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Abstract. A graph is planar if and only if it does not contain a Kura-
towski subdivision. Hence such a subdivision can be used as a witness for
non-planarity. Modern planarity testing algorithms allow to extract a sin-
gle such witness in linear time. We present the first linear time algorithm
which is able to extract multiple Kuratowski subdivisions at once. This is
of particular interest for, e.g., Branch-and-Cut algorithms which require
multiple such subdivisions to generate cut constraints. The algorithm
is not only described theoretically, but we also present an experimental
study of its implementation.

1 Introduction

A planar drawing of a graph is an injection of its vertices onto points in the
plane, and a mapping of the edges into open curves between their endpoints.
These curves are not allowed to touch each other, except in their common end-
points. Graphs which admit such a planar drawing, are called planar graphs, and
recognizing this graph class has been a vivid research topic for the past decades.
Hopcroft and Tarjan [IT] showed in 1974 that this problem can be solved in lin-
ear time, using sophisticated data structures and intricate algorithms. Current
planarity testing algorithms like the ones by Boyer and Myrvold [45] and de
Fraysseix et al. [9I0] are less complex but still quite involved.

As shown by Kuratowski [I3] in 1930, a graph is planar if and only if it
does not contain a K33 or a K5 subdivision, i.e., a complete bipartite graph
K3 3 or complete graph K5 with edges replaced by paths of length at least one.
Such subgraphs are called Kuratowski subdivisions. The efficient extraction of
such a witness of non-planarity was non-trivial in the context of the first linear
planarity tests. A linear algorithm for such an extraction was later presented, e.g.,
by Williamson [15]. Modern planarity testing algorithms like the ones by Boyer
and Myrvold, and de Fraysseix et al. can directly extract a single Kuratowski
subdivision, if the given graph is non-planar.

In ILP-based Branch-and-Cut approaches which try to solve, e.g., the Maxi-
mum Planar Subgraph problem [I2] or the Crossing Minimization problem [6],
the identification of multiple such witnesses is a crucial part. Thereby, we look
at some intermediate solution and try to find Kuratowski subdivisions. For each
such subdivision, we can try to generate a cut constraint, necessary to efficiently
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solve the ILP. Experience shows that it is desirable to find multiple Kuratowski
constraints at once, as they strengthen the LP-relaxation of the problem.

In the following, let G = (V, E) be a non-planar undirected graph, without
selfloops and multi-edges. Current planarity tests are able to extract a single
Kuratowski subdivision in linear time O(n), n := |V|. We address the problem
of finding multiple Kuratowski subdivisions in efficient time. As there may ex-
ist exponentially many Kuratowski subdivisions in general, it is not practical
to enumerate all of them. A basic approach would be to obtain & Kuratowski
subdivisions through calling a planarity test k times and subsequently deleting
an involved Kuratowski edge. This approach has a superlinear runtime of O(kn),
but we are not aware of any algorithm faster than this approach, up until now.

In this paper, we propose an algorithm which extracts multiple Kuratowski
subdivisions in optimal time O(n +m + ), s |[E(K)]), with S being the set
of identified Kuratowski subdivisions and m := |E|. This runtime is linear in
the graph size and the extracted Kuratowski edges. The algorithm is based on
the planarity test of Boyer and Myrvold [5] which is one of the fastest planarity
tests today [3]. We will only give a short introduction into this planarity test
in Section 2} for a full description of the original test see [5]. The main part
of this paper focuses on the description on how to modify and extend all steps
to obtain multiple subdivisions in linear time, which requires both algorithmic
changes, as well as a heavily modified runtime analysis. Finally, Section Ml gives
a short computational study which shows the effectiveness of this algorithm.

2 The Boyer-Myrvold Planarity Test

The test starts with a depth first search on the (not necessarily connected) input
graph, which divides the edge set into DFS-forest edges and into backedges,
pointing to nodes with smaller depth first index DFI. The aim is to construct a
planar drawing based on the DFS-forest, by successively embedding all backedges
in descending DFT order of their end vertices. Throughout this paper, let v be the
current vertex to embed. Any backedge ending on v is called pertinent and will
be embedded, if this is possible while maintaining planarity. In the beginning,
each DFS-edge is separated from its adjacent vertex with lower DFI and joined to
a new virtual vertex. Therefore it represents a biconnected component (bicomp)
in the beginning, which grows when backedges are embedded.

