
Products of Message Sequence Charts�

Philippe Darondeau, Blaise Genest, and Löıc Hélouët

IRISA, campus de Beaulieu, F-35042 Rennes Cedex

Abstract. An effective way to assemble partial views of a distributed
system is to compute their product. Given two Message Sequence Graphs,
we address the problem of computing a Message Sequence Graph that
generates the product of their languages, when possible. Since all MSCs
generated by a Message Sequence Graph G may be run within fixed
bounds on the message channels (that is, G is existentially bounded), a
subproblem is to decide whether the considered product is existentially
bounded. We show that this question is undecidable, but turns co-NP-
complete in the restricted case where all synchronizations belong to the
same process. This is the first positive result on the decision of existential
boundedness. We propose sufficient conditions under which a Message
Sequence Graph representing the product can be constructed.

1 Introduction

Scenario languages, and in particular Message Sequence Charts (MSCs) have
met a considerable interest over the last decade in both academia and industry.
MSCs allow for the compact description of distributed systems executions, and
their visual aspect made them popular in the engineering community. Our ex-
perience with industry (France-Telecom) showed us that MSCs are most often
used there together with extensions such as optional parts (that is choice) and
(weak) concatenation, while iteration is left implicit. (Compositional) Message
Sequence Graphs ((C)MSC-graphs) is the academic framework in which choice,
weak concatenation and iteration of MSCs are formalized. For a recent survey
of Message Sequence Graphs, we refer the reader to [6,9]. A challenging problem
is to automatically implement MSC-languages (that is, sets of MSCs) given by
(C)MSC-graphs. Apart from the restricted case of Local Choice (C)MSC-graphs
[8,7], this problem has received no satisfactory solution, since either deadlocks
arise from the implementation [14,4], or implementation may exhibit unspecified
behaviors [2]. A further challenge is to help designing (C)MSC-graphs for com-
plex systems, while keeping analysis and implementability decidable. Systems
often result from assembling modules, reflecting different aspects. A possible
way to help the modular modeling of systems into (C)MSC-graphs is thus to
provide a product operator. A first attempt in this direction is [10], where the
amalgamation allows the designer to merge 2 nodes of 2 MSG-graphs but not
their paths. We feel that a more flexible operation, defined on MSC languages
and therefore independent from MSC block decompositions, is needed.
� Work supported by France Telecom R&D (CRE CO2) and ANR project DOTS.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 458–473, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Products of Message Sequence Charts 459

Shuffling the linearizations of the languages of two (C)MSC-graphs is not the
right product. On the one hand, such shuffling kills existential bounds [11], i.e.,
there is no upper bound on the size of the message channels within which all
MSCs in the shuffled language can be run. Existential bounds are an important
feature of (safe C)MSC-graphs which allow their analysis. On the other hand,
two states of the (C)MSC-graphs (one for each module) may represent incom-
patible aspects. Hence, one needs some synchronization to control the product
operation, in order to avoid incompatibilities and non existentially bounded be-
haviors. Control may be introduced with synchronization points: one module
waits at a synchronization point until the other module reaches a compatible syn-
chronization point, and then both can proceed. Synchronizations may be defined
either per process or per state of the (C)MSC-graphs. State oriented synchro-
nization conflicts with weak concatenation since it means that all processes of
the same module pass simultaneously the synchronization barrier, which diverges
strongly from the semantics of (C)MSC-graphs. Second, it harms implementabil-
ity, since state-synchronized products of implementable (C)MSC-graphs may not
be implementable. We therefore choose to define synchronizations per process,
by means of shared local events identified by names common to both MSCs.
Formally, we define thus a mixed product of MSCs that amounts to shuffling
their respective events on each process, simultaneously and independently, ex-
cept for the shared events that are not interleaved but coalesced. One appealing
property of this definition of product is that the product of two implementable
(C)MSC-graphs is also implementable (albeit with possible deadlocks), since
it suffices to take the product of the implementations processwise, coalescing
shared events.

In order to be represented as a (safe C)MSC-graph, an MSC language needs
to be existentially bounded. So far, no algorithm is known to check the exis-
tential boundedness of an MSC language in a non-trivial case (e.g., existential
boundedness is undecidable even for deterministic deadlock-free Communicating
Finite State Machines, see http://perso.crans.org/˜genest/GKM07.pdf). This is
the challenging problem studied in this paper. We show that checking existential
boundedness of the product of two (safe C)MSC-graphs is in general undecid-
able, as one expects. Surprisingly, if all shared events (synchronizations) belong
to the same process, then this question becomes decidable. Once a product is
known to be existentially bounded, results [12,4] on representative linearizations
can be used. Namely, languages of MSCs defined by the globally cooperative sub-
class of safe CMSC-graphs have regular sets of linear representatives, where the
regular representations can be computed from the CMSC-graphs and conversely.
Thus, given two globally cooperative CMSC-graphs such that their product is
existentially bounded, this product can be represented with a globally cooper-
ative CMSC-graph. The authors of [4] ignore the contents of messages in the
definition of MSCs. We consider messages with contents, and adapt the FIFO
requirement of [4] to both weak ([2,13]) and strong FIFO ([1]). We recast the
correspondence established in [4] into these different frameworks, and compare
the complexity and decidability of these two semantics.

460 P. Darondeau, B. Genest, and L. Hélouët

The paper is organized as follows. Section 2 recalls the background of MSCs
and MSC-graphs. Section 3 introduces the product of MSC-languages. Sec-
tion 4 recalls the definition of existential channel bounds for MSC-languages.
It is shown in Sections 5 and 6 that one can, in general, not check the existen-
tial boundedness of the product of two existentially bounded MSC-languages,
whereas this problem is co-NP-complete (weak FIFO) or PSPACE (strong FIFO)
when the synchronizations are attached to a single process. Section 7 defines for
that special case an operation of product on CMSC-graphs. Many proofs are
skipped or only briefly sketched by lack of space, but they are available in the
full version of the paper, available at http://perso.crans.org/˜genest/DGH07.pdf.

