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Abstract. Constrained stress majorization is a promising new tech-
nique for integrating application specific layout constraints into force-
directed graph layout. We significantly improve the speed and conver-
gence properties of the constrained stress-majorization technique for
graph layout by employing a diagonal scaling of the stress function. Di-
agonal scaling requires the active-set quadratic programming solver used
in the projection step to be extended to handle separation constraints
with scaled variables, i.e. of the form siyi + gij ≤ sjyj . The changes,
although relatively small, are quite subtle and explained in detail.
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1 Introduction

Researchers and practitioners in various fields have been arranging diagrams
automatically using physical “mass-and-spring” models since at least 1965 [1].
Typically, the objective of such force-directed techniques is to minimize the dif-
ference between actual and ideal separation of nodes [2], for example:

stress(X) =
∑

i<j

wij(||Xi − Xj || − dij)2 (1)

where wij is 1
dij

2 , Xi gives the placement in two or more dimensions of the ith

node and dij is the ideal distance between nodes i and j based on the graph
path length between them.

Recently, the force-directed model has been extended to allow separation con-
straints of the form u + g ≤ v, enforcing a minimum gap g between the posi-
tions u and v of pairs of objects in either the x or y dimensions in the draw-
ing [4]. The basic idea is to modify the iterative step in stress majorization [5,
Ch. 8] to solve a one-dimensional quadratic objective subject to the separation
constraints for that dimension. Separation constraints allow a wide variety of
aesthetic requirements—such as downward-pointing edges in directed graphs,
alignment or distribution of nodes, placement of nodes in horizontal or vertical
bands, non-overlap of nodes, orthogonal ordering between nodes, containment
of nodes in clusters, containment in a page, and edge straightening without
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Fig. 1. Drawing of a directed graph illustrating the flexibility of constrained stress ma-
jorization. Separation constraints encode the aesthetic requirements that: (1) directed
edges point downwards; (2) selected nodes are horizontally or vertically aligned; (3) the
drawing fits within the page boundaries; and (4) nodes do not overlap edges or other
nodes. The “history of unix” graph data is from http://www.graphviz.org and this
drawing originally appeared in [3].

introduction of additional edge crossings–to be integrated into force-directed
layout [4]. Thus, constrained stress majorization provides an extremely flexible
basis for handling application specific layout conventions and requirements.

In majorization the value of the stress function (1) is reduced by alternately
minimizing quadratic functions in the horizontal and vertical axes that bound
the stress functions. These quadratic functions have the form:

f(x) ≡ 1
2
xT Qx + xT b (2)

where, for a graph with n nodes, x is the n dimensional vector of node positions
in the current dimension; the n × n Hessian matrix Q is the graph Laplacian
(see below); and the linear term b is computed before processing each axis based
on the difference between ideal separation of nodes and their actual separation
at the current placement (for details see [6]). Constrained stress majorization
extends this by additionally requiring that the solution returned satisfies the
separation constraints for that dimension.

In [4] we gave a specialized gradient-projection-based method for solving this
particular kind of quadratic program (QP) which was significantly faster than
standard QP algorithms. However, gradient projection (GP) based methods, like
other iterative optimization methods based on steepest descent, can display poor
convergence when working with badly conditioned Hessian matrices. A standard
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technique to improve convergence is to scale the variables so that the diagonal
entries of the scaled Hessian matrix are all equal. This works particularly well
if the Hessian, with entries Qij , is diagonally dominant, i.e. |Qii| ≥

∑
j �=i |Qij |,

which the graph Laplacian is by its definition:

Qij =
{

−wij i �= j∑
k �=i wij i = j

The main contribution of this paper is to demonstrate that using such diago-
nal scaling with GP is nearly twice as fast as the original unscaled GP algorithm
and, even more importantly, the rate of convergence is more robust. The main
technical difficulty is the need to modify the projection step to handle constraints
of the form sixi + g ≤ sjxj where si and sj are the positive scaling factors for
xi and xj , respectively. We detail the necessary modifications to the projection
algorithm. Although these modifications are quite subtle, they make little dif-
ference to the implementation difficulty. Thus, there seems no reason to use the
original unscaled GP algorithm in preference to the GP algorithm with diagonal
scaling presented here. Another contribution of the paper is to provide more
details of the gradient projection algorithm presented in [4].