To identify involved bicomps during such an embedding, the Walkup is called
for each start node of a pertinent backedge. A bicomp consisting of only one
DFS-edge and its adjacent vertices is called degenerated. The Walkup marks the
involved subgraph and classifies nodes as pertinent and external: a node w is
called pertinent, if there exists a pertinent backedge {w,v} or if w has a child
bicomp in the DFS-tree which contains a pertinent node. A node w is called
external, if there exists a backedge {w,u} with u having a smaller DFI than
v, or if w has a child bicomp containing an external node. Bicomps are called
pertinent or external if they contain pertinent or external vertices, respectively.
The Walkup traverses a unique path from w to v on the external faces of bicomps
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for every pertinent backedge {w,v}. We denote this path as the backedge path
of {w,v}.

The Walkdown attempts to embed each pertinent backedge and merges the
bicomps between its start and end vertex in the DFS-tree to a new, larger bi-
comp. It is invoked twice for each child bicomp of v: once in a counterclockwise
direction around the external face of the child bicomp, and once in the clockwise
direction. Using the classification of nodes from the Walkup, the Walkdown em-
beds only backedges which preserve planarity in the embedding. If any backedge
cannot be embedded, the graph is not planar and a subdivision is extracted; oth-
erwise a planar embedding is found. Since non-embeddable backedges can only
occur when both Walkdowns stop on external vertices which are not pertinent,
such a situation is called a stopping configuration. We call unembedded perti-
nent backedges caused by a stopping configuration critical. Let b = {w, v} such a
critical backedge. The first node in the backedge path of b which is contained in
the same bicomp as both stopping vertices are, is called critical node. We denote
the part of the backedge path from w to this critical node critical back path.

3 Extracting Multiple Kuratowski Subdivisions in Linear
Time

As opposed to the Boyer-Myrvold planarity test, the number of edges cannot be
bounded linearly by the number of vertices. Since every algorithm has to read
the input graph and to output all identified Kuratowski subdivisions, 2(n+m+
Y kes | E(K)]) is a lower bound for the runtime and our algorithm is therefore
optimal for the extracted number of Kuratowski edges.

3.1 Overview

The original planarity test terminates when a stopping configuration is found. It
is possible to extract a Kuratowski subdivision for each critical backedge of this
stopping configuration. To obtain more, we have to proceed with the algorithm.
This bears problems, since the embedding has to be maintained planar, which is
impossible if it contains Kuratowski subdivisions. The idea is to identify all crit-
ical backedges in the given stopping configuration and delete them. After that,
the bicomp B containing the stopping configuration is not pertinent anymore
and it is necessary to continue at the situation directly before the planarity test
descended to B. This allows finding the next stopping configuration, provided
that there exists any on the current embedding step of vertex v. See Algorithm [I]
for an overview of these steps for the embedding of a single vertex v.

Unfortunately, almost all time-bounds given in [5] loose validity with this
approach, and a new runtime analysis of this extended algorithm is necessary.
The key to a linear time bound is to compensate additional costs during Walkup,
Walkdown and extraction by the amount of extracted Kuratowski edges.

We will first describe how to find the correct reentry point after a stopping
configuration was found and removed. In Section B3] we discuss how to modify
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Algorithm 1. Embedding tasks of a vertex v
1: for all pertinent backedges p ending at v do

2: Walkup(p) > Sect.
3: end for

4: for all DFS-children c of v do

5: stop « Walkdown(c) > original Walkdown
6: while stop # () do

T Find all critical backedges of the stopping configuration stop > Sect. B4]
8: Extract multiple subdivisions for each critical backedge > Sect. [3.4]
9: Delete critical backedges and update the classification of nodes > see [5]
10: Find reentry_point for further embedding > Sect.
11: stop < Walkdown(reentry_point) > iterated Walkdowns
12: end while

13: end for

the Walkup, in order to allow efficient operations used in the later steps of
the algorithm. Section 3.4 deals with the efficient extraction phase. Finally, the
overall runtime of the extended algorithm is analyzed in Section

Of course there are graphs with exactly one Kuratowski subdivision. Hence,
we do not ensure any lower bound other than 1 for the number of extracted
Kuratowski subdivisions of non-planar graphs. But in practice, the quantity is
high as discussed in Section [l Formally, our algorithm guarantees:

Lemma 1. We find at least one unique Kuratowski subdivision for each critical
backedge per stopping configuration.