2 Background

To begin with, we recall the usual definition of compositional Message Sequence
Charts (CMSCs for short), which describe executions of communication pro-
tocols, and of CMSC-graphs, which are generators of CMSC sets. Let P , M,
and A be fixed finite sets of processes, messages and actions, respectively. Pro-
cesses may perform send events S, receive events R and internal events I.
That is, the set of types of events of an MSC is E = S ∪ R ∪ I where S =
{p ! q (m) | p, q ∈ P , p �= q, m ∈ M},R = {p ? q (m) | p, q ∈ P , p �= q, m ∈ M},
and I = {p (a) | p ∈ P , a ∈ A}. For each p ∈ P , we let Ep = Sp ∪Rp ∪ Ip where
Sp, Rp, and Ip are the restrictions of S, R, and I, respectively, to the considered
process p (e.g., p ? q (m) ∈ Sp). We define now MSCs over E .
Definition 1. A compositional Message Sequence Chart M is a tuple M =
(E, λ, μ, (<p)p∈P) where

– E is a finite set of events, with types λ(e) given by a labeling map λ : E → E,
– for each p ∈ P, <p is a total order on Ep = λ−1(Ep),
– μ : E → E is a partially defined, injective mapping,
– if μ(e1) = e2 then λ(e1) = p ! q (m) and λ(e2) = q ? p (m) for some p, q and m,
– [weak FIFO] if e1 <p e′1, λ(e1) = λ(e′1) = p ! q (m) and μ(e′1) is defined, then
μ(e1) <q μ(e′1) (in particular, μ(e1) is defined).
– the union < of ∪p∈P <p and ∪e∈E {(e, μ(e))} is an acyclic relation.
– M is an MSC if the partial map μ is a bijection between λ−1(S) and λ−1(R).

Def. 1 extends the original definition of [5] (see also [4]) by considering messages
with non trivial contents. There are then two alternatives to the FIFO condi-
tion. Strong FIFO requires that e1 <p e′1, λ(e1) = p ! q (m), λ(e′1) = p ! q (m′)
and μ(e′1) defined entail μ(e1) <q μ(e′1), i.e., there is a single channel from p
to q. The weak FIFO requirement used in Def. 1 means that there are as many
FIFO channels from p to q as there are types of events p ! q (m). In general,
there are undecidable problems in the strong FIFO semantics, as weak realiz-
ability [1], which are decidable in the weak FIFO semantics [13]. Anyway, all
(un)decidability results established in this paper hold for both FIFO semantics,
even though complexity depends on the semantics used.

Products of Message Sequence Charts 461

Given a CMSC X = (E, λ, μ, (<p)p∈P), let ≤X be the reflexive and transitive
closure of the relation < from Def. 1. A linear extension of X is an enumeration
of E compatible with ≤X . A linearization of X is the image of a linear extension
of X under the map λ : E → E (hence it is a word of E∗). Let Lin(X) denote the
set of linearizations of X . For a set X of CMSCs, let Lin(X) denote the union of
Lin(X) for all X ∈ X . Linearizations can be defined more abstractly as follows:

Definition 2. Let Lin ⊆ E∗ be the set of all words w such that for all p, q and m,
the number of occurrences q ? p (m) is at most equal to the number of occurrences
p ! q (m) in every prefix v of w, and both numbers are equal for v = w. In the
strong FIFO setting, we furthermore require the equality of contents of the i-th
emission from p to q and of the i-th reception on q from p.

Any linearization w of an MSC belongs to Lin (it may not be the case for a
CMSC). Conversely, because of weak or strong FIFO, a word w = ε1 . . . εn ∈ Lin
is the linearization of a unique MSC, Msc(w) = ({1, . . . , n}, λ, μ, (<p)), with:

– λ(i) = εi and i <p j if i < j and εi, εj ∈ Ep,
– μ(i) = j if the letter εi = p ! q (m) occurs k times in ε1 . . . εi and the letter
εj = q ? p (m) occurs k times in ε1 . . . εj for some p, q, m, k.

Definition 3. Two words w, w′ ∈ Lin are equivalent (notation w ≡ w′) if
Msc(w) and Msc(w′) are isomorphic. For any language L ⊆ Lin, we write
[L] = {w | w ≡ w′, w′ ∈ L}. A language L ⊆ Lin(X) is a representative set for
a set X if L ∩ Lin(X) �= ∅ for all X ∈ X , or equivalently, if [L] = Lin(X).

We deduce the following properties. For any MSC X , Lin(X) is an equivalence
class in Lin. For any MSC X and for any w ∈ Lin, w ∈ Lin(X) if and only
if X is isomorphic to Msc(w). A similar property does not hold for arbitrary
CMSCs. For instance, (p ! q (m)) (q ? p (m)) (q ? p (m)) belongs to Lin(X) for two
different CMSCs X , where the emission is matched by μ either with the first or
with the second reception.

Login

NOK

OK

sync

Client Server Client Server

Fig. 1. Identification Scenario G1

Search

Void

Content

sync

Client Server Client Server

Fig. 2. Searching Scenario G2

462 P. Darondeau, B. Genest, and L. Hélouët

We define the concatenation X1 ·X2 of two CMSCs Xi = (Ei, λi, μi, (<i
p)p∈P)

as the set of CMSCs X = (E1 �E2, λ1 � λ2, μ, (<p)p∈P) such that:

– μ ∩ (Ei × Ei) = μi and <p ∩ (Ei × Ei) = <i
p for i ∈ {1, 2} and p ∈ P ,

– e ∈ E2 and e ≤X e′ entail e′ ∈ E2 for all e, e′ ∈ E1 �E2.

We let X1 · X2 be the union of X1 ·X2 for all Xi ∈ Xi, i ∈ {1, 2}. We can now
give a description of sets of MSCs with rational operations.

