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Abstract. We investigate the complexity of satisfiability and finite-state
model-checking problems for the branching-time logic CTL

∗
lp, an exten-

sion of CTL
∗ with past-time operators, where past is linear, finite, and

cumulative. It is well-known that CTL
∗
lp has the same expressiveness

as standard CTL
∗, but the translation of CTL

∗
lp into CTL

∗ is of non-
elementary complexity, and no elementary upper bounds are known for
its satisfiability and finite-state model checking problems. In this paper,
we provide an elegant and uniform framework to solve these problems,
which non-trivially extends the standard automata-theoretic approach
to CTL

∗ model-checking. In particular, we show that the satisfiability
problem for CTL

∗
lp is 2Exptime-complete, which is the same complexity

as that of CTL
∗, but for the existential fragment of CTL

∗
lp, the prob-

lem is Expspace-complete, hence exponentially harder than that of the
existential fragment of CTL

∗. For the model-checking, the problem is al-
ready Expspace-complete for the existential and universal fragments of
CTL

∗
lp. For full CTL

∗
lp, the proposed algorithm runs in time polynomial

in the size of the Kripke structure and doubly exponential in the size of
the formula. Thus, the exact complexity of model-checking full CTL

∗
lp

remains open: it lies somewhere between Expspace and 2Exptime.

1 Introduction

Temporal logics provide a fundamental framework for the description of dynamic
behavior of reactive systems [Pnu77]. Usually, in standard temporal logics such
as CTL

∗ [EH86], CTL [CE81] and LTL [Pnu77], the modalities only refer to
the future of the current time. On the other hand, it is well-known that temporal
logics combining past and future modalities make some specifications easier to
write and more natural, and for standard linear-time temporal logics, these ex-
tensions do not increase the complexity of basic decision problems [Var88]. For
the branching-time setting, there are essentially two possible views regarding
the nature of the past. In the first view, past is branching and each moment in
time may have several possible futures and several possible pasts. In the second
view, past is linear and each moment in time may have several possible futures
and a unique past. Usually, the past is assumed to be finite (since program com-
putations have a definite starting time) and cumulative (i.e., the history of the
current situation increases with time and is never forgotten). However, the linear
past (rather that branching-past) approach is more suited to the specification
of dynamic behavior because it considers states in a computation tree, while
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the branching-past approach consider machine states (where past is not very
meaningful to specify behavioral constraints) [LS95].

For the future (regular) branching-time temporal logic CTL
∗, the most sim-

ple linear-past extension is the logic PCTL
∗ [HT87], obtained by adding the

past counterparts of the standard linear-time modalities ‘next’ and ‘until’. How-
ever, since the semantics of the path quantifiers in PCTL

∗ is the same as for
CTL

∗ (i.e., path quantification ranges over paths that starts in the current node
of the computation tree), the usage of past-time modalities is very limited. In
other terms, past cannot go beyond the present. It is not surprising then, that
PCTL

∗ has the same expressivity and complexity as CTL
∗. A more interesting

and meaningful linear past extension of CTL
∗ is the logic CTL

∗
lp [KP95]. CTL

∗
lp

has the same syntax as PCTL
∗. However, path quantification is ‘memoryful’,

i.e., it ranges over paths that start at the root and visits the current node. CTL
∗
lp

is as expressive as CTL
∗, but the translation of CTL

∗
lp into CTL

∗ is of non-
elementary complexity, and no elementary upper bounds are known for its sat-
isfiability and finite-state model checking problems [KP95, LS95, LS00, KV06].
More recently, Kupferman and Vardi [KV06] introduce a memoryful variant of
CTL

∗, called mCTL
∗, which unifies CTL

∗ and the Pistore-Vardi logic [PV03].
This new logic has the same syntax as CTL

∗. The unique difference is the adding
of a special proposition present which is needed to emulate the ability of CTL

∗

to talk about the ‘present’. By letting path quantification to range over paths
that start at the root, an mCTL

∗ formula can refer to events that happen in
the past. However, since mCTL

∗ do not contain explicit past-time operators,
the ability to refer to the past is limited. The logic mCTL

∗ is as expressive
as CTL

∗, but while satisfiability for mCTL
∗ is 2Exptime-complete, not harder

than that of CTL
∗, its model checking problem is Expspace-complete, exponen-

tially harder than that of CTL
∗ (and this last result holds also for the fragment

mCTL
∗
− obtained by disallowing the special atom present). Moreover, mCTL

∗
−

can be linearly translated into CTL
∗
lp and mCTL

∗ can be linearly translated
into the extension of CTL

∗
lp with the special atom present.

Our contribution. In this paper, we study the complexity of the satisfiabil-
ity and (finite-state) model checking problems for CTL

∗
lp and its existential

and universal fragments ECTL
∗
lp and ACTL

∗
lp. The existential (resp., univer-

sal) fragment consists of formulas where the only allowed path quantifier is the
existential (resp., universal) one, assuming that formulas are written in posi-
tive normal form. We also consider the extension CTL

∗
lp+ of CTL

∗
lp obtained

by adding the special atom present and its existential and universal fragments
ECTL

∗
lp+ and ACTL

∗
lp+. Our results are summarized in Figure 1 in which we

also recall the well-known results about the complexity of the considered prob-
lems for CTL

∗ and its existential and universal fragments (see, e.g., [KV00]).
For the satisfiability problem, the complexity for CTL

∗
lp and CTL

∗
lp+ is the

same as that of CTL
∗, i.e. 2Exptime-complete. However, for the universal and

existential fragments of the considered logics, the situation is quite different.
While the complexity of ACTL

∗
lp is the same as that of ACTL

∗ (i.e., Pspace-
complete), for the fragments ECTL

∗
lp, ECTL

∗
lp+, and ACTL

∗
lp+, the problem is
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significantly harder being Expspace-complete. For the model checking problem,
the complexity is already Expspace-complete for the existential and universal
fragments of CTL

∗
lp. For full CTL

∗
lp and CTL

∗
lp+, our algorithm runs in time

polynomial in the size of the Kripke structure and doubly exponential in the size
of the formula. Thus, the exact complexity of model-checking full CTL

∗
lp and

CTL
∗
lp+ remains open: it lies somewhere between Expspace and 2Exptime.