Lemma 2. Whenever the algorithm extracts a Kuratowski subdivision using a
critical backedge b, and there exists at least one additional Kuratowski subdivision
without b, we will find such a subdivision.

3.2 Finding the Reentry Point for Further Embeddings

Let v’ be the virtual node of v adjacent to the DFS-child ¢ of v from the current
Walkdown. We call the bicomp which has v’ as its root, the forebear bicomp, the
others are called non-forebear bicomps. The Walkdown can be run unmodified,
as long as no stopping configuration occurs. The same holds if a stopping con-
figuration occurs on the forebear bicomp due to embedded pertinent backedges,
since this represents the last stopping configuration in the Walkdown.
Otherwise, the Walkdown has to be modified. Let A be the non-forebear
bicomp containing the stopping configuration, 1" the subtree of all pertinent
bicomps with the bicomp containing v’ as root and D the parent bicomp of A
in T (cf. Figure [[l). Any bicomp in T has exactly those bicomps as children
which are referenced in the PertinentRoots lists of its nodes, as proposed in
[5]. In Figure[ll the bicomp tree T consists of the (degenerated) forebear bicomp
{v', ¢} and the non-forebear bicomps A, B, C' and D. The Walkdown stops at
A, deleting the critical backedges incident to wy and ws after the extraction of
all Kuratowski subdivisions induced by these backedges. Afterwards, A is not
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pertinent anymore and its PertinentRoots list entry on the parent node z;
in D must be deleted. As there exists another item in that list, we continue
the Walkdown at z; and find another stopping configuration in bicomp B. The
general rule is that the Walkdown continues on z; until the PertinentRoots list
of z1 is empty.

At last, z1 is not pertinent anymore. Fur-
thermore, short-circuit edges from the root r
of D to both external vertices in each direc-
tion (21 and z2) have been embedded.These
short-circuit edges permit an O(1)-traversal
to the other external vertex zo, where the
Walkdown extracts all stopping configura-
tions of child bicomps (bicomp C in Fig-
ure [I), analogously to z;. Finally, we check
whether D itself contains a stopping config-
uration by extracting all remaining critical
edges. In our example, the backedge start-
ing at ws induces a subdivision and can
Fig.1. Finding reentry points. D€ deleted after the subdivision’s extraction.
Square nodes refer to external 1his procedure is iterated for the next father
vertices; circular, light gray nodes bicomp in the DFS-tree until the forebear bi-
denote pertinent vertices. Virtual comp is reached or a pertinent backedge is
vertices are depicted by a dotted embedded. In the latter case, all preceding bi-
line. comps are embedded and the Walkdown con-

tinues at the forebear bicomp.

The crucial point in this scheme is the traversal to a bicomp, where no
backedge can be embedded, i.e., a bicomp that contains a stopping configuration:
we modify the embedding to what it would have been, if no critical backedges
on this bicomp would have existed. Finally, the Walkdown is restarted on the
very node where the previous Walkdown started to descent to this bicomp.

3.3 Walkup

Additionally to the PertinentRoots list and BackedgeFlags of the original pla-
narity test, we now have to collect some more information during the Walkup. For
every visited node n, we store a link LinkToRoot to the root node of the bicomp of
n. This can be done efficiently by using a stack for all visited nodes of the bicomp
during the Walkup. Furthermore, a list named PertinentNodesAfterWalkup of
all pertinent nodes of each bicomp B is created. This is stored at the root node
of B by collecting the nodes during the Walkup in a list. Whenever we reach the
bicomp root or a node with set LinkToRoot, we can add the collected vertices
in O(1) time to the list of the bicomp root. Once established, this list is not
modified until v is completely embedded.