2 Diagonally-Scaled Gradient Projection

The core step in constrained stress majorization is to solve a quadratic program
with an objective of the form given in Equation 2 subject to some separation
constraints c ∈ C on the variables where each separation constraint c is of form
xi +g ≤ xj where g is the minimum gap between the variables xi and xj . We call
this the Quadratic Programming with Separation Constraints (QPSC) problem.

Previously we gave an iterative gradient-projection algorithm for solving a
QPSC problem [4]. This works by first decreasing f(x), by moving x in the
direction of steepest descent, i.e. opposite to the gradient ∇f(x) = Qx + b.
While this guarantees that—with appropriate selection of step-size α—the stress
is decreased by this first step, the new positions may violate the constraints. This
is corrected by applying the function project, which returns the closest point x̄
to x which satisfies the separation constraints, i.e. it projects x on to the feasible
region. A vector p from the initial position x̂ to x̄ is then computed and the
algorithm ensures monotonic decrease in stress when moving in this direction by
computing a second stepsize β = arg minβ∈[0,1]f(x+ βp) which minimizes stress
in this interval.

Unfortunately, GP-based methods, like other iterative methods based on
steepest descent, can display poor convergence when working with poorly con-
ditioned Hessian matrices. One remedy is to perform a linear scaling on the
problem. The basic idea is to use an n × n scaling matrix S and transform the
problem into one on new variables y s.t. x = Sy.

If we choose S = Q−1 = (∇2f(x))−1 then steepest descent on the transformed
problem is equivalent to performing Newton’s method on the original problem.
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Thus, at least in the unconstrained problem convergence will be quadratic. How-
ever, computing the inverse of Q is quite expensive and it also means that scaling
of the separation constraints results in full-fledged linear constraints, so that the
projection operation becomes considerably more complex and expensive.

Thus, an approach which approximates Q−1 is often used in practice [7].
Specifically, we choose S to be a diagonal matrix such that the diagonal entries
in ST QS are all 1, i.e. Sii = 1√

Qii
and for i �= j, Sij = 0. This is called diagonal

scaling. We refer below to the diagonal entries in S as si = Sii. Note that for all
i, si > 0 and, clearly, S is very quick to compute.

It is straightforward to change the main gradient-projection routine,
solve QPSC, from [4] to use diagonal scaling. The modified routine is given
in Fig. 2.

The chief difficulty is modifying the projection routine project called by
solve QPSC. We have that xi = siyi so a separation constraint of form xi+g ≤ xj

becomes, in the scaled space, siyi + g ≤ sjyj. We call such linear inequalities
positively scaled separation constraints.

After computing an unconstrained descent direction the scaled GP algorithm
calls project to find the nearest point to d = ŷ − αg satisfying the positively
scaled separation constraints C′. That is, it must solve:

minimize F (y) =
∑n

i=1(yi − di)2

subject to positively scaled separation constraints C′

In [4] we described an active-set algorithm for incrementally finding a solution
to the projection problem subject to (unscaled) separation constraints. Here
we extend this to handle positively scaled separation constraints. Although the
changes are minor, they are quite subtle. The complete algorithm is given in
Fig. 2. Note that if c is a positively scaled separation constraint of form su+g ≤
tv we refer to u, v, s, t and g by lvc, rvc, lsc, rsc, gapc, respectively.

The method works by building up blocks of variables spanned by a tree of
active (or set at equality) constraints. At any point in time the block to which
a variable yi belongs is given by blki. If a block has k variables the tree of active
constraints has k − 1 linear equations so variable elimination can be used to
eliminate all but one variable and the position of all other variables is a linear
function of that single unknown reference variable. This contrasts to the unscaled
case in which the variables are simple offsets from the reference variable and are
not scaled.