The upper bounds of the considered problems are established by a uniform
automata-theoretic framework which non-trivially generalizes the standard one
for CTL

∗ [KVW00], and is based on the translation of CTL
∗
lp+ formulas, with

a single exponential blow-up, into a two-way extension of the symmetric version
of hesitant alternating (finite-state) tree automata (HAA, for short) [KVW00].
Two-way symmetric alternating tree automata (two-way SAA, for short), and
in particular, two-way (symmetric) HAA, operate on arbitrary (also infinite-
branching) Σ-labelled trees for a given alphabet Σ. However, SAA cannot dis-
tinguish between the different children of a node, and send copies to the children
of the current input node in either a universal or an existential manner. More-
over, two-way SAA can send copies to the parent (if any) of the current node.

The key aspects of our approach which enable us to solve partially the open
problems regarding the complexity of CTL

∗
lp are the following:

– the complementation result for tree languages accepted by alternating tree
automata based on the construction of the dual automaton [MS87], holds
also for pointed tree languages (i.e., languages consisting of pairs (T, x) where
T is a labelled tree and x is a T -node) accepted by two-way SAA. This is
a consequence of determinacy of (finitely-coloured) parity games, that holds
also when a vertex in the underlying graph has infinite successors [Zie98].

– We show that parity two-way SAA can be linearly translated in the full
modal μ-calculus (with both backward and forward modalities), which sat-
isfies the bounded-degree tree-model property [Var98]. As a consequence
nonemptiness of parity two-way SAA can be linearly reduced to nonempti-
ness of standard parity two-way alternating tree automata operating on com-
plete n-ary trees [Var98], where n is the size of the given two-way SAA.

– The ability of combining both forward and backward moves in two-way HAA

is restricted in such a way in every run each (infinite) path has a suffix which
is fully downward. This allows us to solve the model checking problem for this
class of automata by a direct construction. In particular, for the existential
fragments of the considered logics, the model checking for the correspond-
ing two-way HAA can be reduced to nonemptiness of 1-letter (one–way)
HAA (over infinite words) [KVW00]. For full CTL

∗
lp instead, we obtain an

extended version of 1-letter HAA in which the ‘universal requirement’ for
universal components of the automaton is relaxed. This explains our dif-
ficulty in obtaining membership in Expspace for model checking of full
CTL

∗
lp. However, the extended 1-letter HAA obtained in the construction

have a special structure, but actually we do not know if this is sufficient to
solve nonemptiness with the same complexity as for 1-letter HAA.

The full version of this paper can be asked to the author by e-mail.
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Satisfiability Model checking
CTL

∗
2Exptime-complete Pspace-complete

ACTL
∗

ECTL
∗

Pspace-complete Pspace-complete
CTL

∗
lp+ CTL

∗
lp 2Exptime-complete ∈2Exptime

ACTL
∗
lp+ ECTL

∗
lp+ ECTL

∗
lp Expspace-complete Expspace-complete

ACTL
∗
lp Pspace-complete Expspace-complete

Fig. 1. Summary of known and new results

2 Linear-Past Branching-Time Temporal Logic

In this section we recall syntax and semantics of the linear-past branching-time
temporal logic CTL

∗
lp [KP95] and its extension, denoted CTL

∗
lp+, obtained by

adding the special atomic proposition present [KV06], which intuitively allows
to refer to the ‘present’. We also define the problems addressed in this paper.

Let N be the set of natural numbers. A tree T is a prefix closed subset of N
∗.

The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T ) is children(x, T ) = {x · i ∈ T | i ∈ N}, and
the branching degree of x is the cardinality (possibly infinite) of children(x, T ).
The tree T is infinite if each its node has at least a child. A path of T is an
infinite sequence π = x0x1 . . . of T -nodes such that xi+1 ∈ children(xi, T ) for
each i ≥ 0. Let π(i) be the ith node of π. For x ∈ T , an x-path is a path starting
from x. For an alphabet Σ, a Σ-labelled tree is a pair 〈T, V 〉 where T is a tree
and V : T → Σ. For x ∈ T , the pair (〈T, V 〉, x) is called pointed Σ-labelled tree.

The logic CTL
∗
lp+ combines both branching-time and linear-time operators.

A path quantifier, E (“for some path”) or A (“for all paths”), can be followed by
an arbitrary linear-time formula over the usual future linear temporal operators
X+ (“forward next”), U + (“forward until”), and G+ (“forward always”), and
their past counterparts X−, U−, and G−. As in standard CTL

∗, for a given finite
set of atomic propositions AP , there are two types of formulas in CTL

∗
lp+: state

formulas ϕ, whose satisfaction is related to a specific node of a 2AP -labelled
tree, and path formulas ξ, whose satisfaction is related to a specific path. Their
syntax (in positive normal form) is defined as follows:

ϕ := � | prop | ¬ prop | ϕ ∧ ϕ | ϕ ∨ ϕ | E ξ | A ξ

ξ := ϕ | present | ¬ present | ξ ∧ ξ | ξ ∨ ξ | Xdirξ | ¬X−� | ξ U dirξ | Gdirξ

where � denotes true, prop ∈ AP , present /∈ AP and dir ∈ {+, −}. We also
use the classical shortcut Fdirξ for dir ∈ {+, −} (“backward and forward eventu-
ally”) which stands for � U dirξ. The set of state formulas ϕ forms the language
CTL

∗
lp+.1 CTL

∗
lp is the fragment of CTL

∗
lp+ obtained by disallowing the atom

present. We also study the existential fragment ECTL
∗
lp (resp., ECTL

∗
lp+) and

1 Note that the given syntax is complete since the dual ˜U
dir

of the until operator
U dir can be expressed as follows: ξ1˜U

dir
ξ2 ≡ Gdirξ2 ∨ (ξ2 U dir(ξ1 ∧ ξ2)).
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the universal fragment ACTL
∗
lp (resp., ACTL