It is useful to be able to distinguish the backedges incident to different virtual
vertices v’ of v, since they will be embedded in different subtrees later on. This
can be done by storing v’ as the HighestVirtualNode for each backedge {w, v}.
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To obtain v" for a given backedge p, Walkup(p) marks each visited node with
p. If the Walkup ends on a virtual node of v, we can store this node as the
HighestVirtualNode (p). Otherwise, Walkup(p) stopped on an already visited
vertex which was traversed during the Walkup of another backedge ¢. Since both
Walkups met, the subtrees are identical and so are the HighestVirtualNodes
of p and ¢. The latter can be looked up in O(1), and we hence identified
HighestVirtualNodes(p). This allows us to easily generate a list Backedges-
OnVirtualNode for each virtual node v’ of v containing the backedges belonging
to the pertinent subtree with root v’.

3.4 Extraction

Overview. The extraction starts whenever the Walkdown halts on some stop-
ping configuration in a bicomp B. We describe how the critical backedges of this
stopping configuration can be computed in the next subsection “Extraction of
C'ritical Backedges”. Each critical back path of those backedges induces one or
more Kuratowski subdivisions of a specific minor-type, which has to be known
prior to the extraction. To obtain this minor-type, a path from each stopping
vertex to a node with lower DFI than v is selected in time linearly to its length.

Additionally, the highest-zy-path of the critical node w is needed to determine
the minor-type. As defined by Boyer and Myrvold, the highest-xy-path obstructs
the inner face of B and consists of the external face part on the top of the for-
mer, now embedded, bicomp which contains w. This path can be computed in
O(n), but this would result in a superlinear overall runtime. Hence we develop
a more efficient way by first extracting the more general highest-face-path ef-
ficiently and use it to obtain the highest-xy-paths for all critical nodes. These
steps are described in the subsections “Extraction of the Highest-Face-Path” and
“Bxtraction of all Highest-XY-Paths”. After the minor-type is determined, all
remaining parts of the Kuratowski subdivision can be extracted from the DFS-
tree using only external faces of involved bicomps. This requires time linearly to
their lengths. Finally, all critical backedges of the stopping configuration as well
as the involved PertinentRoots and BackedgeFlags are deleted. We will give
a rather high level description of the extraction, referring the reader to [7I4] for
technical details and case distinctions.

Extraction of Critical Backedges. Let x and y be the two stopping vertices
on the bicomp B, and r the root of B. Neither x, nor y, nor any node on
the external face paths r — x and r — y can be pertinent; otherwise the
Walkdown would not have stopped at x and y. The critical back paths of the
critical backedges end on the external face of B between x and y. We distinguish
between two cases depending on the type of B.

If B is a forebear bicomp, all pertinent backedges of the current Walkdown
are contained in the BackedgesOnVirtualNode () list. For each entry, we can
check in O(1) whether it is embedded. If not, the backedge is critical. This yields
an overall running time of O(n 4+ m) over all embedding steps, since all critical
backedges are deleted afterwards and no further stopping configuration can exist.
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If B is a non-forebear bicomp, consider the DFS-subtree T of pertinent bi-
comps with B as root bicomp. We start a preorder traversal through 7" by using
the PertinentNodesAfterWalkup lists on the roots of all bicomps. These lists
can contain nodes that are not pertinent any more due to extractions of other
stopping configurations. Hence we have to check each item for pertinence; every
non-pertinent entry is deleted. The remaining nodes are the critical nodes and
we check their BackedgeFlag property. If this flag is set, the associated backedge
must be critical and is therefore included in the list of critical backedges. Note
that the remaining nodes, independent of their BackedgeFlag, may have non-
empty PertinentRoots lists. After all critical backedges starting at the current
bicomp were found, the preorder traversal iterates the process on each child
bicomp given by its PertinentRoots lists recursively.

