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Abstract. We present a linear time algorithm that produces a planar
polyline drawing for a plane graph with n vertices in a grid of size
bounded by (p 4+ 1) x (n — 2), where p < (|*";°]). It uses at most
p < [*7°] bends, and each edge uses at most one bend. Compared
with the area optimal polyline drawing algorithm in [3], our algorithm
uses a larger grid size bound in trade for a smaller bound on the total
number of bends. Their bend bound is (n—2). Our algorithm is based on
a transformation from Schnyder’s realizers [6l7] of maximal plane graphs
to transversal structures [45] for maximal internally 4-connected plane
graphs. This transformation reveals important relations between the
two combinatorial structures for plane graphs, which is of independent
interest.

1 Introduction

We focus on planar graph drawings. Such graphs can be drawn without any
edge crossings. Several styles of drawings [I] have been introduced. Common
objectives include small area, few bends and good angular resolution. We deal
with polyline drawings [I]. A polyline drawing is a drawing of a graph in which
each edge is represented by a polygonal chain and every vertex is placed on a grid
point. Bonichon et al. [3] presented a linear time algorithm that produces polyline
drawings for a graph with n vertices within a grid of area (n— |5 ] —1) x (p+1),
where p < 2"3_ ° Tt is area optimal and each edge has at most one bend. However
the total number of bends used by this algorithm could be (n — 2).

Our goal is to have a tradeoff between the grid size and the number of bends.
We present a linear time algorithm that produces a polyline drawing in a grid
with size bounded by (p + 1) x (n — 2), where p < [*";®|, and each edge uses
at most one bend. Although the grid size is not as good as the algorithm in [3],
our algorithm only needs at most p < L2"3_ ® | bends.

A maximal plane graph G is associated with realizers R [6[7], which is a
partition of the set of interior edges into three particular trees. A maximal inter-
nally 4-connected plane graph G’ with four exterior vertices is associated with
transversal structures T [45], which is a partition of the set of interior edges
into two st-graphs. In this paper, we introduce a transformation from a max-
imal plane graph G to a maximal internally 4-connected plane graph G’ with
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four exterior vertices by a certain number of operations. These operations are
determined by a realizer of G and can be done in linear time. Then our algorithm
uses the derived G’ and its transversal structure to obtain the polyline drawing.

The present paper is organized as follows. In Section 2] we recall a few defini-
tions. In Section [l we present the transformation from a realizer to a transversal
structure. Then we present our drawing algorithm.

2 Preliminaries

The graphs are simple graphs. We abbreviate “counter clockwise” and “clock-
wise” as ccw and cw respectively.

Definition 1. [6]7] Let G be a mazimal plane graph of n vertices with three
exterior vertices vy, v, v3 in ccw order. A realizer R(G) = {T1,T», T3} of G is a
partition of its interior edges into three sets 11,15, T5 of directed edges such that
the following holds: (1) for each i € {1,2,3}, the interior edges incident to v;
are in T; and directed toward v;; (2) for each interior vertexr of G, v has exactly
one edge leaving v in each of T1,Ts, T5. The ccw order of the edges incident to v
18: leaving in Ty, entering in T3, leaving in Ts, entering in Ty, leaving in T3 and
entering in Ts. Fach entering block could be empty.

(1 2)

Fig. 1. (1) A maximal plane graph G and a realizer R(G) of G. (2) A maximal internally

4-connected plane graph G’ with four exterior vertices and a transversal structure
T(G') for G'.

Schnyder presented a linear time algorithm to construct a realizer for G. An
example of a maximal plane graph G, and one of its realizers is given in Fig. [
(1). Next, we introduce the concept of transversal structures [4lJ5].

Definition 2. let G’ be a maximal internally 4-connected plane graph with four
exterior vertices vi,vs,v2, and v in ccw order. A transversal structure 7 (G') of
G’ is a partition of its interior edges into two sets, say in red and blue edges,
such that the following conditions are satisfied:
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1. In cw order around each interior verter v, its incident edges form: a mon
empty interval of red edges entering v, a non empty interval of blue edges
entering v, a mon empty interval of red edges leaving v, and a non empty
empty interval of blue edges leaving v.