Definition 4. A CMSC-graph is a tuple G = (V,→, Λ, V 0, V f) where (V,→)
is a finite graph, V 0, V f ⊆ V are the subsets of initial and final vertices, respec-
tively, and Λ maps each vertex v to a CMSC Λ(v). We define L(G) as the set
of all MSCs in Λ(v0) ·Λ(v1) · . . . ·Λ(vn) where v0, v1 . . . , vn is a path in G from
some initial vertex v0 ∈ V 0 to some final vertex vn ∈ V f . The CMSC-graph G
is safe if any such set Λ(v0) · . . . · Λ(vn) contains at least one MSC.

Intuitively, the semantics of CMSC-graphs is defined using the concatenation of
the CMSCs labeling the vertices met along the paths in these graphs. Notice
that Λ(v0) · . . . · Λ(vn) may contain an arbitrary number of CMSCs, but at
most one of these CMSCs is an MSC. An example of a non-safe CMSC-graph
is G = (V,→, Λ, {v0}, {vf}) where V = {v0, vf}, v0 → vf , the CMSC Λ(v0)
has a single event labeled with q ? p (m), and the CMSC Λ(vf) has a single
event labeled with p ! q (m). Indeed the two events cannot be matched by μ in
Λ(v0) · Λ(vf). Notice that this is a XCMSG [12]. The reason why we do not
allow XCMSGs is that safe XCMSGs are not necessarily existentially bounded,
hence the Mazurkiewicz trace coding needed for the results of [4] that we use for
Theorem 3 fails. Fig. 1 and 2 show two (C)MSC-graphs. Their nodes are labeled
with MSCs. Concatenating OK and the local event sync gives an MSC with 3
events. The reception of OK and the event sync are unordered (in G1). On the
contrary, the event sync and the reception of Void are ordered (in G2).

A safe CMSC-graph G may always be expanded into a safe atomic CMSC-
graph G′, that is a graph in which each node is labeled with a single event, such
that L(G) = L(G′). In the following, every safe CMSC-graph is assumed to be
atomic. The expansion yields, by the way, a regular representative set for L(G).

3 Product of MSC-Languages

In order to master the complexity of distributed system descriptions, it is desir-
able to have at one’s disposal a composition operation that allows us to weave
different aspects of a system. When system aspects are CMSC-graphs with dis-
joint sets of processes, the concatenation of their MSC-languages can be used
to this effect. Else, some parallel composition with synchronization capabilities
is needed. We propose here to shuffle the events of the two MSC-graphs per
process, except for the common events that serve to the synchronization. We
require that all common events are internal events. Formally, what we define
is an extension of the mixed product of words. The intersection with a regular

Products of Message Sequence Charts 463

language could be used in place of the synchronizations to control the shuffle,
but this would not change significantly the results of this paper. However, syn-
chronizing on messages could change the results, as we can encode shared events
using shared messages, but not the other way around.

First, we recall the definition of the mixed product L1 ‖ L2 of two languages
L1, L2 of words (see [3]), defined on two alphabets Σ1, Σ2 not necessarily disjoint.
Let Σ = Σ1∪Σ2. For i = 1, 2 let πi : Σ∗ → Σ∗

i be the unique monoid morphism
such that πi(σ) = σ for σ ∈ Σi and πi(σ) = ε, otherwise. Then L1 ‖ L2 = {w |
πi(w) ∈ Li, i = {1, 2}} is the set of all words w ∈ Σ∗ with respective projections
πi(w) in Li; e.g., {ab} ‖ {cad} = {cabd, cadb} (a is the synchronizing action).

Definition 5. For i = {1, 2}, let Xi be an MSC-language over some E i, such
that x ∈ E1 ∩ E2 implies x = p(a) for some p, a. The mixed product X1 ‖ X2 is
Msc ((Lin(X1) ‖ Lin(X2)) ∩ Lin) and it is an MSC-language over E1 ∪ E2.

The mixed product operation serves to compose the languages of two CMSC-
graphs that share only internal events, as is the case for the CMSC-graphs G1, G2

of Fig. 1,2. The synchronization sync ensures that in any MSC in L(G1) ‖ L(G2),
the server never answers a search request from the client unless the client is
logged in. Thus, synchronizations serve to avoid mixing incompatible fragments
of the two CMSC-graphs. When a set X is a singleton X = {X}, we abusively
write X ‖ Y instead of {X} ‖ Y. Note that even though X1 and X2 are MSCs,
X1 ‖ X2 may contain more than one MSC. Under weak FIFO semantics, mixing
all linearizations pairwise yields all and only linearizations of a product of MSCs.
However, the product of two linearizations of strong FIFO MSCs may contain
words that are not linearizations of strong FIFO MSCs. Intersecting with Lin
allows us to keep only linearizations of (strong FIFO) MSCs.

Proposition 1. Lin(X1 ‖ X2) = (Lin(X1) ‖ Lin(X2)) ∩ Lin.

Lemma 1. (Lin(X1) ‖ Lin(X2)) ∩ Lin is closed under ≡ (see Def. 3).

However, {X1} ‖ {X2} may be larger than Msc (w1 ‖ w2) for fixed representa-
tions w1 ∈ Lin(X1) and w2 ∈ Lin(X2). This situation is illustrated with

w1 = (p ! q (m1)) (q ? p (m1)) (p ! q (m1)) (q ? p (m1)),
w′

1 = (p ! q (m1))2 (q ? p (m1))2,
w2 = (q ! p (m2)) (p ? q (m2)) (q ! p (m2)) (p ? q (m2)),
w′

2 = (q ! p (m2))2 (p ? q (m2))2,
w3 = (p ! q (m1))2 (q ! p (m2))2 (p ? q (m2))2 (q ? p (m1))2.

and X1 = Msc(w1) = Msc(w′
1), X2 = Msc(w2) = Msc(w′

2), X3 = Msc(w3).
There is no synchronization. Now X3 ∈Msc(w′

1 ‖ w′
2), but X3 /∈Msc(w1 ‖ w2).

This observation shows that products must be handled with care. Indeed, an
advantage of CMSC-graphs is to represent large sets of linearizations with small
subsets of representatives. However, w1 is a representative for X1, w2 is for X2,
but w1 ‖ w2 is not a set of representatives for X1 ‖ X2.

