proof of Lemma 5.5

We consider a 2PCEP instance f1,g1, f2,g2 where we assume that the morphisms are
short, i.e., fi and gi can be seen as having type (Σi ∪{ε}) → (Γ∪{ε}). For 2PCEPreg

and 2PCEPω-reg, and thanks to the possibility offered by the regular constraints, this
assumption is no loss of generality, as can be easily proved using the techniques from
section 3.3.

Let Σ def= (Σ1 ∪{ε})× (Σ2 ∪{ε}) and define X ⊆ Σ by

(i, j) ∈ X if and only if f1(i) = f2( j).

Then (i1, j1).(i2, j2) . . . (in, jn) ∈ X∗ implies that f1(i1.i2 . . . in) = f2( j1. j2 . . . jn). Re-
ciprocally, if f1(σ1) = f2(σ2), then σ1 and σ2 can be decomposed under the form
σ1 = i1.i2 . . . in and σ2 = j1. j2 . . . jn such that (ik, jk) ∈ X for k = 1, . . . ,n. Observe that
in this decomposition, n ≥ |σi| is possible since ik = ε or jk = ε (or both) is allowed.

Now define projection morphisms h1 : Σ∗ → Σ∗
1 and h2 : Σ∗ → Σ∗

2 in the obvious way,

and let u,v : Σ∗ → Γ∗ be two morphisms given by u
def= g1 ◦ h1 and v

def= g2 ◦ h2. Then
u(i1, j1).(i2, j2)...(in, jn) � v(i1, j1).(i2, j2)...(in, jn) if and only if g1(i1.i2 . . . in) � g2( j1. j2 . . . jn).
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Finally, the 2PCEPreg instance with regular constraints R1,R2 translates into an
equivalent PEPreg instance, with morphisms u and v as above, and with constraint

R
def= X∗ ∩h1

−1(R1)∩h2
−1(R2),

which is regular. Similarly, the 2PCEPω-reg instance with ω-regular constraints R1,R2

translates into an equivalent PEPω-reg instance, with same morphisms u and v, and with
constraint

R
def= Xω ∩h1

−1(R1)∩h2
−1(R2),

which is ω-regular.
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