For each block B the algorithm keeps: the set of variables VB in the block;
the set of active constraints CB ; the current position YB of the block’s reference
variable; and the scaling factor SB for the reference variable. For each variable
yi in block B = blki we have a variable dependent scaling factor ai and offset bi

giving its position relative to YB, i.e. it is an invariant that yi = aiYblki + bi. As
we shall see it is also an invariant that ai = Sblki

si
.

Each block B is placed at the position minimizing F =
∑

i∈VB
(yi − di)2

subject to the active constraints CB . Now,



Constrained Stress Majorization Using Diagonally Scaled GP 223

∂F

∂YB
=

∑

i∈VB

∂yi

∂YB

∂F

∂yi
=

∑

i∈VB

ai
∂F

∂yi
=

∑

i∈VB

ai(2(yi−di)) =
∑

i∈VB

2ai(aiYB+bi−di)

The minimum occurs when ∂F
∂YB

= 0 so the optimum value is YB = ADB−ABB

A2B

where ADB =
∑

i∈VB
aidi, ABB =

∑
i∈VB

aibi, and A2B =
∑

i∈VB
a2

i .
Initially, each variable yi is placed in its own block Bi where it is the block’s

reference variable. This is done in the procedure init blocks called at the start
of solve QPSC. After this the blocks persist between the calls to project and are
incrementally modified in the routine project.

The function project(C, d) works as follows. First the routine split blocks
updates the position of each block B to reflect the changed value of d. The
routine then splits the block if this will allow the solution to be improved. The
procedure split block is straightforward. The only point to note is that we define
left(c, B) to be the variables in VB connected to the variable lvc by constraints
in CB \ {c} and we define right(c, B) symmetrically.

Determining where and when to split a block is a little more difficult. It is
formalized in terms of Lagrange multipliers. Recall that if we are minimizing
function F with a set of convex equalities C over variables y, then we can as-
sociate a variable λc called the Lagrange multiplier with each c ∈ C. Given a
configuration y∗ feasible with respect to C we have that y∗ is a locally minimal
solution iff there exist values for the Lagrange multipliers satisfying for each yi

that
∂F

∂yi
(y∗) =

∑

c∈C

λc
∂c

∂yi
(y∗) (3)

Furthermore, if we also allow inequalities, the above statement continues to
hold as long as λc ≥ 0 for all inequalities c of form t ≥ 0. By definition an
inequality c which is not active has λc = 0. Thus we need to split a block at
active constraint c if λc < 0 since this tells us that by moving the two sub-blocks
apart we can improve the solution.

One key to the efficiency of the projection algorithm is that the Lagrange mul-
tipliers can be computed efficiently for the active constraints in a block in linear
time using the procedure comp dfdv. The justification for this is the following
lemma which is proved in [8]:

Lemma 1. Let y∗ place all blocks at their optimum position. If c is an active
constraint in block B then

λc = −
∑

k∈left(c,B)

1
sk

∂F

∂yk
(y∗

k) =
∑

k∈right(c,B)

1
sk

∂F

∂yk
(y∗

k)

Of course, after moving the blocks to their new location and perhaps split-
ting some blocks, there is no guarantee that the placement satisfies all of the
constraints. Thus, after splitting the procedure project repeatedly modifies the
blocks until a feasible solution is reached. The constraints are processed in de-
creasing order of violation until no more violated constraints are found and
therefore a feasible solution has been obtained.
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procedure solve QPSC(Q, b, C, x)
s ← ( 1√

Q11
, 1√

Q22
, . . . , 1√

Qnn
)

S ← n × n diagonal matrix with Sii = si

global y ← Sx
init blocks()
Q′ ← ST QS
b′ ← Sb
C′ ← {siyi + g ≤ sjyj |(xi + g ≤ xj) ∈ C}
repeat

g ← Q′y + b′

α ← gT g

gT Q′g
ŷ ← y
d ← ŷ − αg
nosplit ←project(C′, d)
ȳ ← y (y modified by project)
p ← ŷ − ȳ

