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Abstract. This paper describes an on-chip COMA cache coherency
protocol to support the microthread model of concurrent program com-
position. The model gives a sound basis for building multi-core comput-
ers as it captures concurrency, abstracts communication and identifies
resources, such as processor groups explicitly and where mapping and
scheduling is performed dynamically. The result is a model where binary
compatibility is guaranteed over arbitrary numbers of cores and where
backward binary compatibility is also assured. We present the design of a
memory system with relaxed synchronisation and consistency constraints
that matches the characteristics of this model. We exploit an on-chip
COMA organisation, which provides a flexible and transparent partition-
ing between processors and memory. This paper describes the coherency
protocol and consistency model and describes work undertaken on the
validation of the model and the development of a co-simulator to the
Microgrid CMP emulator.

1 Introduction

It is now widely accepted that future computer systems must manage mas-
sive concurrency. Even on chip, that concurrency will be significant and
asynchronous, having many of the same characteristics as grid systems. The
constraints driving this are based on exponential functions meeting hard lim-
its. For example, the hard limit on power dissipation will limit clock frequency
and the limit of chip area is already a problem with respect to the area reach-
able in a single clock cycle. These constraints are the final nail in the coffin of
the sequential model of computation. In the past, superscalar processors were
able to exploit the implicit concurrency in sequential programs but they have
very poor scaling as a consequence of their centralised model of synchronisation
and scheduling. There is therefore a dire need for the development of more dis-
tributed models that still retain the advantages of the sequential model, namely
composability and determinism.

Basic research into scalable, on-chip instruction execution has led in two dis-
tinct directions. The first has been the resurrection of dataflow instruction execu-
tion. In this model, instructions are mapped to ALUs and data is moved between
instructions by using other instructions rather than named memory locations as
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targets of an operation [II2]. The problem with this approach is that it does not
support a memory model that can be used with conventional languages. Both
approaches referenced have addressed this limitation but at some expense to the
concurrency they are able to expose.

An alternative approach is to embrace explicit concurrency in the execution
model, while at the same time maintaining the properties defined above that have
made the sequential model so ubiquitous. The microthread model achieves this
by capturing abstract concurrency in a conventional RISC-like ISA [3]. A cre-
ate instruction dynamically defines concurrent execution as a family of threads
based on a single thread definition. Because each member of the family has a
unique index assigned to it, heterogeneous as well as homogeneous concurrency
is supported. Families are parameterised and can be infinite in range. Concur-
rency can be created hierarchically as the thread definition for one family may
contain creates for subordinate families. Create is therefore used to replace the
sequential constructs of looping and function calls with concurrent equivalents.
Moreover, the create instruction binds a unit of work, which is a family and its
subordinate families to a place, which is a collection of processors.

Registers in this model implement a blocking read and provide fine-grain syn-
chronisation between threads. This is similar to dataflow and in distinct contrast
to other thread models such as Simultaneous Multi-Threading (SMT) [4] that
synchronise on memory. The distributed register file also provides the mech-
anism for scheduling instructions from threads as continuations are stored in
registers waiting for data, which are rescheduled on a write. The distribution
of register files between multiple cores enables scalable data-driven execution of
microthreaded code across many processors. It also provides significant tolerance
to latency, as memory operations are decoupled by this register-based synchro-
nisation. Current processor designs allow hundreds of threads to execute locally,
typically allowing tolerance of up to a thousand cycles in memory accesses.

Threads in a family are mapped dynamically but deterministically to a set of
cores and this provides the binary code compatibility. Moreover, legacy binary
programs that use function calls and loops can be executed as singleton families
in this model, providing backward compatibility.

While registers are used for fine-grain synchronisation between threads (and
a thread and the memory system). A bulk synchronous model is provided on
memory. Typically families of threads will update indexed data-structures in
memory and a sync action (using a return code to a synchronising register) will
provide the synchronisation required in order to create another family to con-
sume the data structure. The memory model has a relaxed memory consistency
compared to other thread-based approaches and requires the design of a new
memory architecture and coherency protocol to fully exploit it. Memory written
by a family is only defined following termination of all threads in that family.
Race conditions are not excluded but the only reason they would exist (apart
from bugs) is to allow explicit non-determinism, as may be found in some chaotic
algorithms. We adopt location consistency on these races [5].
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2 Background