All tests on the nodes can be performed in constant time. The size of the tree T’
itself is bounded by the costs of the corresponding Walkup invocations, because
at least one node was traversed for each pertinent bicomp. Moreover, a non-
pertinent node in the PertinentNodesAfterWalkup list can only happen as a
result of an earlier extracted stopping configuration. The only other reason would
be that a pertinent backedge has been embedded on B, which contradicts the as-
sumption. Fach of the at most m stopping configurations in all embedding steps
produces at most one non-pertinent entry in a PertinentNodesAfterWalkup
list. Hence the overall runtime is bounded by the Walkup time.

Independent of the case distinction on B, all critical nodes in B are nec-
essary for the minor-type classification and for the extraction of Kuratowski
subdivisions. We can obtain all critical nodes in B efficiently by testing the
BackedgeFlag for each entry of the PertinentNodesAfterWalkup list of r. From
the above description we can conclude:

Lemma 3. The asymptotic runtime for obtaining all critical backedges of a stop-
ping configuration is bounded by the Walkup costs.

Extraction of the Highest-Face-Path. In order to extract all highest-xy-
paths efficiently, we first require a highest-face-path of the bicomp B. See Figure[2]
for a visualization of the following explanations. We obtain the highest-face-path
by temporarily deleting all edges incident to its root r except for the two edges
s = (r,a) and t = (r,b) on the external face (ignoring any short-circuit edges).
Thereby, B breaks into multiple sub-bicomps; we also delete all separated sub-
bicomps, i.e., the sub-bicomps which do not contain r. Consider the inner face f
containing a, r, and b. The highest-face-path is the path a — b on the boundary
of f not traversing r.

It is possible to extract the highest-face-path in time O(|B]), if B is properly
embedded. But since the planarity test performs implicit flips on bicomps, we do
not know whether the adjacency lists of the nodes are in clockwise or counter-
clockwise order, and we would have to establish the correct orientation for each
node of B first. This requires a traversal of the underlying DFS-tree, resulting
in a superlinear overall runtime. Hence, this approach is not suitable and we will
identify the highest-face-path with inconsistent node orientations instead.
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Fig. 2. The structure of the bicomp B containing former bicomps. The hatched former
bicomps form the bottom chain. The extraction of the highest-face-path starts at the
inner vertex ¢ in both directions (thick dotted arrow lines) and ends on nodes a and b.

Therefore, it is not possible to easily walk along f. The idea is to reuse the
external face links, which were introduced in the original planarity test, of the
former, now merged bicomps in B. These external-links of a node referred to
the two incident edges on the boundary and could be used in a traversal of
the external face in order to find the correct direction to proceed, even when
some nodes are not oriented correctly. Unfortunately, the Walkdown will usually
modify those external-links. Therefore, we store a backup copy old-links of the
external-links on each bicomp root during the Walkup.

To use the former external-links in a traversal inside of a non-degenerated B,
we have to analyze the general structure of B first: the external face of every
non-degenerated forebear bicomp contains at most one embedded backedge for
each of the two Walkdowns formerly started at r. It may also contain an edge
connecting the root and the non-root node with least DFI. However, in all cases
these edges are incident to the virtual root node. The remaining set of edges on
the external face consists of the lower parts of now connected, former bicomps.
We denote this sequence of former bicomps which lie on the external face the
bottom chain of B, cf. Figure P2l A merge node is a node shared between two
adjacent bicomps of the bottom chain (e.g. the nodes ¢ in Figure ), or one of
the two end nodes a and b. Given a former bicomp U in the bottom chain, the
path on the upper part of U connecting the two contained merge nodes resembles
the highest-xy-path of a critical back path ending at U. This fact is the key for
the later extraction of all highest-xy-paths.