β ← min( gT d

dT Q′p
, 1)

y ← ŷ − βp
until ‖ŷ, y‖ sufficiently small and nosplit

return S−1y

function project(C, d)
nosplit ← split blocks(d)
c ← maxc∈C violation(c)
while violation(c) ≥ 0 do

if blklvc �= blkrvc then
merge block( c)

else expand block(c)
c ← maxc∈C violation(c)

return nosplit

procedure init blocks()
for i = 1, ..., n do

let Bi be a new block s.t.
VBi

← {i}
YBi

← yi

SBi
← si

ADBi
← yi

A2Bi
← 1

ABBi
← 0

CBi
← ∅

ai ← 1
bi ← 0
blki ← Bi

return

procedure split blocks(d)
nosplit ← true
for each active block B do

ADB ← P
i∈VB

aidi

ABB ← P
i∈VB

aibi

A2B ← P
i∈VB

a2
i

YB ← ADB−ABB
A2B

for i ∈ VB do
yi ← aiYB + bi

for each c ∈ CB do λc ← 0
choose v ∈ VB

comp dfdv(v, CB , NULL)
sc ← minc∈CB

λc

if λc ≥ 0 then break
nosplit ← false
split block(c)

return nosplit

function violation(c) =
let c ≡ siyi + g ≤ sjyj in
sjyj − (siyi + g)

procedure merge block(c)
let c ≡ siyi + g ≤ sjyj

LB ← blki

RB ← blkj

for k ∈ VRB do
blkk ← LB
ak ← SLB/sk

bk ← bk + g
ABLB ← ABLB + akbk/sk

ADLB ← ADLB + akdk

A2LB ← ADLB + akak

YLB ← ADLB−ABLB
A2LB

CLB ← CLB ∪ CRB ∪ {c}
VLB ← VLB ∪ VRB

for i ∈ VLB do
yi ← aiYB + bi

return

procedure expand block(c̃)
B ← blklvc̃
for each c ∈ CB do λc ← 0
comp dfdv(lvc̃, CB , NULL)
[v1, ..., vk] := comp path(lvc̃,rvc̃,CB)
ps ← {c ∈ CB | ∃j s.t. lcc = vj and rcc = vj+1}
if ps = ∅ then error % constraints unsatisfiable
sc ← minc∈ps λc

split block(sc)
merge block(c̃)
return

procedure split block(c)
B ← blklvc
let RB be a new block s.t.
SRB ← SB

VRB ← left(c, B)
CRB ← {c′ ∈ CB | lvc′ , rvc′ ∈ VRB}
for i ∈ VRB do blki ← RB
ADRB ← P

i∈VRB
aidi

ABRB ← P
i∈VRB

aibi

A2RB ← P
i∈VRB

a2
i

YRB ← ADRB−ABRB
A2RB

for i ∈ VRB do yi ← aiYRB + bi

let LB be a new block s.t.
symmetric construction to RB
return

function comp dfdv(i, AC, c̃)
dfdv ← 2

si
(yi − di)

for each c ∈ AC s.t. i = lvc and c �= c̃ do
λc ←comp dfdv(rvc, AC, c)
dfdv ← dfdv + λc

for each c ∈ AC s.t. i = rvc and c �= c̃ do
λc ← −comp dfdv(lvc, AC, c)
dfdv ← dfdv − λc

return dfdv

Fig. 2. Diagonal scaling Gradient-Projection-based algorithm to find an optimal so-
lution to a QPSC problem with variables x1, . . . , xn, symmetric positive-semidefinite
matrix Q, vector b and separation constraints C over the variables



Constrained Stress Majorization Using Diagonally Scaled GP 225

If a constraint c is violated there are two cases. Either the variables in c, lvc

and rvc, belong to different blocks, in which case merge block is used to merge
the two blocks, or else lvc and rvc, belong to the same block, in which case
expand block is used to modify the block.