With multi-core chips, it is even more difficult to break the 'memory wall’ [6].
According to recent analysis (for instance Intel Pentium M platrom [7]), typical
access to level 1 cache takes 1 to 3 cycles, access to level 2 cache takes around
10 to 20 cycles, while the RAM access may take more than a hundred cycles.
Current trends in solving this problem are to increase the cache size and, as a
result, the chip area of modern microprocessors is already dominated by cache.
However a multi-core design must also consider scalable throughput from mem-
ory. An example is the IBM Power 4/5 architectures, which use three identical
cache controllers for L2 cache, where cachelines are hashed across the controllers.
Distribution brings further problems to the memory design and a choice must be
made on how to implement sharing and coherence. In the Power 4/5 IBM pro-
vides coherence with four snoop processors implemented on the L2 controllers,
whereas in their Cell processor they partition the memory locally and force the
user to explicitly code the mapping of data to maintain coherence. Bus-based
snooping on the other hand is not scalable.

Trends in multi-cores designs can be seen in the Intel’s 80-core Tera-Scale
Research Chips [§], where each core has a local 256 KB memory associated via
Through Silicon Vias (TSV) and where all processing cores are connected to the
network on-chip. Such distributed structures provide scalability, but the local
memory implementation lacks flexibility and would destroy the abstraction over
mapping that gives binary code compatibility in the microthread model, where
families of microthreads can be assigned freely to different processing cores on
chip.

2.1 Requirements

The requirement for a memory system in a Microgrid of microthreaded proces-
sors must provide the abstraction of a shared memory but achieve this across
potentially thousands of processing cores, while providing scalable throughput
both on and off chip. The ameliorating factor in this difficult design is that
the processors tolerate a large amount of latency, which has led us to resurrect
and specialise a paradigm used in earlier parallel computers, such as the Kendal
Square KSR1 [9]. We introduce a Cache Only Memory Architecture (COMA)
[10] for the on-chip cache system. In COMA, all the memory modules can be
considered as large caches, called Attraction Memory (AM). Data is stored by
cacheline but the line has no home location as a CC-NUMA [II], where the
physical location of a memory address is always known. COMA adds complexity
to locating a data in the memory but at the same time, increases the chances
of data being in the local cache. In a Microgrid of microthreaded processors we
propose a cache memory based on the COMA approach and allow data to mi-
grate dynamically within the on-chip memory. A significant difference between
the on-chip COMA and traditional COMA system is that the traditional COMA
system will hold all data in the system without a backing store. However, on-
chip COMA is unlikely to provide enough space to store so much data. The
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on-chip COMA therefore has a backing store for data off the chip, where one
or more DRAM interfaces or links or some other Microgrid chips will provide
an interface for storing incoming data. The main contribution of this paper is
the protocol required to implement the memory consistency model in such an
on-chip COMA memory system, its verification and subsequent use in a memory
co-simulator.

2.2 The Microgrid Multi-core Chip

A Microgrid is a tiled multi-core chip designed using microthreaded multiproces-
sors. Because the microthread model uses a unique method of program compo-
sition using the create instruction, all structures in the microgrid must support
this model. This includes on-chip networks and the memory organisation. At
different levels in a program’s concurrency hierarchy, families of threads are dis-
tributed to configured rings of processors, allocated from a pool of processors.
This requires dynamic processor allocation similar to the way in which malloc
is used for memory management. This is illustrated in Figure[Ila which shows a
dynamic snapshot of an executing microthread program. The node marked SEP
maintains a map of resources used and allocates and configures rings of proces-
sors over the low bandwidth grid network. The circuit-switched, ring networks
that form clusters from the microthreaded processors provide protocols for fam-
ily creation and termination and also allow adjacent processors in a ring to share
data between their local register files to provide the distributed shared register
file in the cluster. The ring network is shown in more detail in Figure [Ilb.
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Fig. 1. (a) Microgrid of microthreaded processors (uT proc) configured into dynamic
clusters with ring interconnections. A request for a configured cluster is performed
by the SEP over the resource management and delegation network, which is the low-
bandwidth, packet-routed grid linking all processors. (b) Details of the ring network
configured to support the execution of families of threads.
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Each microthreaded processor in a cluster has a small ( 1KByte) level 1 D-
cache. Missing in this cache does not stall the processor as memory operations
are decoupled by suspending the thread on the target register location. Memory
requests asynchronously update the register file when the memory access com-
pletes. In order to manage this, all memory requests must be tagged by target lo-
cation in the register file as well as family identifier, for memory synchronisation.