464 P. Darondeau, B. Genest, and L. Hélouët

4 Bounds for MSCs and Products

We review in this section ways of classifying CMSC-graphs based on bounds
for communication channels, and we examine how these bounds behave under
product of CMSC-languages. We focus on MSC-languages with regular represen-
tative sets. As indicated earlier, a regular representative set for the language of
a safe CMSC-graph G may be obtained by expanding G into an atomic CMSC-
graph G′. As observed in [12], it follows from a pumping lemma that whenever
L ⊆ Lin is a regular representative set for some X , the words in L are uniformly
B-bounded, for some B > 0, as defined hereafter. First, the definition of a chan-
nel depends on the semantics. In the weak FIFO setting, a channel is a triple
p, q ∈ P , m ∈ M, and p!q(m) is an emission (q?p(m) is a reception) on this
channel. In the strong FIFO setting, a channel is a pair p, q ∈ P , and p!q(m) is
an emission (q?p(m′) is a reception) on this channel for any m, m′ ∈M. A word
w ∈ E∗ is B-bounded if, for any prefix v of w and any channel c, the number of
emissions on c in v exceeds the number of receptions on c in v by at most B.

A MSC X is ∀-B-bounded if every linearization w ∈ Lin(X) is B-bounded. A
MSC X is ∃-B-bounded if some linearization w ∈ Lin(X) is B-bounded. A set of
MSCs X is ∃-B-bounded if all MSCs X ∈ X are ∃-B-bounded; X is existentially
bounded if it is ∃-B-bounded for some B. Let LinB(X) denote the set of B-
bounded words w in Lin(X). Clearly, any X with a regular representative set
is existentially B-bounded for some B, but it may not be ∀-B-bounded for
any B. Conversely, when an MSC-language X is ∃-B-bounded, LinB(X) is a
representative set for X , but it is not necessarily a regular language.

Proposition 2. LinB(X1 ‖ X2) = (LinB(X1) ‖ LinB(X2)) ∩ LinB .

The above result shows that the mixed product behaves nicely with respect
to bounded linearizations. If X1 and X2 are ∀-B-bounded, then Lin(Xi) =
LinB(Xi), and using Prop. 1, their product is also ∀-B-bounded. However, it
may occur that both X1 and X2 are ∃-B-bounded but their mixed product
is not existentially bounded. For instance, for all j, let Xj

1 be the MSC with
j messages m1 from p to q and Xj

2 be the MSC with j messages m2 from
q to p. All these MSCs are ∃-1-bounded since (p!q(m1)q?p(m1))j ∈ Lin(Xj

1)
is 1-bounded. Define X1 = {Xj

1 | j > 0} and X2 = {Xj
2 | j > 0}, thus

X1, X2 are ∃-1-bounded, but X1 ‖ X2 is not ∃-B-bounded for any B since
Msc(p!q(m1)B(q!p(m2)p?q(m2))Bq?p(m1)B) ∈ X1 ‖ X2, but it is not ∃-(B − 1)-
bounded.

Definition 6. Given an MSC X = (E, λ, μ, (<p)p∈P) and a non-negative inte-
ger B, let RevB be the binary relation on E such that e RevB e′ if and only if,
for some channel c, e is the i-th reception on channel c and e′ is the i + B-th
emission on channel c. We also define Rev≥B = ∪B′≥BRevB′ .

Proposition 3 (lemma 2 in [11]). A MSC X is ∃-B-bounded if and only if
the relation < ∪RevB is acyclic, if and only if the relation < ∪Rev≥B is acyclic.

Products of Message Sequence Charts 465

If X is ∃-B-bounded then X is ∃-B′-bounded for all B′ ≥ B, because RevB′

is included in the least order relation containing RevB and
⋃

p∈P <p. For in-
stance, in Msc(p!q(m1)B (q!p(m2) p?q(m2))B q?p(m1)B) let (ai, bi) denote the i-
th pair of events (p!q(m1), q?p(m1)) and (ci, di) the i-th pair of events (q!p(m2),
p?q(m2)), then aB <p d1 Rev(B−1) cB <q b1 Rev(B−1) aB is a cycle.

5 Monitored Product of MSC-Languages

It is important to analyze formally MSC-languages, since following paths in
MSC-graphs does not help grasping all the generated scenarios. Most often, in
decidable cases [7,16], the analysis of an MSC-language X amounts to check
either the membership of a given MSC X , or whether Lin(X) has an empty
intersection with a regular language L (representing the complement of a desired
property). In the case of a product languageX1 ‖ X2, membership can be checked
using the projections, since X ∈ X1 ‖ X2 if and only if πi(X) ∈ Xi for i = 1, 2.
However, in order to analyse regular properties of L(G1) ‖ L(G2), one often
needs computing a safe CMSC-graph G such that L(G) = L(G1) ‖ L(G2). In
particular, one needs an existential bound B for the product. Unfortunately, the
theorem below shows that one cannot decide whether such G exists when G1

and G2 share events on two processes or more.

Theorem 1. Let G1, G2 be two (safe C)MSC-graphs. It is undecidable whether
L(G1) ‖ L(G2) is existentially bounded, in both weak and strong FIFO semantics.

Proof. We show that the Post correspondence problem may be reduced to the
above decision problem. Given two finite lists of words u1, . . . , un and w1, . . . , wn

on some alphabet Σ with at least two symbols, the problem is to decide whether
ui1ui2 . . . uik

= wi1wi2 . . . wik
for some non-empty sequence of indices i1 · · · ik.

This problem is known to be undecidable for n > 7. Given an instance of the
Post correspondence problem, i.e., two lists of words u1, . . . , un and w1, . . . , wn

on Σ, consider the two MSC-graphs G1 = (V,→, Λ1, V
0, V f) and G2 = (V,→,

Λ2, V
0, V f), with the same underlying graph (V,→, V 0, V f), constructed as fol-

lows (G1 is partially shown in Fig. 3).
Define V = {v0, v1, . . . , vn, vn+1} with V 0 = {v0} and V f = {vn+1}. Let

v0 → vi, vi → vj , and vi → vn+1 for all i, j ∈ {1, . . . , n} (where possibly i = j).
Finally let vn+1 → vn+1.