The code for merge block is relatively straightforward. If the merge is because
of the violated constraint c ≡ siyi + g ≤ sjyj then it merges the block RB =
blkj into block LB = blki (the direction is arbitrary and in practice we always
move variables from the smaller to the larger block). The reference variable
YLB becomes the reference variable of the new block. Now, rewriting the active
version of c, sjyj = siyi + g, in terms of YLB and YRB gives sj(ajYRB + bj) =
si(aiYLB + bi) + g. Thus,

YRB =
siai

sjaj
YLB +

sibi − sjbj + g

sjaj
=

SLB

SRB
YLB +

sibi − sjbj + g

SRB
.

Taking a = SLB

SRB
and b = sibi−sjbj+g

SRB
, we can express the variables of RB in

terms of the reference variable YB = YLB as:

yk = akYRB + bk = ak(aYLB + b) + bk = a′
kYLB + b′k

where
a′

k = (aka) =
SRB

sk

SLB

SRB
=

SLB

sk
=

SB

sk

and b′k = akb + bk.
The procedure expand block(b, c̃) is probably the most complex part of the

algorithm. It deals with a case where a previously constructed block now causes
a constraint c̃ between two variables in the block to be violated. To fix this we
must identify where to split the current block and then rejoin the sub-blocks
using c̃, in effect expanding the block to remove the violation by choosing a
different spanning tree of active constraints for the block. To do so, the algorithm
computes the best constraint sc in the active set on which to split based on its
Lagrange multiplier, λc. The intuition for this is that the value of λc gives the
rate of increase of the goal function as a function of cgap. Thus, the smaller
the value of λc the better it is to split the block at that constraint. However,
not all constraints in the active set are valid points for splitting. Clearly we
must choose a constraint that is on the path between the variables lvc̃ and
rvc̃. The call to the function comp path returns the list of variables [v1, ..., vk]
on this path. Furthermore, to be a valid split point the constraint c must be
oriented in the same direction as c̃, i.e. for some j, lcc = vj and rcc = vj+1. If
there are no such constraints then the constraints (and the original separation
constraints) are infeasible so the algorithm terminates with an error. Otherwise,
the split constraint sc is simply the valid split constraint with the least Lagrange
multiplier. The remainder of expand block uses split block to split the block by
removing sc from the active set CB and then uses merge block to rejoin the two
sub-blocks with constraint c̃.

Clearly, project will only terminate if either no constraints are violated, or
expand block terminates with an error. We show that if expand block gives rise
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to an error then the original separation constraints are unsatisfiable. It gives rise
to an error if there is a scaled constraint c̃ of form s′1v1 + g ≤ s′nvn and a path
of active constraints from v1 to vn of form

s′2v2 + g1 ≤ s′1v1, s
′
3v3 + g2 ≤ s′2v2, ..., s

′
nvn + gn−1 ≤ s′n−1vn−1

since the orientation of the constraints is opposite that of c̃. Thus, a consequence
of the path constraints is that s′nvn + g′ ≤ s′1v1 where g′ =

∑n−1
i=1 gi. The

current placement of v1 and vn satisfies s′nvn + g′ = s′1v1 but does not satisfy
s′1v1 + g ≤ s′nvn. Thus s′nvn + g′ = s′1v1 and s′1v1 + g > s′nvn and so s′nvn +
g′ + g > s′nvn. Thus, g + g′ > 0 and so the original scaled constraints are
unsatisfiable since s′nvn +g′ ≤ s′1v1 and g +g′ > 0 implies s′1v1 +g > s′nvn which
contradicts s′1v1 + g ≤ s′nvn. This also means the original separation constraints
are unsatisfiable since we have in the unscaled space x′

1+g ≤ x′
n and x′

1+g′ ≥ x′
n.

Thus, project always returns a feasible solution if one exists. The feasible solu-
tion is optimal in the case that nosplit is true and the solution has not changed.
Thus although the call to project is not initially guaranteed to return the optimal
solution it will converge towards it. Using this it is relatively straightforward to
show that solve QPSC converges towards the optimal solution.