Let ¢ be the unique non-virtual node of B with smallest DFI. Let E be the
former bicomp of the bottom chain which contains the node with smallest DFT:
if ¢ is not contained in F, inner bicomps exist. Hence, we can summarize the
necessary traversal as follows: We start with the traversal at c. If neither s nor ¢
is an external-link of ¢, ¢ is either an inner vertex or the root of ¥ which lies on
the external face of B. The former induces inner bicomps along a path from c¢ to
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the root of E. In both cases, we traverse the boundary of former bicomps in both
directions. If an external-link of ¢ is either s or ¢, ¢ lies on the external face, and
we have to traverse only one direction, following the other external-link of c. If we
use two traversal directions, E can be determined as the last bicomp, whose root
node is visited by both traversals. Starting with this root, all traversed nodes
are stored in two separate lists, one for each traversal direction. We obtain the
highest-face-path of B by appending the reversed second list to the first one. All
walks check on each visited node z whether z is identical to a or b in O(1). If so,
the walk is finished. During the traversal, all visited nodes are saved on a stack.
If a node is visited twice, this node is a merge node to an inner, separated sub-
bicomp, whose boundary is not part of the highest-face-path. Then, all nodes
between the two occurrences are deleted from the stack.

We store the highest-face-path on the unique vertex c¢ in B, since later extrac-
tions might need it as well. Whenever a highest-face-path has to be computed
in consequence of an embedding of B within a larger bicomp B*, B will play
the role of a former bicomp. Since we only traverse the external faces of former
bicomps, we will never again traverse the interior of B. Hence, and since the
traversals require O(1) time for each vertex, we obtain:

Lemma 4. All highest-face-paths which occur during the algorithm can be com-
puted and maintained in O(n +m).

Extraction of all Highest-XY-Paths. For every given critical node w be-
tween two stopping vertices of a stopping configuration, we have to compute
its highest-xy-path. Let D be the former bicomp of the bottom chain of B. By
traversing the external face of D from w in parallel, using again the old-links,
we find the merge nodes and extract the highest-xy-path in linear time of its
length. For details see [7].

Extraction of Kuratowski Subdivisions. The prior sections dealt with the
problem of efficiently obtaining and classifying multiple stopping configurations.
We now address the problem to extract multiple Kuratowski subdivisions out
of a single stopping configuration. Whenever a stopping configuration occurs,
an appropriate critical back path for each critical backedge is computed. Along
with the highest-xy-path, the minor-type of the induced Kuratowski subdivision
is obtained. Additionally to the basic 9 minor-types of [5], we can define 7 more
minor-types, by augmenting the types B,C, D and F,—-FE; with a non-empty
path v — r as in type A. We call the resulting minor-types AB, AC, AD and
AE,-AE}y, respectively. It turns out that the Kuratowski subdivisions of these
additional minor-types constitute the largest part of the extracted subdivisions
in practice, see Section @l Clearly, more than one minor-type can exist for a
single critical back path.

To further increase the number of extracted subdivisions, we will start with
focussing on the critical back paths, since nearly all minor-types need them
for constructing the subdivision. In general, such a path consists of external
face parts between the roots of multiple consecutive bicomps. We can therefore
extract the other parts of these external faces and combine these to obtain
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potentially exponentially many different critical back paths, which yield different
Kuratowski subdivisions. As a side effect, those subdivisions are all similar which
can be beneficial for the application area of Branch-and-Cut algorithms. The
same technique can be used to obtain multiple external backedge paths and
multiple paths starting at the so-called exzternal z-nodes [5] in the minor-types
E1*E5 and AEl*AEzl.

All extracted Kuratowski subdivisions of a stopping configuration are unique.
This holds for subdivisions of different stopping configurations as well, except
for the minor-types Fy and AFE>, which do not include the critical back path
and thus might be extracted as minor-type A later on. This can be avoided by a
special marker on the external backedges, to prohibit its classification as a future
critical backedge in A.

Bundle Variant. Moreover, we can extend our algorithm by a bundle variant
in which all root-to-root paths of each involved bicomp on a critical back path
are extracted. This approach increases the number of identified subdivisions dra-
matically, albeit on the cost of the running time. To speed up the backtracking
subroutine, it is possible to use algorithms for dynamic connectivity for pla-
nar graphs [§]. This increases the overall runtime only by a factor of log(n) in
comparison to the linear time approach in terms of output complexity.

3.5 Runtime Analysis

All steps described so far guaranteed an overall linear runtime. It remains to
show that the modified Walkup can be bound by a linear total of O(n +m +
Y kes |E(K)]). We will only give a brief sketch of the proof, and omit a number
of rather technical case differentiations (see [7I14]).