The single address space defined in Figure [[la is distributed over the chip
in order to provide scalable performance. It is partitioned into Level 2 cache
blocks, where a small number of processors will share requests on their L1 cache
misses. In a traditional NUMA organisation, data has a home location, which
means when the processor suffers a miss on the L2 cache, the processor will
try to access the home location of the address. The access to a remote memory
might take more than a thousand cycles. COMA, on the contrary, does not have
a home location for a given piece of data. In COMA, the dynamic migration of
data increases the possibility of finding the data in the local L2 cache or possibly
another L2 cache module on chip. The downside of this is that to locate data
is relatively expensive and to do this, directories are utilised. COMAs are also
developed in different structures. Data Diffusion Memory (DDM) [12] uses a tree
structure, where each level of the tree is associated with a Directory that holds
information about the data availability below this level. (N.b. a directory does
not store any data, just state information). The Kendall Square multiprocessor
[9] on the other hand used a hierarchical snooping ring network. Generally, the
protocols used are very similar to snooping protocols.

Details of the structure and protocol of the Microgrid on-chip COMA are
given in the next section.

3 Memory Hierarchy Design

The memory system includes both the on-chip cache system and an off-chip
communication interface or interfaces. Presently it is assumed that the off-chip
interface is connected to a multi-bank memory storage, which is able to provide
a high bandwidth for feeding multiple processors on a chip. The address space
is physically interleaved across different memory banks.

The on-chip cache system is designed to have 2 levels of caches. Each
processor is closely associated with its own small and fast L1 cache. L2 caches
are relatively big, and each could supply data for multiple processor-L1 cache
pairs. The L2 caches and their associated L1 caches are connected with snooping
buses. Since the local bus configuration is not scalable, the number of L1 caches
connected on a bus is restricted. Assuming each L2 cache can support between 4
to 8 processor-L1 cache pairs, then the number of L2 caches for current technol-
ogy (say 128 processors) is 16 to 32. In future, perhaps thousands or even tens of
thousands of processors may be integrated onto a single chip. Thus, the network
utilised to connect L2 caches will be a hierarchy of ring networks, which map onto
the hierarchical nature of the concurrency trees generated in the microthreaded
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model. We believe this will provide scalability in both bandwidth and cost as
well as locality in communication.

To reduce the coherence pressure on a ring network, we group adjacent
L2 caches together, and the caches in the same group are connected with a
uni-directional ring network. Furthermore, all groups are connected by a higher
level ring to allow for memory requests between groups. The lower and higher
level ring networks are called level-1 (L1) and level-2 (L2) ring networks re-
spectively. The joints between L1 and L2 rings are Directories, the structures
designed to direct the flow of certain requests and reduce the network traffic.
Each directory holds the information about all the data available in the group it
is associated with. Like caches, directories hold information in a set-associative
manner. Furthermore, the items in the directory are tailored to the cacheline
size. Each item in the directory holds information about the cacheline tag and
some state information without any data values. The state information can tell
the availability and exclusiveness of a certain cacheline in the group it associates
with. For instance, when a directory indicates a certain data is exclusive, it
means that the certain cacheline can only be found valid in the current group,
although the cacheline inside the group can be shared across different caches.
On the L2 ring a Root Directory (RD) holds all the state information about
the available data on-chip. It helps decide whether to send out a request off
the chip. The memory controller connected with RD will carry out the off-chip
communication.

I
Controller
I

Fig. 2. Attraction Caches are organized around a 2-level hierarchical ring network as
on-chip COMA

A normal snooping L2 cache only serves requests from processors and passively
changes its state information. However, in this on-chip cache, each L2 cache not
only serves the request received locally, but also serves requests received from
the network. The property is very similar to COMA, which allows different
Attraction Memories to serve data automatically so that data can flow to the
place where it was mostly or recently used. Thus we call our on-chip cache
system an on-chip COMA cache hierarchy. Furthermore, since the L2 cache
behaves similarly to an attraction memory, to differentiate the cache from a
normal cache we also call these L2 caches Attraction Caches (AC). The on-chip
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COMA structure is depicted in Figure[2 In the figure, there are only 3 L1 rings
and 3 ACs are shown, but the number of rings and ACs can be set arbitrarily.
Since the memory access patterns in our model can be very different from normal
processors due to its distributed large register file design and swift context swtich
capability, the detailed design parameters have to be decided by co-simulation
with our existing multi-processor simulator.