Unfortunately, as for the unscaled gradient projection algorithm, we have
yet to provide a formal proof of termination of the project function, though
we conjecture that it does always terminate. The potential problem is that a
constraint may be violated, added to the active set, then removed from the
active set due to block expansion, and then re-violated because of other changes
to the block. Note that we have tried thousands of very different examples and
have never encountered non-termination.

Another potential source of non-termination, which arises in most active set
approaches, is that it may be possible for the algorithm to cycle by removing a
constraint because of splitting, and then be forced to add the constraint back
again. This can only occur if the original problem contains constraints that are
redundant in the sense that the set of equality constraints corresponding to the
separation constraints C, namely {u + a = v | (u + a ≤ v) ∈ C}, contains
redundant constraints. We could remove such redundant separation constraints
in a pre-processing step by adding εi to the gap for the ith separation constraint
or else use a variant of lexico-graphic ordering to resolve which constraint to
make active in the case of equal violation. We can then show that cycling cannot
occur. In practice however we have never found a case of cycling.

3 Results

To investigate the effect of diagonally scaled gradient projection on running
time and convergence of constrained stress-majorization layout, we compared
it against a number of other optimization methods for various graphs with a
range of degree distributions. Table 3 gives results in terms of running times and
numbers of iterations for a selection of graphs all of size around |V | = 1000. The
optimization methods tested were:
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(a) Unconstrained (b) Constrained

Fig. 3. A randomly generated tree as used in our tests, with 1071 nodes of varying
degree, drawn with and without constraints. The vertical constraints enforce downward-
pointing edges while the horizontal constraints are simply generated by an in-order
traversal of the tree.

CG. Unconstrained conjugate gradient (as recommended by [6] for (uncon-
strained) functional majorization).

Int. Pnt. A commercially available QP solver based on the interior point method
(Mosek1).

Unscaled GP. Gradient projection without scaling.
Scaled GP. Gradient projection with scaling.

Four different graphs were chosen with a range of different node-degree distri-
butions. The graphs were a randomly generated tree with |V | = 1071 and node
degree ranging from 1 to 4 (Fig. 3); an Erdõs–Rényi random graph of poisson
degree distribution [9] and |V | = 1000; a random graph with power-law degree
distribution generated using the Barabási–Albert model [10] (e.g. Fig. 4); and a
graph from the Matrix Market2 that we have used before in performance testing
of constrained layout methods [4].

For all methods except CG (which can not easily be extended to handle con-
straints) we ran both with and without a basic set of downward pointing edge
constraints [4]. For the tree graph we also included ordering constraints over the
x-node positions based on a simple in-order traversal of the graph. The con-
straints were chosen to be simple to generate, easy to visually verify, and to
be similar to the types of constraints that might be useful in practical layout
situations.

Numbers of stress-majorization iterations are given for each graph, with and
without constraints. These are the same across all solvers since each solves the
quadratic-program subproblems to optimality. For CG and GP solver methods
we also give the total number of iterations required. This helps to explain the
1 http://www.mosek.org
2 http://math.nist.gov/MatrixMarket/
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(a) Unconstrained (b) Constrained

Fig. 4. A randomly generated scale-free graph as used in our tests. It has 500 nodes with
power-law distribution of degree and is drawn with and without vertical downward-
pointing edge constraints.