∗
lp+) of CTL

∗
lp (resp., CTL

∗
lp+)

obtained by disallowing the path quantifier A and E, respectively.
CTL

∗
lp+ formulas are interpreted over 2AP -labelled infinite trees. Fix a 2AP -

labelled infinite tree 〈T, V 〉 and let π be an ε-path of T , x ∈ T , and k, k0 ∈ N.
For a state formula ϕ, we write x |= ϕ to mean that ϕ holds at node x. Similarly,
for a path formula ξ, we write (π, k, k0) |= ξ to indicate that ξ holds at position
k along the ε-path π of 〈T, V 〉, where k0 is the reference position (intuitively,
the ‘present’). Formally, we have the following (we omit the rules for atoms in
AP and boolean connectives, which are standard):

x |= Eξ iff there is an ε-path π = x0x1 . . . and k ≥ 0 such that
xk = x and (π, k, k) |= ξ

x |= Aξ iff for each ε-path π = x0x1 . . . such that xk = x for
some k ≥ 0, we have (π, k, k) |= ξ

(π, k, k0) |= ϕ iff π(k) |= ϕ
(π, k, k0) |= present iff k = k0
(π, k, k0) |= X+ξ iff (π, k + 1, k0) |= ξ
(π, k, k0) |= X−ξ iff k > 0 and (π, k − 1, k0) |= ξ
(π, k, k0) |= ξ1 U +ξ2 iff ∃ n ≥ k. (π, n, k0) |= ξ2 and ∀ k ≤ i < n. (π, i, k0) |= ξ1

(π, k, k0) |= ξ1 U−ξ2 iff ∃ n ≤ k. (π, n, k0) |= ξ2 and ∀ n < i ≤ k. (π, i, k0) |= ξ1
(π, k, k0) |= G+ξ iff ∀ n ≥ k. (π, n, k0) |= ξ
(π, k, k0) |= G−ξ iff ∀ n ≤ k. (π, n, k0) |= ξ

For a CTL
∗
lp+ formula ϕ, we denote by Lp(ϕ) the set of pointed 2AP -labelled

infinite trees (〈T, V 〉, x) such that x |= ϕ. Note that while in standard CTL
∗,

path quantification ranges over paths that start in the current node, in CTL
∗
lp+

path quantification ranges over paths that start at the root and visit the current
node. For example, AG+EF−(ξ ∧ ¬X−�), when viewed as a formula of CTL

∗

extended with backward modalities, is unsatisfiable. When viewed as a CTL
∗
lp+

formula, it holds iff for each node x of the given tree, the partial path from the
root to x can be extended to a path (initially) satisfying ξ.

In the following we also consider the linear temporal logic PLTL+ (LTL

+ Past + present) corresponding to CTL
∗
lp+ formulas which do not contain

occurrences of A and E. PLTL+ is interpreted on pointed (infinite) words over
2AP , i.e. pairs (w, k) such that w ∈ (2AP )ω and k ∈ N. The satisfaction relation
(w, k, k0) |= ξ, meaning that ξ holds at position k of w w.r.t. the reference
position k0, is defined similarly to the relation (π, k, k0) |= ξ′ for path formulas ξ′

of CTL
∗
lp+. Let Lp(ξ) be the set of pointed words (w, k) such that (w, k, k) |= ξ.

A Kripke structure over AP is a tuple K = 〈S, s0, Δ, L〉, where S is a finite set
of states, s0 ∈ S is an initial state, Δ ⊆ S × S is a transition relation that must
be total, and L : S → 2AP maps each state s to the set of atomic propositions
true in s. The Kripke structure K induces a 2AP -labelled tree, denoted by CTK,
which corresponds to the unwinding of K from s0 (defined in the usual way).

We address the following problems for CTL
∗
lp+ (and its mentioned fragments):

– the satisfiability problem is to decide, given a CTL
∗
lp+ formula ϕ over AP ,

whether (〈T, V 〉, ε) ∈ Lp(ϕ) for some 2AP -labelled infinite tree 〈T, V 〉;
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– the (finite-state) model checking problem is to decide, given a Kripke struc-
ture K and a CTL

∗
lp+ formula ϕ over AP , whether (CTK, ε) ∈ Lp(ϕ).

3 Alternating Finite–State Automata for Linear Past

In order to solve satisfiability and model-checking for CTL
∗
lp+ and its fragments,

we propose an extension of the automata-theoretic approach to branching-time
model checking [KVW00]. In particular, we consider two-way symmetric alter-
nating (finite-state) tree automata (two-way SAA), and more specifically we
focus on a subclass of such automata. One–way SAA were first introduced in
[Wil99] and operate on arbitrary Σ-labeled infinite trees (whose nodes can have
infinite branching degrees) for a given alphabet Σ. SAA cannot distinguish be-
tween the different children of a node, and send copies to the children of the
current input node in either a universal or an existential manner. Moreover,
two-way SAA can send copies to the parent (if any) of the current node. In
order to formally define such a class of automata, we need additional notation.

For a set X , B+(X) denotes the set of positive boolean formulas over X , built
from elements in X using ∨ and ∧ (we also allow the formulas true and false).
A subset Y of X satisfies θ ∈ B+(X) iff the truth assignment that assigns true
to the elements in Y and false to the elements of X \ Y satisfies θ; Y exactly
satisfies θ if Y satisfies θ and every proper subset of Y does not satisfy θ.

A two-way SAA is a tuple A = 〈Σ, Q, q0, δ, Acc〉, where Σ is the input al-
phabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ →
B+

(

({�, �} × Q)∪ ({↑} × Q × {true, false})
)

is the transition function, and
Acc is an acceptance condition. Intuitively, a target of a move of A is encoded by
an element in ({�, �}×Q)∪ ({↑} × Q × {true, false}). An atom (�, q) means
that a copy of A in state q moves to some child of the current node, while an
atom (�, q) means that for each child x of the current node, a copy of A in state
q is sent to node x. Finally, an atom (↑, q, b) can be chosen iff either the current
node is not the root or b = true. In the first case, a copy of A in state q is sent
to the parent of the current node. A one-way SAA is a two-way SAA whose
transition function satisfies δ(q, a) ∈ {�, �} × Q for each (q, σ) ∈ Q × Σ.