2. All interior edges incident to v are red edges entering vs, all interior edges
incident to vy are red edges leaving vy, all interior edges incident to vy are
blue edges leaving vi, and all interior edges incident to vo are blue edges
entering vo. Fach such block is non empty.
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Fig. 2. (1) A straight-line grid drawing of the graph G’ in Fig. [ (2). (2) A polyline
drawing of G in Fig. [ (1).

Fig. [l (2) shows an example of a transversal structure 7 (G’) for a maximal
internally 4-connected plane graph G’ with four exterior vertices. The subgraph
of G' with all its red-colored edges (blue colored edges respectively) and all its
four exterior edges is called a red map (blue map respectively) of G', it is de-
noted by G, (G} respectively). For any interior vertex v of G’, let P,(v) be the
unique path from v; to vy in G} such that, the subpath of P(v) from vy to v
is the rightmost one before arriving at v, and the subpath of P,(v) from v to
v is the leftmost one after leaving v. Let y(v) be the number of faces in G}
enclosed by the path (vi,v4,v2) and Py(v). Similarly, for any interior vertex v
of G, let P.(v) be the unique path from vy to v3 in G. such that, the sub-
path of P.(v) from v4 to v is the rightmost one before arriving at v, and the
subpath of P.(v) from v to vz is the leftmost one after leaving v. Let z(v) be
the number of faces in G/, enclosed by the path (v4,v1,v3) and P.(v).For exam-
ple, vertex k in Fig. [ (2) satisfies P.(k) = (v4,y, k, f,a,v3), so that x(k) = 3;
and Py(k) = (v1,9,k,b,¢,v2), so that y(k) = 5. Let (7 (G’)) be the number
of interior faces of G7. y(7(G’)) be the number of interior faces of G}. For the
vertices vy, v, U3, Vg, we define z(v1) = 0,y(v1) = y(T(G")), x(v4) = 0,y(v4) = 0,
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z(v3) = 2(T(G)),y(vs) = y(7(G')), and z(v2) = x(T (G')), y(v2) = 0. We have
the following lemma from [4]:

Lemma 1. Let G’ be a mazimal internally 4-connected plane graph with 4 ex-
terior vertices vy, vg, V2, v3 in ccw order. Then:

1. G’ admits a transversal structure T (G"), which is computable in linear time.

2. Applying T(G'"), for each vertex v, embed it in the grid point (x(v),y(v)).
For each edge of G', simply connect its end vertices by a straight line. The
drawing is a straight-line grid drawing for G'. Its drawing size is (T (G")) x
y(T(G")). This drawing is computable in linear time.

Fig. @ (1) presents a straight-line grid drawing of the graph of G’ in Fig. [ (2),
by applying Lemma [ to 7 (G’) in Fig. [ (2).

3 Transformation from Realizers to Transversal
Structures and Its Application in Planar Polyline
Drawing

Let G be a maximal plane graph with 3 exterior vertices v1, va, v3 in ccw order.
Let R(G) = {T1,T>, T3} be one of its realizers. T; is rooted at v;. Next, we
illustrate how to transform a realizer for G to a transversal structure for a
targeted maximal internally 4-connected plane graph G’ with 4 exterior vertices.
Our transformation uses a tree from R(G). Subject to a color and index rotation,
we only need to show the case of using T3. Let v be a leaf node of T5. v is an
interior vertex of G. Let p;(v) and p2(v) be its parents in 77 and T» respectively.
The face f enclosed by {v,p1(v),p2(v)} is an interior face of G. Consider the
edge e = (p1(v), p2(v)). According to the property of realizer, e cannot be in T3.
Furthermore, e cannot be (vy,v3), neither can it be (ve,vs).

o Yo W
e el -k
pl(ﬁ‘: - - 7i’< A pz(v) PI(V}/ - i, ; pz(v) v —-—[ , Ay
split(v) split(v) 1 split(v) = V4 2
(1 (2) (3)
Fig. 3. Step 1

We complete the transformation in the following three steps. We will use G’
to denote both the target graph and the intermediate forms.