Table 1. Results of applying stress majorization using various different techniques to
solve the quadratic problems at each iteration

Graph Constraints Solver Stress Maj. Total Total time
Hor. Vert. Iterations Iterations (secs)

Random 0 0 CG 48 646 8.82
Tree 0 0 Int. Pnt. 48 N/A 42.69

0 0 Unscaled GP 48 1607 19.97
|V | = 1071 0 0 Scaled GP 48 833 13.88

1070 1070 Int. Pnt. 38 N/A 341.69
1070 1070 Unscaled GP 38 2650 33.12
1070 1070 Scaled GP 38 1071 17.31

Poisson 0 0 CG 83 908 12.52
random 0 0 Int. Pnt. 83 N/A 62.17

0 0 Unscaled GP 83 1907 23.51
|V | = 1000 0 0 Scaled GP 83 1244 19.34

0 1478 Int. Pnt. 46 N/A 175.93
0 1478 Unscaled GP 46 2336 20.88
0 1478 Scaled GP 46 1717 15.81

Power-law 0 0 CG 91 983 13.45
random 0 0 Int. Pnt. 91 N/A 68.21

0 0 Unscaled GP 91 2140 26.3
|V | = 1000 0 0 Scaled GP 91 1287 20.43

0 1598 Int. Pnt. 101 N/A 390.07
0 1598 Unscaled GP 101 1914 48.9
0 1598 Scaled GP 101 1717 28.21

Bus 1138 0 0 CG 48 848 10.58
0 0 Int. Pnt. 48 N/A 49.08

|V | = 1138 0 0 Unscaled GP 48 1904 25.03
0 0 Scaled GP 48 875 16.49
0 1458 Int. Pnt. 43 N/A 190.06
0 1458 Unscaled GP 43 2697 36.12
0 1458 Scaled GP 43 1148 19.97

differences in running time between the different methods. Without constraints
CG was clearly fastest, solving the problem in fewer iterations and having to do
slightly less work in each iteration. This is to be expected since CG is known to
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Fig. 5. Rate of convergence |xk+1−x∗|
|xk−x∗| shown for each iteration k of the first gradient-

projection iterate when applying stress majorization to the 1138bus graph. Note that
x∗ is simply taken as the final configuration before the threshold is reached so the final
tail-off in both curves should be disregarded.

achieve super-linear convergence. Of the remaining methods, across all graphs,
constrained or not scaled GP was the fastest (converging in significantly fewer
iterations), followed by unscaled GP and the interior point method was slowest
by several fold. In all cases scaling improved the running time by at least 20%.
Interestingly, the improvement in speed in GP when scaling was applied was
more marked when constraints were also solved, e.g. for the tree example it was
almost twice as fast. To check scalability we also repeated the tests for random
graphs between 50 and 2000 nodes and the speed improvement observed with
scaling remained a fairly constant factor between 1.5 and 2.

Fig. 5 gives a graphic explanation of how scaling improves the convergence of
the GP method. The figure shows rate of convergence by iteration for the first
QP solved by the GP method in a stress majorization layout of the 1138bus
graph. Convergence rate is, as usual, defined as the distance from an optimal
solution at iteration k + 1 divided by the distance at iteration k. As shown in
Fig. 2 we stop the GP procedure when the descent vector has length smaller than
some threshold τ and for this test, to ensure a reasonable number of iterations
we set τ very small (10−15). With scaling convergence is roughly constant and
the threshold is reached after 25 iterations. Without scaling, the convergence
rate oscillates and the threshold is not reached until 44 iterations.

4 Conclusion

Constrained stress majorization is a promising new technique for integrating ap-
plication specific layout constraints into force-directed graph layout. The method
previously suggested for solving the special kind of quadratic program arising
in constrained stress majorization is a specialized gradient projection algorithm
for separation constraints. We have demonstrated that by performing diagonal



230 T. Dwyer and K. Marriott

scaling on the quadratic programming and generalizing the projection algorithm
to handle positively scaled separation constraints, we can significantly improve
the speed and convergence properties of the constrained stress-majorization tech-
nique. Importantly, this improvement comes at very little extra implementation
effort. Thus, we believe that gradient projection with diagonal scaling is the
method of choice for solving constrained stress majorization.

Our results have greater scope than graph layout since constrained stress ma-
jorization is immediately applicable to constrained multidimensional scaling (as
the two problems are analogous). We also believe that the use of diagonal scal-
ing may benefit other force-directed layout methods that are based on steepest
descent.
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