4 On-Chip COMA Cache-Coherence Protocol

A cache-coherence protocol maintains the consistency in a cache system. The
design of the protocol for our model also has to address the issues such as
minimising off-chip communication and providing a solution to the high band-
width requirement. Our L1 cache is very small, simply providing a buffering and
prefetching functionality. It uses a simple protocol with only two cacheline states,
Valid and Invalid. Here we focus on the design of Attraction Cache protocol.

In a distributed shared memory architecture, almost all the cache coher-
ence protocols are based on MOESI variations. MOESI represents five cache-
line states, Modified (M), Owned (O), Exclusive (E), Shared (S), and Invalid
(I) states. The cachelines in M and O states have the ownership of the data;
they are also called dirty. The line at M/E states holds data exclusively. A
shared cacheline only has the validness of data. Invalid data means the line is
not present in the current cache. S and I states are the basic states that represent
the validness of a cacheline. M and O states tend to keep the dirty values on the
chip, which helps reduce off-chip communication. The Exclusive state is useful
when repeated writes and reads to the same location happens in the cache. This
situation is unlikely to happen because in our architecture data dependencies
are generally captured at the register level rather than the memory level. Thus
without Exclusive state a MOSI protocol is chosen. Since the memory requests
are served asynchronously, the outstanding requests have to be remembered in
the current cache. Consequently, two basic states are provided, ReadPending
(RP) and WritePending (WP) states. The RP line waits for the valid data to
be loaded and the WP line waits for the exclusiveness of the line to be acquired
before performing a Write operation locally.

The AC is able to handle 10 different requests, which are listed on Figure Bl
In the following text only the acronyms are mentioned. Requests LR and LW
can only be issued by the processor. Both RS and RE try to load the data
remotely, while RE will acquire exclusiveness at the same time. SR and ER
are the corresponding replies for RS and RE. The request BR represents the
eviction of a cacheline. The BR can invalidate a shared line directly; it also has
to preserve the dirty data by writing them back to the main memory with WB
request. The IV request is normally generated by an LW request, which needs to
acquire the exclusiveness of a data copy. When the IV returns to the initiator, it
is regarded as a DE which represents the acquisition of the data exclusiveness.

As described above, the directories hold information about the current state
of the data in the group. Three different states, Invalid (IN), Shared (SH), and
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LR: RS /SR IV; BR; RE/ER; ER LR;RS /SR

RE/ER; ER; IV; BR/WB

Attraction Cache
Protocol

LR, LW, IV / queue

LR/ queue;
LW, IV / queve

DE / DE;
ER?ini/ER

IV; RS; WB
SR ? lini

SR?Ini/SR

Directory above
rectory below protocol
protocol

 separate transactions; *, represents ‘or’; (for example, LR, LW / queue == LR / queue; LW / queue) ‘a/b’ represents : a - incoming request / b - outgoing request

RE; IV; ER ? lini;

LR - Local Read LW - Local Write RS - Remote Read to Shared State SR - (to Shared state) Read Reply BR - Block Relocation IV - Invalidation
DE - Data Exclusive/Modified (IV return) RE - Remote Read to Exclusive State  ER - (to Exclusive state) Read Reply ~ WB - Write Back to main memory

Fig. 3. MOSI protocol State Transition Diagram of Attraction Cache and Directory

Exclusive (EX), can be assigned to each item in a directory. As a joint of L1
and L2 rings, a directory also determines whether a certain request should be
passed to the next node in the same or a different level. For instance, an RE
request is received from L1 ring by a directory which has the corresponding item
at EX state. Being aware the sub-system holds the exclusiveness, the directory
will propagate the RE in the L1 level without incuring any traffic on L2 ring.
The detailed state transitions of AC and directory are depicted in Figure

5 Consistency Model

In a multi-processor system, a consistency model places specific requirement on
the sequence that shared memory accesses from one process may be observed by
other processes. A number of consistency models have been proposed, including
Sequential Consistency (SC) [13], Release Consistency (RC) [14], and Location
Consistency (LC) [5]. Different consistency models balance the programming
complexity and system performance. LC is claimed to be the weakest consistency
model. Unlike SC, LC does not make the assumption that all writes to the
same memory location are serialized in some order observable to all processors.
The program will behave the same as on other systems as deterministic code is
being executed. Furthermore, unlike RC the synchronization is not happening
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for different blocks of code, but in terms of each individual memory location.
This partial order is only maintained for each individual memory locations. The
issuing order between memory accesses on different memory locations can be
adjusted by the compiler to achieve better performance.