Step 1: For every leaf node v of T, insert a vertex split(v) in the middle of
e = (p1(v),p2(v)). split(v) splits e into two edges. Let the two edges keep the
original color and directions as e in G. Add a directed edge from split(v) to v,



On Planar Polyline Drawings 217

and color it by red. We have three different cases, as illustrated in (1), (2) and
(3) of Fig. Bl Note that, in Fig. B (3), for the case where e = (v1, v2), we denote
the inserted vertex by vy4. v4 is an exterior vertex of G'. G’ has 4 exterior vertices
V1, V4, V2, V3 in ccw order.

Step 2: For each leaf v of T3, still consider the edge e = (p1(v), p2(v)), as if
it were not split. There are three cases to consider:

Case 1: e = (v1,v2). No additional operation needed.

Case 2: ¢ is in Tj. e is adjacent to another triangle g. Let u be the vertex
¢ {p1(v),p2(v)} in g. According to the properties of realizer, only five scenarios
are possible. They are shown in Fig. @l In Fig. [ (1) or (2), we add a directed
edge from u to split(v), and color it by red. In Fig. d (3) or (4), consider pa(v), it
must also be a leaf in T3. Therefore, in Step 1, a vertex split(p2(v)) and an edge
(split(pa(v)), p2(v)) have been inserted for it already. In this step, we further
add an edge, directed from split(p2(v)) to split(v), and color it by red. Fig.
(5) is similar to Fig. @ (3) or (4) except that u = vs.

Fig. 4. Case 2 of Step 2

Case 3: e is in Ty. This case is similar to Case 2.
Step 3: Reverse the direction of the blue-colored edges in G’. Recolor the
green-colored edges by blue.

The above coloring and directions of the edges of G’ is denoted by 73(G"). (If
we use 17, T» instead, then we denote it by 771(G’), 72(G’) instead). The proof of
the following lemma is omitted here due to space limitation.

Lemma 2. Let G be a maximal plane graph with n vertices. v1,vs,vs be its
exterior vertices in ccw order. R(G) = {T1,Ts, T3} be one of its realizers. T; is



218 H. Zhang and S. Sadasivam

rooted at v;. Let I; be the number of leaves of T;, i € {1,2,3}. Then for the above
introduced transformation:

1. T,(G") is a transversal structure of G'. x(T;(G")) = l; + 1 and y(T;(G")) =
(n—2), where i € {1,2,3}.

2. The transformation from the realizer R(G) to T;(G'), i € {1,2,3} can be
done in linear time.

For the maximal plane graph G in Fig.[0l (1), Fig.[ (2) shows a transversal struc-
ture 73(G"), constructed as above by using T3 in the realizer R(G) = {T1, T, T3}.
The inserted vertices are represented by black squares. The inserted red-colored
edges are drawn in dashed lines.

Applying Lemma[lto 7;(G’), we obtain a straight-line grid drawing of G’. By
removing the inserted edges and the inserted vertices, but keeping the split edges
in the drawing of G’, it becomes a polyline drawing of G. It is easy to see that,
only an edge in G which has had a vertex inserted in it during the transformation
maybe drawn as two-segment polylines. The total number of such edges is [;, i.e.,
the number of leaves in T;. In [2], Bonichon et al. proved that in any realizer,
l1+13+15 < (2n—5). Combined with Lemma 2] we have the following theorem:

Theorem 1. A plane graph G with n vertices admits a polyline drawing in a
grid with size bounded by (p + 1) x (n — 2), where p < [*"5°°]. The number of
bends is at most p, and each edge has at most one bend. The drawing can be
constructed in linear time.

Fig. 21 (2) shows a polyline drawing of the original graph G in Fig.[Il (1), where
the edges represented as two-segment polylines are drawn in dashed lines.
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