For a pointed Σ-labelled infinite tree (〈T, V 〉, x0), a run of A over (〈T, V 〉, x0)
is a Q × T -labelled tree r = 〈Tr, Vr〉, where each node of Tr labelled by (q, x)
describes a copy of A that is in state q and reads the node x of T . Moreover,
we require that r(ε) = (q0, x0) (initially, A is in state q0 reading node x0),
and for each y ∈ Tr with r(y) = (q, x), there is a (possibly empty) set H ⊆
({�, �}×Q)∪ ({↑}×Q×{true, false}) exactly satisfying δ(q, V (x)) such that
H does not contain atoms (↑, q′, false) if x = ε, and children(y, Tr) satisfies the
following for each at ∈ H :
- if at = (�, q′), then ∃x′ ∈ children(x, T ), ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′);
- if at = (�, q′), then ∀x′ ∈ children(x, T ), ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′);
- if at = (↑, q′, b) and x = x′ · i, then ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′).

For a path π = y0y1 . . . of the run r = 〈Tr, Vr〉, let inf(π) be the set of states
in Q that appear in Vr(y0)Vr(y1) . . . infinitely often. We say that π is accepting
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iff inf(π) satisfies the acceptance condition Acc of A. The run r = 〈Tr, Vr〉
is accepting iff each its path is accepting. Here, we consider parity acceptance
conditions, specified by mappings2 Ω : Q → N assigning to each state q ∈ Q
an integer (called priority). A path π trough a run satisfies Ω if the smallest
priority of the states in inf(π) is even. The index of a parity two-way SAA with
parity acceptance condition Ω is the cardinality of the set {Ω(q) | q ∈ Q}.

For a two-way SAA over Σ, the pointed language Lp(A) of A is the set of
pointed Σ-labeled infinite trees PT such that A has an accepting run over PT .
The language L(A) is the set of Σ-labelled trees 〈T, V 〉 s.t. (〈T, V 〉, ε) ∈ Lp(A).

Given a parity two-way SAA A = 〈Σ, Q, q0, δ, Ω〉, the dual automaton of A
is the parity two-way SAA ˜A = 〈Σ, Q, q0, ˜δ, ˜Ω〉, where for each q ∈ Q, ˜Ω(q) =
Ω(q) + 1, and for each (q, σ), ˜δ(q, σ) is obtained from δ(q, σ) by switching �

and �, switching ∨ and ∧, and switching true and false. If, for example,
δ(q, σ) = (�, p) ∨ (↑, q, true), then ˜δ(q, σ) = (�, p) ∧ (↑, q, false).

We can give a game-theoretic interpretation of acceptance in two-way SAA A
by (finitely coloured) parity games. Since the determinacy result for such a class
of games holds also when the number of successors of a vertex in the underlying
graph is infinite [Zie98], by a readaptation of the proof given in [MS87], it follows
that the dual automaton of A accepts the complement of Lp(A), i.e., the set of
pointed Σ-labeled infinite trees PT /∈ Lp(A).

Proposition 1. The dual automaton of a parity two-way SAA A accepts the
complement of Lp(A).

As we will see in order to capture CTL
∗
lp+ formulas, it suffices to consider a

subclass of parity two-way SAA of index 3 corresponding to a two-way exten-
sion of hesitant alternating tree automata (HAA) introduced in [KVW00] as an
optimal automata-theoretic framework for CTL

∗. Formally, a two-way HAA is
a two-way SAA A = 〈Σ, Q, q0, δ, Acc〉 satisfying the following conditions. As in
weak alternating automata, there is a partition of Q into disjoint sets Q1, . . . , Qm

(called components of A) and a partial order ≤ on these sets such that transi-
tions from a state in Qi lead to states in either the same Qi or components Qj

such that Qj < Qi (partial order requirement). Moreover, each component Qi is
classified either as transient, existential, or universal, and the following holds:

1. for each transient set Qi and q ∈ Qi, δ(q, σ) contains no states of Qi;
2. for each existential component Qi and q ∈ Qi, if δ(q, a) is rewritten in

disjunctive normal form, then there is at most one (forward) atom (c, q′)
with q′ ∈ Qi in each disjunct. Moreover, c = � (existential requirement);

3. for each universal component Qi and q ∈ Qi, if δ(q, a) is rewritten in con-
junctive normal form, then there is at most one (forward) atom (c, q′) with
q′ ∈ Qi in each conjunct. Moreover, c = � (universal requirement);

4. Acc consists of a pair 〈G, B〉 of sets of states interpreted as the parity con-
dition Ω〈G,B〉 of index 3 assigning 0 to the states in Q∃ ∩ G, assigning 1 to
the states in (Q∃ \ G) ∪ (Q∀ ∩ B), and assigning 2 to the remaining states,
where Q∃ (resp., Q∀) is the set of existential (resp., universal) states.

2 We use the symbol Ω instead of Acc to specify such acceptance conditions.
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5. in addition for a two-way HAA A, we require that Q is also partitioned
into a set Q+ of positive states and a set Q− of negative states such that:
(i) q0 ∈ Q+, (ii) for each atom (↑, q, b) (backward choice) occurring in δ,
q ∈ Q−, and for each atom (c, q) (forward choice) occurring in δ, q ∈ Q+,
and (iii) for each component Qi and negative state q− ∈ Qi, δ(q−, σ) does
not contain atoms of the form (�, q) or (�, q) with q ∈ Qi.

The partial order requirement and Condition 1 ensure that every path π of a
run of A gets trapped within some existential or universal component Qi. Then,
by Condition 4, the path satisfies the acceptance condition Acc = 〈G, B〉 iff
either Qi is an existential set and inf(π) ∩ G �= ∅ (Büchi condition), or Qi is a
universal set and inf(π)∩B = ∅ (co-Büchi condition). Condition 5 ensures that
every path π get trapped in Q+, and in particular from a certain point on, π
becomes fully downward, i.e. there is a suffix of π such that each node along this
suffix is obtained from the previous by applying a forward choice (corresponding
to an atom of the form (c, q) with c ∈ {�, �}). The depth of A is the number of
components of A. The two-way HAA A is existential if each its component is
not universal, and is strictly existential if its transition function does not contain
atoms of the form (�, q). Note that the dual automaton ˜A = 〈Σ, Q, q0, ˜δ, Ω̃〈G,B〉〉
of A is still a two-way HAA. Indeed, the components of ˜A are the same as
A (with the same partial order) with the difference that a component that is
existential in A is universal in ˜A, and vice versa. Moreover, Condition 5 continue
to hold (the sets of positive states and negative states of ˜A are the same as A).
Finally, it is easy to show that the parity condition Ω̃〈G,B〉, when interpreted on
runs of ˜A, is equivalent to the parity condition Ω〈B,G〉 associated with 〈B, G〉.
Thus, by Proposition 1 we obtain the following result.