For each v ∈ V , Λ1(v) is a finite MSC over P1 = {p, q}, A1 = {1, . . . , n} ∪Σ,
M1 = {m1, m

′
1}. Actions i ∈ {1, . . . , n} represent indices of pairs of words (ui, vi)

and they occur on process p. Actions σ ∈ Σ represent letters of words ui and they
occur on process q. Let Λ1(v0) be the empty MSC. For i ∈ {1, . . . , n}, let Λ1(vi)
be the MSC with p!q(m1) followed by p(i) on process p and with q?p(m1) followed
by the sequence q(σi,1) q(σi,2) . . . q(σi,li), representing ui = σi,1 σi,2 . . . σi,li , on
process q. Finally let Λ1(vn+1) be the MSC with the events p!q(m′

1) and q?p(m′
1)

on processes p and q, respectively.
For each v ∈ V , Λ2(v) is a finite MSC over P2 = {p, r, q}, A2 = {1, . . . , n}∪Σ,

M2 = {m2, m
′′
2 , m′

2}. For i = 0, . . . , n, Λ2(vi) is defined alike Λ1(vi) but now

466 P. Darondeau, B. Genest, and L. Hélouët

1 n

?p(m1)
σ1,1

σ1,l1

!q(m1)

σn,ln

σn,1

?p(m1)

?p(m′
1)

!q(m′
1)

!q(m1)

Fig. 3.

replacing the message p!q(m1), q?p(m1) with two messages p!r(m2), r?p(m2),
r!q(m′′

2), q?r(m′′
2) and ui with wi. Λ2(vn+1) is the MSC with the events p?q(m′

2)
and q!p(m′

2) on processes p and q, respectively.
For i = 1, 2 let Xi = L(Gi), then Lin1(Xi) is a regular representative set for

Xi. If the Post correspondence problem has no solution, then X1 ‖ X2 is empty,
hence it is existentially bounded. In the converse case, X1 ‖ X2 contains for all
B some MSC including a crossing of B messages m′

1 by B messages m′
2, hence

it is not existentially bounded. ��
The proof of Theorem 1 is inspired by the proof that L(G1) ∩ L(G2) = ∅ is
undecidable for generic MSC-graphs G1, G2 [15]. Theorem 1 motivates the in-
troduction of a monitor process mp and a monitored product in which all syn-
chronizations are (internal) events located on the monitor process. The set of
synchronizations is denoted by SE . The monitored product X1 ‖mp X2 of sets X1

and X2 on monitor process mp ∈ P is defined only if SE ⊆ {mp(a) | a ∈ A}.
In that case, we set X1 ‖mp X2 = X1 ‖ X2. For instance, in the monitored prod-
uct L(G1) ‖mp L(G2) of the CMSC-graphs of Fig. 1 and Fig. 2, we can choose
mp = server and SE = {mp(sync)}. The adequacy of the monitored product
to weave aspects of a distributed system is confirmed by the following theorem,
which holds for both strong and weak FIFO semantics. We conjecture that the
problem is PSPACE-complete in the strong FIFO case.

Theorem 2. Given two safe CMSC-graphs G1, G2, one can decide whether the
monitored product of L(G1) and L(G2) is ∃-bounded. The problem is co-NP-
complete and in PSPACE for weak and strong FIFO semantics respectively.

The next section sketches a proof for this theorem. Notice that the proof is
trivial in the case where G1, G2 have disjoint sets of processes except for mp.
Then, L(G1) ‖mp L(G2) is existentially bounded (with the bound given by the
maximum of the minimal existential bounds of L(G1) and L(G2)).

Products of Message Sequence Charts 467

6 Checking Existential Boundedness

We prove Theorem 2 in two stages. First, we show that if the monitored product
L(G1) ‖mp L(G2) is existentially bounded, then this property holds for a ’small’
bound with respect to the size of G1 and G2.

Proposition 4. Given two safe CMSC-graphs G1 and G2, the MSC-language
L(G1) ‖mp L(G2) is existentially bounded if and only if it is existentially Bw-
bounded (resp. Bs-bounded) for weak (resp. strong) FIFO semantics, where Bw =
2K1B

′, Bs = 2K2K3B
′, and K1, K2, B

′ (resp. K3) are polynomial (resp. expo-
nential) in the size of P, G1, G2.

Then we show that one can check whether the monitored product of L(G1) and
L(G2) is ∃-B-bounded, using the bounds Bw, Bs of Prop. 4. Notice that Bs

written in binary is of size polynomial in |G1|+ |G2|.
Proposition 5. Given two safe CMSC-graphs G1, G2 and an integer B, it is
co-NP-complete (resp. PSPACE) to decide whether L(G1) ‖mp L(G2) is ∃-B-
bounded, for weak (resp. strong) FIFO semantics. The PSPACE result holds
also when B is written in binary.

� Graph representation of monitored products

X1 X2 X mpmpmp

Fig. 4. X ∈ X1 ‖mp X2 and the corresponding relations →1 ∪ →2, ↔

These two results are obtained using special representations for MSCs con-
structed by monitored product. Let X ∈ X1 ‖mp X2 then ∃w ∈ Lin: X =
Msc(w) and πi(w) = wi ∈ Lin(Xi). The MSC X is determined up to isomor-
phism by its projections on processes, because of FIFO. More precisely, for each
p ∈ P , πp(w) ∈ πp(w1) ‖ πp(w2). Moreover, for p = mp, πp(w1) and πp(w2)
have the same projection on SE . Therefore the projection (Ep, <p) of X on each
process p may be seen as an interleaving of (E1