In our on-chip COMA architecture, the maintenance of sequential consistency
is very expensive. For instance, if two processors are writing to the same memory
location concurrently on a ring. The processors separate the ring into two arcs.
The ACs on different arcs will observe the two requests in different orders, which
is forbidden in the sequential consistency model. Fortunately the microthread
memory model allows us to adopt the more relaxed LC as the consistency model,
which does not require the strict order under non-deterministic situations.

To exploit the potential of Location Consistency, a suspended request queue
structure is proposed for each cache and directory. In the Attraction Cache, a
cacheline will be locked in a temporary state when a new request to the same
location cannot be served directly. Thus, the incoming request has to be saved
temporarily in a buffer. To avoid blocking the request to other memory locations
which can be served directly, a queue structure is proposed to be associated with
each suspended cacheline. As the reply to the locked line returns, the associated
suspended line can be reactivated and served directly. Since we are using the LC
consistency model, the order of serving requests from different locations does not
need to be handled by the memory system. As a result, LC is actually extended
to the cacheline level. The temporary ReadPending and WritePending states are
actually combinations of the states in the data table and Tstates in queue table
depicted in Figure [ Each queue head in the queue table is associated with a
linked list in the request buffer. An Empty Queue Head (EQH) maintains the list
of empty slots in the request buffer. Similar queue structure is also implemented
in the directories.

Queue table in the set (Suspended queue structure)

Queue buffer

I |
| I Empty Queue head
| TAG State |
} TAG State | | e A
I TAG State | '
| Request Next
| TAG State |
Request Next
! Data table in the set !
| Request Next (EOQ)
| | TERIT) |
] il <77777777777777777777 !
! TAG TSta | Head | Tai-|--|
| TAG TSta | Head | Tail | | f Request Next
i TAG TS | Hemd Ao = p=oonmnnmnmenss S
| TAG TSta | Head | Tail | | Request Next
| |
| |
I |
. )

=
Cani okl et v otd B

Fig. 4. Suspended Queue Structure in Attraction Cache

6 Conclusion and Future Work

The paper gives an overview of the microthreaded CMP architecture. With its
capability for explicit context switching and scheduling based on thread con-
tinuations held in a large distributed register files, the model can tolerate long
memory access latency and give high throughput. Targeting VLSI technology in
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the 10 to 15 year timeframe, we have introduced an on-chip distributed shared
memory architecture and defined its operation. The choice of an on-chip COMA
system is to more efficiently utilise the overall memory bandwidth. Two levels
of ring networks are utilised to distribute memory storage across the network
for a large number of processors on chip and directories are used to direct the
memory transaction flow within the on-chip cache hierarchy. We have analised
the microthreaded memory model and have used Location Consistency as the
consistency model. Finally, for coherence a variant of the MOSI protocol has
been specified and implemented to maintain coherence for the caches. A novel
feature of this work is the proposed Suspended Request Queue implementation
for both Attraction Cache and Directory to further reduced the traffic on the
network.

Currently we are intensively verifying the cache coherence protocol by speci-
fying its complete behavior in Murphy description language [15]. The language
allows the user to specify initial system state and rules in addition to the pro-
cedures. From the initial state Murphi will automatically fire different rules
according to the conditions specified for them. The process will continue until
all system states are explored. By checking the correctness of each system state,
the protocol can be verified. The technique is called State Enumeration [I6]. At
the current stage, the protocol has been proved free of deadlock with Murphi
and we are verifying the implementation of location consistency.

In addition, the simulation of the memory system using SystemC has been
completed and tested using synthetic traces. In the near future, this memory
simulator will be integrated into the Microgrid CMP emulator to evaluate the
overall chip architecture in a cycle-accurate manner. The design parameters and
protocols will then be be tuned for the on-chip COMA memory system. Further-
more, we are developing a memory protection scheme that will provide families
of microthreads exclusive access to memory protection domains.
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