Proposition 2. The dual automaton of a two-way HAA A is a two-way HAA

accepting the complement of Lp(A).

We address the following problems for the class of two-way HAA:
- the nonemptiness problem is to decide, for a two-way HAA, whether L(A) �= ∅;
- the (finite-state) model checking problem is to decide, given a Kripke structure

K over AP and a two-way HAA A over 2AP , whether CTK ∈ L(A).
In the following, we also consider (one-way) HAA on infinite words over a

1-letter alphabet (1-letter HAA). Note for such a class of automata, choices
represented by atoms (�, q) and (�, q) are equivalent, and thus the transition
function can be given as a mapping δ : Q → B+(Q), where Q is the set of states.

3.1 Decision Procedures for Two-Way HAA

Model checking. We reduce the model checking problem for two-way HAA

to the nonemptiness problem of extended 1-letter HAA corresponding to 1-
letter HAA in which the universal requirement for universal components (see
Condition 3 in the definition of HAA) is relaxed.
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Theorem 1. For a Kripke structure K over AP of size n and a two-way HAA

A over 2AP with depth d and size m, one can build an extended 1-letter HAA AK
with depth d and size O(n ·m ·2O(m)) s.t. L(AK) �= ∅ iff CTK ∈ L(A). Moreover,
if A is an existential two-way HAA, then AK is an existential 1-letter HAA.

Proof. Let K = 〈S, s0, Δ, L〉 and A = 〈Σ, Q, q0, δ, 〈G, B〉〉 with Σ = 2AP . Es-
sentially, the 1-letter extended HAA AK guesses a run of A over (CTK, ε) and
checks that it is accepting. At a given node x of a run of AK, AK keeps track by
its finite control of the following information: (i) the positive state q+ associated
with the current ‘positive’ copy of A in the guessed run, (ii) the state s of K
associated with the node xcurr of CTK which is read by the current copy of A,
and (iii) the guessed set P− of negative states of A associated with the copies of
A which read xcurr and belong to the subrun starting from the current copy of
A. Note that since A is a two-way HAA, P− cannot contain states in compo-
nents Qi of A that are upper in the partial order than the q+-component. The
paths of a run of AK correspond to the downward paths of the simulated run of
A over (CTK, ε). Since A is a two-way HAA, each infinite path of a run of A
has a suffix which is downward. Thus, a run of AK keeps track of all meaningful
information associated with the corresponding simulated run of A over (CTK, ε).

The extended 1-letter HAA AK = 〈{a}, QK, q0
K, δK, 〈GK, BK〉〉 is formally

defined as follows. Let Q1, . . . , Qd be a fixed total ordering of the components
of A extending the partial order ≤ of A, and let Q+ (resp., Q−) be the set of
positive states (resp., negative states) of A. For a state q ∈ Qi, let index(q) := i,
and for q ∈ Q, let Π(q) = {P− ⊆ Q− | ∀q− ∈ P−, index(q−) ≤ index(q)}.

A state of AK is either of the form (q+, s, Pup, root) ∈ Q+ × S × 2Q− × {0, 1}
or of the form (q+, s, Pup, Pcurr, root) ∈ Q+ × S × 2Q− × 2Q− × {0, 1} such that
Pcurr ∈ Π(q+), where: (i) q+ represents the state associated with the current
‘positive’ copy of A which reads a node x of the computation tree of K labelled
by state s, (ii) Pcurr represents the guessed set of negative states of A associated
with the copies of A which read x and belong to the ‘subrun’ of A starting from
the current copy, (iii) Pup represents the set of negative states of A associated
with the copies of A which read the parent node y of x and belong to the ‘subrun’
of A associated with a positive copy (reading y) which has generated (in one step
or many steps) the current copy, (iv) root is a flag which is 1 iff the current node
x of CTK is the root. The initial state is q0

K = (q0, s0, ∅, 1). The components
of AK are Q′

1, . . . , Q
′
d with Q′

i ≤ Q′
j iff i ≤ j, where Q′

i is the set of states
(q+, s, Pup, root) or (q+, s, Pup, Pcurr, root) such that q+ ∈ Qi. Moreover, Q′

i is
existential if Qi is either existential or transient, and is universal otherwise.

The transition function δK is defined as follows:

1. δK(q+, s, Pup, root) =
∨

Pcurr∈Π(q+)(q+, s, Pup, Pcurr, root);
2. δK(q+, s, Pup, Pcurr, root)=θ(q+ , s, Pup, Pcurr)∧

∧

q−∈Pcurr
θ(q−, s, Pup, Pcurr),

where θ(q, s, Pup, Pcurr) is obtained from δ(q, L(s)) as follows:
– each atom (�, p+) (resp., (�, p+)) occurring in δ(q, L(s)) is replaced with

∧

s′∈succK(s)(p+, s′, Pcurr, 0) (resp.,
∨

s′∈succK(s)(p+, s′, Pcurr, 0));
– each atom (↑, p−, b) in δ(q, L(s)) is replaced with true if either root = 0

and p− ∈ Pup or root = 1 and b = true, and with false otherwise.
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where succK(s) denotes the set of successors of s in K.
The acceptance condition 〈GK, BK〉 is defined as follows:

– GK = {(q+, s, Pup, root), (q+, s, Pup, Pcurr, root) | q+ ∈ G};
– BK = {(q+, s, Pup, root), (q+, s, Pup, Pcurr, root) | q+ ∈ B}.

Note that δK satisfies the partial order requirement. Moreover, a path of a
run of AK cannot be trapped within an existential component Q′

i corresponding
to a transient component of A. Also, Condition 5 in def. of two-way HAA en-
sures that an existential component of AK satisfies the existential requirement
corresponding to condition 2 in def. of HAA. However, if A contains universal
components, then the universal components of AK do not satisfy the universal
requirement due to the nondeterministic choice of the set Pcurr in the transitions
from states of the form (q+, s, Pup, root). Thus, if A is existential, then AK is an
existential 1-letter HAA. Otherwise, AK is an extended 1-letter HAA. ��

In [KVW00] it is shown that nonemptiness of 1-letter HAA (hence, also 1-letter
existential HAA) of depth d and size n can be solved in space O(d log2 n). Since
extended 1-letter HAA are also 1-letter parity alternating automata over infinite
words of index 3, and for such class of automata, nonemptiness can be solved in
cubic time [KV98], by Theorem 1, we obtain the following upper bounds for the
model checking of two-way HAA and two-way existential HAA.