p , <1
p) and (E2

p , <2
p) where the

synchronized pairs of events e1 ∈ E1
mp and e2 ∈ E2

mp with labels in SE are coa-
lesced. Let ←→⊆ E1

mp × E2
mp be the relation comprising synchronized pairs of

events. For each p ∈ P , let →1
p⊆ E2

p ×E1
p (resp. →2

p⊆ E1
p ×E2

p) be the relation
comprising ordered pairs of events e2 e1 (resp. e1 e2) switching from E2

p to E1
p

468 P. Darondeau, B. Genest, and L. Hélouët

(resp. E1
p to E2

p) in the interleaved sequence (Ep, <p). The MSC X may now be
represented by the juxtaposition of X1 and X2 interlinked with ←→ and with
the relations →1

p and →2
p for all p ∈ P . The result is a graph, that we denote

X1‖mp2, with set of nodes E1 ∪E2. Conversely, any acyclic graph connecting X1

and X2 with relations →i
p and ←→ represents a non-empty set of weak FIFO

MSCs X . We say that the transitive closure <‖mp of <p
i , →i

p and ←→ is com-
patible with strong FIFO if there do not exist two messages (s, r), (s′, r′) on the
same channel c such that s < s′ and r′ < r. There may be several such MSCs
if for some p the relation →1

p ∪ →2
p ∪ <1

p ∪ <2
p is not a total order on Ep.

Otherwise, the original MSC X may be reconstructed from X1‖mp2 as follows: E
is the quotient of E1 ∪E2 by the equivalence relation ←→ and <=<‖mp |E . For
an illustration, see Fig. 4 where the edges of the graph represent the relations
<i

p, μi, ←→ (dashed) and →i
p (dotted). The graph is compatible with strong

FIFO. A unique MSC X can be reconstructed from it, depicted on the right of
the figure. More formally, we can state the following lemma:

Lemma 2. Let G1 and G2 be safe and atomic CMSC-graphs and B an integer.
Then L(G1) ‖mp L(G2) is ∃-B-bounded if and only if, for any synchronized pair
of MSCs X1 ∈ L(G1) and X2 ∈ L(G2) with respective sets of events E1 and E2,
there is no subset {e1, . . . , en} ⊆ E1 ∪ E2 with at most two events in E1

p ∪ E2
p

for each process p ∈ P such that:

1. for all j, (ej , e(j+1) mod n) belongs to one of the relations <i, RevB, or
Ei

p × E3−i
p for i = 1 or 2 and p ∈ P,

2. there is no proper cycle in {e1, . . . , en} w.r.t. the transitive closure <‖mp of
the relation <1 ∪ <2 ∪ ←→ ∪ → where ←→ is the synchronizing relation
among coalesced events, and e → e′ if e = ej ∈ Ei

p and e′ = e(j+1) mod n ∈
E3−i

p for some j ∈ {1, . . . n}, i ∈ {1, 2} and p ∈ P,
3. in the strong FIFO case, <‖mp is compatible with strong FIFO.

The proofs of Prop. 4 and 5 are based on synchronized paths and Lemma 3.
A synchronized path αβ1 · · ·βnγ of G1, G2 is a sequence of pairs of paths α =
(α1, α2), βi = (β1

i , β2
i), γ = (γ1, γ2), where αkβk

1 · · ·βk
nγk is a path of Gk, πSE (α1)

= πSE(α2), πSE(β1
i) = πSE(β2

i) and πSE(γ1) = πSE (γ2). Furthermore, βk
i is a

loop of Gk for all i, k. Lemma 3 claims that if n is sufficiently large, there exists a
synchronized loop of ρ2 which has no contribution to the ordering between events
in ρ1 and ρ2. This loop can thus be removed or iterated without compromising
acyclicity, and is compatible with strong FIFO if needed.

Lemma 3. Let G1 and G2 be safe and atomic CMSC-graphs, K be an integer
and (α1, α2)(β1

1 , β2
1) · · · (β1

K , β2
K)(γ1, γ2) be a synchronized path of G1, G2. Let→

be a partial order on a set E of n ≤ 2|P| events of α1 ∪ α2 ∪ γ1 ∪ γ2 compatible
with the order of the synchronized path. For all j ≥ i ≥ 1,
 ≥ 0, we denote by
<�

i,j the relation on (α1, α2)(β1
1 , β2

1) · · · [(β1
i , β2

i) · · · (β1
j , β2

j)]� · · · (β1
K , β2

K)(γ1, γ2)
generated by the synchronizations and the relation →.

Products of Message Sequence Charts 469

– For all i, j, i′, j′, <1
i,j=<1

i′,j′ , denoted <, and this relation is a partial order.
– Let K1, K2, K3 be the constants of Prop. 4.
– If K > K1, then there exists i such that for all x, y ∈ α1 ∪ α2 ∪ γ1 ∪ γ2 and

l ≥ 0, we have x <�
i,i y iff x < y (in particular, <�

i,i is a partial order).
– If K > K2K3 and < is compatible with strong FIFO, then there exist i, j

such that <�
i,j is an order compatible with strong FIFO, for all l ≥ 0.

� General outline of the proof for Prop. 4

Let X ∈ L(G1) ‖mp L(G2), thus X may be represented in product form by
X1‖mp2 = (X1, X2,←→, (→i

p)
i=1,2
p∈P). Suppose that X is not ∃-B-bounded for

some B = 2KB′. By Prop. 3, < ∪Rev≥B has a cycle in X .We have Rev1
≥B ∪

Rev2
≥B ⊆ Rev≥B ⊆ Rev1

≥B/2 ∪ Rev2
≥B/2. Therefore, the union of ←→ and the

relations <i, Revi
≥KB′ , and →i

p for i = 1, 2 has a cycle e1 e2 . . . em with ej �= ek

for j �= k. We let em+1 = e1. One can assume that e1 e2 . . . em contains no
synchronization event with shared label and at most two events on each pro-
cess p (Lemma 5.5 in [4]), hence m ≤ 2 |P|. Furthermore, there is at least one
pair of events (ej , ej+1) in Revi