It is sufficient to consider the costs of the Walkup, which cannot be com-
pensated by new embedded faces or new short-circuit edges. Therefore, we only
consider Walkup costs on critical backedge paths. If these are part of stopping
configurations on non-forebear bicomps, the sum of all critical backedge-path
costs on all forebear bicomps can be estimated as follows: we spend at most
On+m+3 ges|E(K)|) time on the external face, and at most O(m) time on
inner faces containing the forebear root. Moreover, all other costs caused by stop-
ping configurations in non-forebear bicomps are compensated by the inevitably
induced minor A which contains all other traversed edges.

Otherwise, the stopping configuration is contained in a forebear bicomp B.
Since most minor-types do not contain the whole external face of B in their
Kuratowski subdivisions, all not yet compensated costs arise on its external face.
The only exception to this rule are the critical paths on minors Fo, AF>, which
can be bound by a linear total as well. These remaining costs are compensated
by the extracted Kuratowski paths of the different minor-types. Hence we yield
Theorem [Il which is optimal in terms of output complexity. Based on this, we
can furthermore deduce a corresponding result for the bundle variant.

Theorem 1. The overall running time of the algorithm is bounded by O(n +
m+ Y ges |E(K)|) and therefore linear.
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Corollary 1. The overall running time of the bundle variant is O(n + m +
IOgnZKES |E(K)|).

4 Experimental Analysis

We implemented the algorithm and its bundle variant as part of the open-source
C+-+-based Open Graph Drawing Framework [1]. All tests were performed on an
Intel Core2Duo with 1.86 GHz and 2GB RAM using the GNU-compiler gec-3.4.4
(-o1). Due to the algorithmic complexities, we simplified the steps to compute the
critical backedges and highest-xy-paths by correctly orienting B in time O(|B|).
Although this simplification breaks the provable linear runtime, our experiments
show that it does not influence the running time negatively in practice, since the
number of extracted Kuratowski edges becomes the dominant term. The bundle
variant uses a traditional back-tracking scheme and therefore does not guarantee
the theoretical logarithmic bound. We use the Rome Graph Library [2], which
contains 11528 real-world graphs with 10 to 100 nodes, 8249 of which are non-
planar graphs. We also use random graphs (n = 10...500, m = 2n) generated
by OGDEF. Thereby we start with an empty graph on n vertices and iteratively
add an edge with random start and end node, until m unique edges are added.

Each Rome graph is processed in less than 11 ms (on average: 1.3 ms). The
average amount of extracted Kuratowski subdivisions per 100-node graph is 255,
containing in total 12214 Kuratowski edges. It is interesting that the average
size of the subdivisions grows approximately with n/2 throughout all tests. More
Kuratowski subdivisions are obtained by the bundle variant. Thereby, each graph
is processed in less than 1 sec (but on average less than 7 ms), extracting up
to 3.5 million Kuratowski edges at some graphs (see Figure B]). There are 2912
subdivisions on average per 100-node graph with 136027 Kuratowski edges.

On the random graphs, the number of identified Kuratowski subdivisions in-
creases dramatically for the bundle variant, such that a full computation becomes
prohibitive. In practice, one can of course stop the computation after a certain
amount of extracted subdivisions. Hence, we restrict our test to the linear vari-
ant for these random graphs (see Figure B]). Each graph needs less than 430 ms
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seconds

0 1000000 2000000 3000000 4000000 5000000
n + m + #Kuratowski Edges

Fig. 3. Running times. The linear variant for the Rome Library would be nearly invis-
ible in the very left corner of the figure.
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(126 ms on average), extracting up to 25000 Kuratowski subdivisions per graph
containing 5 million Kuratowski edges. The average number of Kuratowski sub-
divisions is 8813 per graph with 1.3 million Kuratowski edges.

Overall, the experiments show a linear running time, despite the aforemen-
tioned simplifications of the algorithm. The minor-types are dominated by the
types AE1—AFEy, which constitute 60%-90% of all subdivisions on graphs with
at least 100 nodes.
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