Theorem 2. Given a Kripke structure K over AP of size n and a two-way
HAA A over 2AP with depth d and size m, the model checking problem for K
and A can be solved in time O(n3 · m3 · 2O(m)). Moreover, if A is existential,
then the same problem can be solved in space O(d · log2(n · m · 2O(m))).

Nonemptiness problem. For the nonemptiness problem of two-way HAA and,
more in general, parity two-way SAA, we obtain the following result.

Theorem 3. The nonemptiness problem of parity two-way SAA (hence, also
two-way HAA ) is in Exptime.

Proof. We can show that for a parity two-way SAA A over Σ of size n and index
h, it is possible to build a formula ϕA of the full modal μ-calculus (with both
forward and backward modalities) over Σ [Var98] such that ϕA has size bounded
by 2n and for each Σ-labelled tree LT , LT ∈ L(A) iff LT is a tree-model of ϕA.
Since a formula ϕ of the full μ-calculus is satisfiable iff there is a tree-model of
ϕ whose branching degrees are bounded by the size of ϕ [Var98], it follows that
for the given parity two-way SAA A over Σ of size n and index h, L(A) �= ∅
iff L(A) ∩ Υ2n(Σ) �= ∅, where Υ2n(Σ) denotes the set of Σ-labelled trees whose
branching degrees are bounded by 2n. Now, let ⊥ be a symbol non in Σ. We can
encode a labelled tree LT in Υ2n(Σ) as a Σ ∪{⊥}-labelled complete 2n-ary tree
〈{1, . . . , 2n}∗, V 〉 as follows: first, for each node x of LT with i children (note that
i ≤ 2n), we add 2n−i new children and label these new nodes with ⊥; finally, for
each node x labelled by ⊥, we add recursively 2n children labelled by ⊥. Then,
starting from A, it is easy to construct a standard parity two-way alternating
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tree automaton [Var98] (parity two-way ATA) A′ operating on Σ ∪{⊥}-labelled
complete 2n-ary trees having the same index as A and size linear in the size of
A, and such that A′ accepts all and only the trees encoding Σ-labelled trees in
L(A) ∩ Υ2n(Σ). Hence, L(A′) �= ∅ iff L(A) �= ∅. Since nonemptiness of parity
two-way ATA of size n, index h over k-ary trees can be solved in time 2O(n2·k·h)

[Var98], Theorem 3 follows. ��
However, for nonemptiness of strictly existential two-way HAA A, we can do
better. Indeed, the transition function of A does not contain atoms of the form
(�, q) corresponding to universal choices. Thus, the only forward choices are
existential (nondeterminism). Moreover, the automaton cannot distinguish be-
tween the different children of the current input node. Thus, if A is one-way, then
it actually corresponds to a nondeterministic tree automaton, hence nonempti-
ness can be trivially reduced to nonemptiness of 1-letter HAA. If instead A is
two-way, then we need to keep track only of the downward paths of a run of A.
These observations enable us to solve nonemptiness for A by a direct reduction
to nonemptiness of an (existential) 1-letter HAA AW having the same depth as
A and exponential size. Thus, we obtain the following result.

Theorem 4. Nonemptiness of strictly existential two-way HAA is in Pspace.

4 Decision Procedures for CTL
∗
lp+ and Its Fragments

In this section we describe an automata-theoretic approach to solve satisfia-
bility and model-checking for CTL

∗
lp+ based on the translation (with a single

exponential blow-up) of CTL
∗
lp+ formulas ϕ into equivalent two-way HAA Aϕ

accepting the set of pointed labelled trees satisfying ϕ. Before illustrating this,
we need a preliminary result concerning the translation of the linear temporal
logic PLTL+ into a simple variant of two-way Büchi word automata [Var88].

A simple two-way Büchi (nondeterministic) word automaton (Büchi SNWA,
for short) is a tuple A = 〈Σ, Q, Q0, ρ, F−, F+〉, where Σ is the input alphabet, Q
is a finite set of states, Q0 ⊆ Q is a set of initial states, ρ : Q×Σ ×{+, −} → 2Q

is a transition function, and F− and F+ are sets of accepting states. A run of A
over a pointed word (w, i), where w = w(0)w(1) . . ., is a pair r = (r−, r+) such
that r+ = q+

i , q+
i+1 . . . is an infinite sequence of states, r− = q−i , q−i−1 . . . q−0 q−−1

is a finite sequence of states, and: (i) q+
i = q−i ∈ Q0; (ii) for each h ≥ i,

q+
h+1 ∈ ρ(q+

h , w(h), +); and (iii) for each 0 ≤ h ≤ i, q−h−1 ∈ ρ(q−h , w(h), −).
Thus, starting from the initial position i in the input pointed word (w, i), the

automaton splits in two copies: the first one moves forwardly along the suffix
of w starting from position i and the second one moves backwardly along the
prefix w(0) . . . w(i). The run r = (r−, r+) is accepting if q−−1 ∈ F− and r+ visits
infinitely often some state in F+. A pointed word (w, i) is accepted by A if
there is an accepting run of A over (w, i). By a readaptation of the standard
translation of LTL into Büchi word automata [VW94], we obtain the following.

Proposition 3. Given a PLTL+ formula ξ over AP , one can construct a Büchi
SNWA over 2AP of size 2O(|ξ|) accepting the set of pointed words satisfying ξ.
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Theorem 5. For a CTL
∗
lp+ formula ψ over AP , one can build a two-way HAA

Aψ over 2AP of size 2O(|ψ|) and depth O(|ψ|) such that Lp(Aψ) = Lp(ψ). Also,
if ψ is a ECTL

∗
lp+ formula, then Aψ is a strictly existential two-way HAA.