Bj
, w.l.o.g. e1 Rev1

B1
e2, with B1 ≥ KB′. No-

tice that (e1 · · · em) is also a cycle for the union of ←→, <i, Revi
≥KB′ , and

→i
p ∩(ej , ej+1)j≤m for i = 1, 2, that is we need to consider only a linear number

of pairs in→i
p. We construct MSCs X ′

1 ∈ L(G1), X ′
2 ∈ L(G2) embedding X1, X2

via φ : Xi ↪→ X ′
i such that φ(e1)φ(e2) . . . φ(em) is a cycle for φ(Rev≥KB′)∪ <X′ ,

where (X ′, <X′) is the oriented graph obtained by connecting X ′
1 and X ′

2 with
←→ and φ(→i

p) ∩ (φ(ej), φ(ej+1))j≤m. More precisely, X ′
1, X

′
2 are such that

φ(e1)Rev1
≥2B1+1 φ(e2) and ej Revi

Bj
ej+1 ⇒ φ(ej)Revi

≥Bj
φ(ej+1) for j �= 1 and

Bj ≥ KB′. As soon as <X′ is a partial order (compatible with strong FIFO if
needed), Prop. 4 follows by induction and by applying Lemma 2.

� General outline of the proof for Prop. 5

In order to conclude that L(G1) ‖mp L(G2) is not ∃-B-bounded, one should
search for MSCs X1 ∈ L(G1), X2 ∈ L(G2), and X ∈ (X1 ‖mp X2) such that
<X ∪RevB contains a cycle. In the weak FIFO setting, we use a small model
property. Assume that the product of L(G1) and L(G2) is not existentially Bw

bounded. We apply Lemma 2 to obtain a synchronized pair of paths ρ1, ρ2 of
G1, G2, with a set E of at most 2|P| events, and a relation →∈ E × E which
creates a cycle with <i ∪Revi

Bw . By contradiction, assume that the minimal size
of such a synchronized path (ρ1, ρ2) (that is its number of transitions) is larger
than ((4|P|Bw +1)K1B

′, then it contains (4|P|Bw +1)K1 synchronized pairs of
loops. Applying Lemma 3 with
 = 0, we know that there are 4|P|Bw + 1 loops
which can be individually deleted without changing the order on E. There are
at most 2|P|Bw messages which can affect the Revi

Bw relation, hence 4|P|Bw

loops which contain some emission or reception of such messages. Therefore,
one synchronized pair of loops can be deleted without changing the order on E
nor the Revi

Bw relations, which contradicts the minimality of ρ1, ρ2. To obtain

470 P. Darondeau, B. Genest, and L. Hélouët

a co-NP algorithm, it suffices to guess a path of G1 and a path of G2 of size
polynomial, to guess 2|P| events, and to check in polynomial time that there is
no cycle in <1 ∪ <2 ∪ ↔ ∪ →, whereas there is a cycle in <1 ∪ <2 ∪ ↔ ∪ →
∪Revi

Bw . Notice that we cannot do the same in the strong FIFO setting, since
the exponential bound Bs would lead to a co-NEXPTIME algorithm. Instead,
we construct a finite automaton, whose language is empty iff the product is
existentially Bs bounded. Each state can be described in polynomial space w.r.t.
|G1|, |G2| and ||Bs|| = log2(Bs) written in binary.

� General outline of the co-NP-completeness reduction

We prove the co-NP hardness of the problem of deciding either the existential-
boundedness or the existential-B-boundedness of the product of languages of two
MSC-graphs. We do not use the contents of the messages, hence the reduction
holds for both weak and strong FIFO semantics. Let φ be a 3-CNF-SAT instance,
with n variables and m clauses. This formula is true iff for each clause, one can
choose a literal of the clause to be true, and no conflict occurs on a variable (one
cannot choose a literal and its opposite being true). Let B > m + 1. We build
two MSC-graphs G1 and G2 on processes {p, q, r, pi, p

′
i | 1 ≤ i ≤ n} such that

G1 ‖mp G2 is ∃-B-bounded iff φ is non satisfiable. We let mp = p.

a1

b1

c1

a2

b2

c2

am

bm

cm

p q p q
p qr

a

a

Fig. 5. MSC M1 and MSC-graph G2

Graph G1 is made of one node, both initial and final. The node is labeled by
MSC M1, which is a synchronization action a on process p, then a message from
p to r, then a message from r to q. For graph G2, the initial node is labeled with
B + 1 messages from p to q. Then G2 has a succession of m choices between
three nodes ai, bi, ci, i ≤ m. Then the final node of G2 is labeled by the syn-
chronization event a on process p. Informally, the m choices correspond to the
m clauses, and ai, bi, ci correspond to the choice of the first, second and third
literal true in the i-th clause. That is, if the first literal in the i-th clause is vj ,
then ai is labeled by a message from q to pj and a message from p′j to p. If the
first literal in the i-th clause is ¬vj , then ai is labeled by a message from q to
p′j and a message from pj to p. Any MSC from G2 corresponds to some choice
of literal true in each of the clauses and vice versa. Now, a conflict occurs on
one variable iff the receptions on q from p (in G2) are before the synchronization
event a, iff for the corresponding MSC M2 of G2, all MSCs in M2 ‖mp M1 are
∃-B-bounded.

Products of Message Sequence Charts 471

7 CMSC-Graph Representation of a Monitored Product

In the case where L(G1) ‖mp L(G2) is ∃-bounded, one may wish to compute
a safe CMSC-graph representation of this MSC-language, which can be input
to existing tools for analyzing MSC-graphs (MSCan, SOFAT. . .). For this pur-
pose, we use the results from [4], where a syntax-semantics correspondence is
established between globally cooperative CMSC-graphs [7], and MSC-languages
X with regular representative sets LinB(X) for some B > 0.

Definition 7. G = (V,→, Λ, V 0, V f) is a globally cooperative CMSC-graph if

– G is a safe CMSC-graph, and
– for any circuit v1 . . . vn in G, all CMSCs in the set Λ(v1) · . . . · Λ(vn) have
connected communication graphs.