Proof. We need some definitions. A CTL
∗
lp+ formula ϕ is trivial if either ϕ = p

or ϕ = ¬p, where p ∈ AP . For two CTL
∗
lp+ formulas ϕsub and ϕ, ϕsub is maximal

in ϕ if ϕsub is a strict state subformula of ϕ and there is an occurrence of ϕsub in ϕ
s.t. there is no occurrence of a strict state subformula of ϕ which strictly contains
the considered occurrence of ϕsub. We denote by max(ϕ) the set of all formulas
maximal in ϕ. For example, max(A

(

(X+¬p)U +(EX−¬p)
)

) = {¬p, EX−¬p}.
As in the case of the one-way HAA for CTL

∗ [KVW00], we construct the two-
way HAA Aψ by induction on the structure of ψ. With each state subformula ϕ
of ψ, we associate a two-way HAA Aϕ over Σ = 2AP of size 2O(|ϕ|) and depth
O(|ϕ|) such that Lp(Aϕ) = Lp(ϕ). For the base of the induction, either ϕ = p
or ϕ = ¬p, where p ∈ AP . In both cases, Aϕ has one state q0, which is positive
and transient, acceptance condition 〈∅, ∅〉, and transition function δ defined as
follows. In the first case (ϕ = p), δ(q0, σ) = true if p ∈ σ, and δ(q0, σ) = false if
p /∈ σ. In the second case (ϕ = ¬p), δ(q0, σ) = true if p /∈ σ, and δ(q0, σ) = false
if p ∈ σ. Now, assume that ϕ is a non-trivial state subformula of ψ (induction
step). Let max(ϕ) = {ϕ1, . . . , ϕn}. By the induction hypothesis for each 1 ≤
i ≤ n, we can construct a two-way HAA Aϕi = 〈Σ, Qi, qi

0, δ
i, 〈Gi, Bi〉〉 of size

2O(|ϕi|) and depth O(|ϕi|) such that Lp(Aϕi) = Lp(ϕi). We assume that the
state sets of the two-way HAA Aϕ1 ,. . .,Aϕn are disjoint (otherwise, we rename
the states). We construct a two-way HAA Aϕ composed from Aϕ1 ,. . .,Aϕn as
follows. Since ϕ is in positive normal form, there are only the following cases:

– ϕ = ϕ1 ∧ ϕ2 (n = 2). We define Aϕ = 〈Σ, Q1 ∪ Q2 ∪ {q0}, q0, δ, 〈G1 ∪
G2, B1 ∪ B2〉〉, where q0 is a new (positive) state and δ is defined as follows.
For states in Q1 and Q2, δ agrees with δ1 and δ2, respectively (recall that Q1

and Q2 are disjoint). For the state q0 and for each σ ∈ Σ = 2AP , δ(q0, σ) =
δ1(q1

0 , σ) ∧ δ2(q2
0 , σ). Thus, from the initial node of the pointed input tree

and in the initial state q0, Aϕ sends all the copies sent (initially) by both
Aϕ1 and Aϕ2 . The singleton {q0} constitutes a transient component, with
the ordering {q0} > Q′ for all components Q′ of Aϕ1 and Aϕ2 . Evidently,
Lp(Aϕ) = Lp(Aϕ1) ∩ Lp(Aϕ2). Moreover, by the induction hypothesis, we
have that Lp(Aϕ) = Lp(ϕ), and Aϕ has size 2O(|ϕ|) and depth O(|ϕ|).

– ϕ = ϕ1 ∨ ϕ2. The construction of Aϕ is similar to the previous case with
the difference that now δ(q0, σ) = δ1(q1

0 , σ) ∨ δ2(q2
0 , σ).

– ϕ = Eξ. Let max(ϕ) = {ϕ1, . . . , ϕn} and let ̂AP = {p1, . . . , pn} be a set of
fresh propositions. Moreover,let ̂ξ be the PLTL+ formula over ̂AP obtained
from the path formula ξ by replacing each occurrence of ϕi in ϕ which is
maximal in ϕ with proposition pi. Since ̂ξ and ξ are in positive normal form
and ̂ξ does not contain subformulas of the form ¬pi for each pi ∈ ̂AP , it
easily follows that for each pointed 2AP -labelled tree (〈T, V 〉, x),
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Claim 1: (〈T, V 〉, x) |= Eξ if and only if there is a ε-path of T π =
x0x1 . . . xk . . . with xk = x and an infinite word w over 2̂AP such that
(w, k, k) |= ̂ξ and for each i ≥ 0 and ph ∈ w(i), (〈T, V 〉, xi) |= ϕh.

Claim 1 suggests the following construction. First, we build a two-way
HAA AÊξ over ̂Σ = 2̂AP accepting Lp(Êξ) as follows. Let A′

̂ξ
=

〈 ̂Σ, Q, Q0, ρ, F−, F+〉 be the Büchi SNWA accepting the set of infinite pointed
words over ̂Σ satisfying ̂ξ (whose existence is guaranteed by Proposition 3).
Then, AÊξ = 〈 ̂Σ, ̂Q, q̂0, ̂δ, 〈 ̂F , ∅〉〉 extends A′

̂ξ
to trees by simulating it along

a single path. Formally, ̂Q = {q̂0} ∪ (Q × {+, −}), ̂F = F+ × {+}, where
{q̂0}∪(Q×{+}) is the set of positive states and Q×{−} is the set of negative
states. The transition function ̂δ is defined as follows, where for each p ∈ Q,
bp denotes true if p ∈ F−, and bp denotes false otherwise:

• ̂δ((q, +), σ̂) =
∨

p∈ρ(q,σ̂,+)(�, (p, +));
• ̂δ((q, −), σ̂) =

∨

p∈ρ(q,σ̂,−)(↑, (p, −), bp);
• ̂δ(q̂0, σ̂) =

∨

q0∈Q0

∨

q∈ρ(q0,σ̂,+)
∨

p∈ρ(q0,σ̂,−)[(�, (q, +)) ∧ (↑, (p, −), bp)].
Note that ̂Q constitutes a single existential component (in particular, AÊξ

is an existential two-way HAA). Intuitively, starting from the initial node
x of the input tree, AÊξ guesses an ε-path π = x0x1 . . . xk . . . such that
xk = x and simulates an infinite run (r−, r+) of A′

̂ξ
over the pointed word

(V (x0)V (x1) . . . , k) by simulating r− by backward moves along the prefix
x0x1 . . . xk of π and by simulating r+ by existential moves along the suffix
xkxk+1 . . . of π. Thus, AÊξ accepts all the pointed ̂Σ-labelled trees satisfying

Êξ. Now, we define Aϕ as follows. Intuitively, Aϕ simulates AÊξ and starts
additional copies of the HAA Aϕi . According to Claim 1 these copies guar-
antee that whenever AÊξ assumes that proposition pi labels the current node
along the guessed path, then formula ϕi holds at this node.

Formally, Aϕ = 〈Σ, ̂Q∪
⋃n

i=1 Qi, q̂0, δ, 〈 ̂F ∪
⋃n

i=1 Gi,
⋃n

i=1 Bi〉〉, where for
states in

⋃n
i=1 Qi, the transition function δ agrees with the corresponding

δi. For q ∈ ̂Q and σ ∈ Σ, δ(q, σ) =
∨

σ̂∈ ̂Σ

(

̂δ(q, σ̂) ∧
∧

pi∈σ̂ δi(qi
0, σ)

)

.
Each conjunction in δ(q, σ) corresponds to a label σ̂ ∈ ̂Σ. Some copies

of Aϕ (those originated from ̂δ(q, σ̂)) proceed as AÊξ when it reads σ̂. The
other copies guarantee that for each pi ∈ σ̂, ϕi holds at the current node.
The set ̂Q constitutes an existential component, with the ordering ̂Q > Q′

for each component Q′ of Aϕi (i = 1, . . . , n). Correctness of the construction
follows from Claim 1 and the induction hypothesis. Since the SNWA A′

̂ξ

has size 2O(|̂ξ|), Aϕi has size 2O(|ϕi|) and depth O(|ϕi|), and the size of ̂Σ is
2O(|max(ϕ)|), it holds that Aϕ has size 2O(|ϕ|) and depth O(|ϕ|).

– ϕ = Aξ. We have that Aξ ≡ ¬E¬ξ. Let Eξ′ be the positive normal form of
E¬ξ (note that |Eξ′| = O(|E¬ξ|)). By ind. hyp. we can construct a two-way
HAA AEξ′ over Σ of size 2O(|Eξ′|) = 2O(|ϕ|) and depth O(|Eξ′|) = O(|ϕ|)
such that Lp(AEξ′) is the complement of Lp(ϕ). By Proposition 2, the dual
of AEξ′ is a two-way HAA accepting Lp(ϕ) of size 2O(|ϕ|) and depth O(|ϕ|).
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Note that if ψ is a ECTL
∗
lp+ formula, then there is no state subformula of ψ of

the form Aξ, and the construction given for the cases ϕ = ϕ1 ∨ ϕ2, ϕ = ϕ1 ∧ ϕ2,
and ϕ = Eξ ensures that Aψ is a strictly existential two-way HAA. ��

Now, we can prove the main results of this paper.

Theorem 6 (Model-checking). Model-checking of CTL
∗
lp+ can be solved in

time polynomial in the size of the structure and doubly exponential in the size of
the formula. Moreover, for the existential and universal fragments of CTL

∗
lp+

and CTL
∗
lp, the problem is Expspace-complete and can be solved in space log-

arithmic in the size of the structure and exponential in the size of the formula.

Proof. The first part follows from Theorems 2 and 5. For the second part,
since ACTL

∗
lp+ (resp., ACTL

∗
lp) is the dual of ECTL

∗
lp+ (resp., ECTL

∗
lp) and

co-Expspace = Expspace, it suffices to prove the result for ECTL
∗
lp+ and

ECTL
∗
lp. The upper bounds follows from Theorems 2 and 5. The lower bound

for ECTL
∗
lp, (hence, the lower bound for ECTL

∗
lp+ follows) can be proved by a

reduction from the word problem for Expspace-bounded Turing machines. ��

Theorem 7 (Satisfiability). Satisfiability of CTL
∗
lp+ and CTL

∗
lp is

2Exptime-complete. Moreover, for the fragment ACTL
∗
lp, the problem is

Pspace-complete, and for the fragments ACTL
∗
lp+, ECTL

∗
lp, ECTL

∗
lp+, it is

Expspace-complete.

Proof. 2Exptime-completeness for satisfiability of CTL
∗
lp+ and CTL

∗
lp directly

follows from Theorems 3 and 5 and 2Exptime-hardness of satisfiability of stan-
dard CTL

∗ [VS85] (note that CTL
∗ can be trivially linearly translated into

CTL
∗
lp). For the logic ACTL

∗
lp, it suffices to observe that a ACTL

∗
lp formula ϕ

is satisfiable iff the PLTL formula [ϕ] is (initially) satisfiable, where [ϕ] is ob-
tained from ϕ by omitting all its (universal) path quantifiers. Thus, satisfiability
of ACTL

∗
lp is linearly reducible to satisfiability of PLTL. Since the converse

also holds, and satisfiability of PLTL is PSPACE-complete [Var88], the result
for ACTL

∗
lp follows. For the fragments ACTL

∗
lp+, ECTL

∗
lp, ECTL

∗
lp+, the

lower bounds are proved by a reduction from the word problem for Expspace-
bounded Turing machines. For the upper bounds, membership in Expspace for
ECTL

∗
lp and ECTL

∗
lp+ follows from Theorems 4 and 5. Finally, it remains to

prove membership in Expspace for the universal fragment ACTL
∗
lp+ Ḟirst, we

extend the linear temporal logic PLTL+ by a new unary modality R (which
reads as ‘reset’), whose semantics is defined as follows: for a given word w,
(w, i, k) |= Rξ iff (w, i, i) |= ξ. Intuitively, the modality R emulates the ability
of the path quantifiers of CTL

∗
lp+ to ‘reset’ the present. We denote by RLTL

the extension of PLTL+ with R. Fix an ACTL
∗
lp+ formula ϕ and let [ϕ] be the

RLTL formula obtained from ϕ by replacing each occurrence of the path quan-
tifier A with R. Evidently, ϕ is satisfiable iff [ϕ] is satisfiable. Thus, it suffices to
show that satisfiability of RLTL is in Expspace. This is proved by a transla-
tion, with a single exponential blow-up, of RLTL into Büchi two-way alternating
word automata (with ε-moves). By [Var98], these automata can be converted,
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with a single exponential blow-up, into parity nondeterministic word automata
whose nonemptiness problem is in NLogspace. Hence, the result follows. ��
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