The communication graph induced by X = (E, λ, μ, (<p)p∈P) is the undirected
graph (Q, E) with the set of vertices Q = {p ∈ P | (∃e ∈ E) λ(e) ∈ Sp∪Rp} and
with the set of edges E = {{p, q} | (∃e1, e2 ∈ E) (∃m ∈ M) λ(e1) = p ! q (m) ∧
λ(e2) = q ? p (m)}.
Notice that the MSC-graph from Fig. 3 is globally cooperative. Thus, bounded-
ness of the product of L(G1) and L(G2) stays undecidable even when both G1, G2

are globally cooperative (Theorem 1). Quite remarkably, L(G1) ∩ L(G2) = ∅ is
decidable as soon as G1 or G2 is globally cooperative [7].

Theorem 3. Let X be a set of MSCs. The following are equivalent:

– X = L(G) for some globally cooperative CMSC-graph G,
– LinB(X) is a regular representative set for X for sufficiently large B > 0.
Moreover, B and a finite automaton recognizing LinB(X) can be computed ef-
fectively from G. Conversely, G can be computed effectively from LinB(X).

The statement of Theorem 3 is the same as (a fragment of) the main theorem
of [4]. However, we consider in this paper messages with contents, while [4]
does not. Instead of proving Theorem 3 from scratch, we derive it from [4]. The
strong FIFO case comes directly from the proof of [4]. For weak FIFO, we use
a translation from sets of weak FIFO MSCs to sets of FIFO MSCs with exactly
one (type of) message m (hence they embed in weak FIFO MSCs). In few words,
the translation adds as many processes as types of messages per channel, and
it preserves the existential boundedness of sets of MSCs, although the bound
B may grow to 3B. Once this translation is defined, the proof of Theorem 3 is
almost immediate.

Now let G1, G2 be two globally cooperative CMSC-graphs. If L(G1) ‖mp

L(G2) is ∃-bounded, then this MSC-language is ∃-B-bounded, for B ∈ {Bs, Bw}
as defined in Prop. 4. Therefore, LinB(L(G1) ‖mp L(G2)) is a representative set
for L(G1) ‖mp L(G2). By Prop. 2, LinB(L(G1) ‖mp L(G2)) = LinB(L(G1)) ‖mp

LinB(L(G2)) ∩ LinB . Since both G1, G2 are globally cooperative, we get that
both LinB(L(G1)) and LinB(L(G2)) are regular and effectively computable.
Since the shuffle of regular language is regular, we get the following.

472 P. Darondeau, B. Genest, and L. Hélouët

Theorem 4. Let G1, G2 be two globally cooperative CMSC-graphs such that
L(G1) ‖mp L(G2) is ∃-bounded. Then one can effectively compute a globally co-
operative CMSC-graph G with L(G) = L(G1) ‖mp L(G2). Moreover, G is of size
at most exponential and doubly exponential in the size of |G1|, |G2|, respectively
with weak and strong FIFO.

8 Conclusion

We presented a framework to work with the controlled products of distributed
components, granted that synchronizations are operated on a single monitor pro-
cess, and components are given as globally cooperative CMSC-graphs. Namely,
one can test whether the monitored product of components can be represented
as a globally cooperative CMSC-graph. In that case, a complete analysis of the
product system can be performed with existing tools. We analyze the problem
in both weak and strong FIFO contexts. Weak FIFO enjoys a better complex-
ity, while strong FIFO allows us to use non-synchronized actions with common
names on different components (it suffices to rename the actions according to
components, perform the product, and then rename the actions back). A di-
rection for future work is to propose guidelines and tools for modeling product
systems with one monitor process.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 797–808. Springer, Heidelberg (2001)

2. Caillaud, B., Darondeau, P., Hélouët, L., Lesventes, G.: HMSCs as Partial Specifi-
cations.. with PNs as Completions. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M.
(eds.) MOVEP 2000. LNCS, vol. 2067, pp. 125–152. Springer, Heidelberg (2001)

3. Duboc, C.: Mixed Product and Asynchronous Automata. Theoretical Computer
Science 48(3), 183–199 (1986)

4. Genest, B., Kuske, D., Muscholl, A.: A Kleene Theorem and Model Checking for
a Class of Communicating Automata. Inf. Comput. 204(6), 920–956 (2006)

5. Gunter, E., Muscholl, A., Peled, D.: Compositional Message Sequence Charts.
STTT 5(1), 78–89, (2003); In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 496–511. Springer, Heidelberg (2001)

6. Genest, B., Muscholl, A., Peled, D.: Message Sequence Charts. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 537–558. Springer,
Heidelberg (2004)

7. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state High-level MSCs:
Model-checking and Realizability. JCSS 72(4), 617–647 (2006); Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.): ICALP
2002. LNCS, vol. 2380, pp. 617–647. Springer, Heidelberg (2002)

8. Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from
HMSCs. In: FMICS 2000, pp. 203–224 (2000)

9. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A
theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)

Products of Message Sequence Charts 473

10. Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. In: FMICS 2004, pp. 209–
226 (2004)

11. Lohrey, M., Muscholl, A.: Bounded MSC communication. Inf. Comput. 189(2),
160–181 (2004)

12. Madhusudan, P., Meenakshi, B.: Beyond Message Sequence Graphs. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267.
Springer, Heidelberg (2001)

13. Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

14. Mukund, M., Kumar, K.N., Sohoni, M.A.: Bounded time-stamping in message-
passing systems. TCS 290(1), 221–239 (2003)

15. Muscholl, A., Peled, D., Su, Z.: Deciding properties of Message Sequence Charts. In:
Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg
(1998)

16. Muscholl, A., Peled, D.: Message Sequence Graphs and Decision Problems on
Mazurkiewicz Traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.)
MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

	Products of Message Sequence Charts
	Introduction
	Background
	Product of MSC-Languages
	Bounds for MSCs and Products
	Monitored Product of MSC-Languages
	Checking Existential Boundedness
	CMSC-Graph Representation of a Monitored Product
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

