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Abstract. Given a graph G with n vertices and a set S of n points
in the plane, a point-set embedding of G on S is a planar drawing such
that each vertex of G is mapped to a distinct point of S. A geometric
point-set embedding is a point-set embedding with no edge bends. This
paper studies the following problem: The input is a set S of n points, a
planar graph G with n vertices, and a geometric point-set embedding of
a subgraph G′ ⊂ G on a subset of S. The desired output is a point-set
embedding of G on S that includes the given partial drawing of G′. We
concentrate on trees and show how to compute the output in O(n2 log n)
time and with at most 1+2�k/2� bends per edge, where k is the number
of vertices of the given subdrawing. We also prove that there are instances
of the problem which require at least k − 3 bends for some of the edges.

1 Introduction

Let G be a planar graph with n vertices and let S be a set of n points in the
plane. A point-set embedding of G on S is a crossing-free drawing of G such that
each vertex is represented as a distinct point of S and the edges are polygonal
chains. The problem of computing a point-set embedding of a graph, also known
as the point-set embeddability problem, has been extensively studied both when
the mapping of the vertices to the points is chosen by the drawing algorithm and
when it is partially or completely given as part of the input. A limited list of
papers about different versions of the point-set embeddability problem includes,
for example, [1,2,3,5,6,7,8,12,15].

This paper studies a natural extension of the point-set embeddability problem.
It is assumed to have a mapping of some edges of G to segments defined on S
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and the goal is to compute a point-set embedding of G that includes the given
segments. More precisely, we focus on trees and study the following question: The
input is a set S of n points, a tree T with n vertices, and a point-set embedding of
a subtree T ′ ⊂ T on a subset of S such that all edges of this partial drawing are
straight-line segments. The desired output is a constrained point-set embedding
of T on S, i.e. a point-set embedding of T on S that includes the given partial
drawing of T ′.

From the application point of view, the point-set embeddability problem is
relevant in those contexts where the display of the vertices is constrained to use
a set of prescribed locations. Our variant adds the constraint that a portion of
the graph is already drawn; this can be important for example to preserve the
user’s mental map when a certain subgraph of an evolving network does not
change over time. Again, representing certain edges as straight-line segments
and placing their end-vertices at specific locations can be used to emphasize the
importance of these objects with respect to other objects of the graph.

We recall that a recent paper on extending a partial straight-line drawing
is [16]. Given a planar graph G and a planar straight-line drawing Γ of a sub-
graph of G, the author of [16] shows that it is NP-hard deciding whether G
admits a planar straight-line drawing including Γ . The main difference between
the problem studied in [16] and the one investigated in this paper is that, when
extending the partial straight-line drawing, we have fixed locations for the ver-
tices and we allow bends along the edges.

The main contribution of this paper is to provide lower and upper bounds to
the maximum number of bends per edge in a constrained point-set embedding
of a tree. An outline of the results is as follows.

– We prove that a constrained point-set embedding of a tree on a set of points
can require one edge bend even if the partial drawing consists of just a single
edge. We recall that every tree with n vertices admits a straight-line point-set
embedding onto any set of n points in general position [3,8].

– We extend the above result by showing a lower bound that depends on
the number of vertices of the given subdrawing of the tree. Namely we prove
there exist trees with n > 7 vertices and partial drawings with k < n vertices
such that any constrained point-set embedding has at least n−k edges, each
having at least k − 3 bends.

– We describe a drawing algorithm that computes a constrained point-set em-
bedding of a tree in O(n2 log n) time and with at most 1 + 2�k/2� bends
per edge, where n is the number of vertices of the tree and k is the number
of vertices of the given subdrawing. We remark that the difference between
such an upper bound and the lower bound mentioned above is at most 5.

The proof of the upper bound is based on the partial solution of a computa-
tional geometry problem that in our opinion is of independent interest. Kaneko
and Kano [9,10] studied the problem of computing a point-set embedding with
straight-line edges of a forest F of rooted trees such that the location of the root
of each tree of F is part of the input. Kaneko and Kano show that the drawing
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can always be computed for special types of forests (rooted star forests or forests
of trees where the sizes of any two trees differ by at most one) but the problem
is still open in the general case.

One of the basic ingredients of our upper bound technique sheds more light
on the problem described above. Namely, let T0, . . . , Th−1 be a forest of trees
with n vertices in total. Let S = {p0, . . . , pn−1} be a set of n points in general
position such that p0, . . . , ph−1 are points of the convex hull of S. We describe
an O(n2 log n) time procedure to compute a straight-line point-set embedding
of the forest such that the root of Ti is on pi (i = 1, . . . , h − 1).

The remainder of this paper is organized as follows. Preliminary definitions
are in Section 2. The study of the constrained point-set embeddability problem
for trees is in Section 3: Lower bounds are provided in Subsection 3.1 and an
upper bound is given in Subsection 3.2. Conclusions and open problems are in
Section 4.

2 Preliminaries

We assume familiarity with basic notions of graph drawing and of computational
geometry (see, e.g., [4,11,13,17]).

Let G = (V, E) be a planar graph with n vertices and let S be a set of n points
in the plane. A point-set embedding of G on S, denoted as Γ (G, S), is a planar
drawing of G such that each vertex is mapped to a distinct point of S. Γ (G, S)
is called a geometric point-set embedding if each edge is drawn as a straight-line
segment.

Let D(S) be a straight-line drawing whose vertices are points of a subset of
S. We say that D(S) is a partial drawing of G on S if it represents a graph
isomorphic to a subgraph of G. A constrained point-set embedding Γ (G, D(S)) is
a point-set embedding of G on S such that D(S) is a subdrawing of Γ (G, D(S)).

For example, Figure 1 shows a graph G, a partial drawing D(S) of G on a set
S of points, and a constrained point-set embedding Γ (G, D(S)).

In the remainder of the paper, we say that the points of S are in general
position if no three points of S lie on the same line. A corner v of a polygon

G D(S) Γ (G, D(S))

Fig. 1. A planar graph G. A set S of points and a partial drawing D(S) of G. A
constrained point-set embedding Γ (G,D(S)) with at most one bend per edge.
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in the plane is said to be a reflex corner if the angle at v inside the polygon is
greater than 180 degrees.

3 Constrained Point-Set Embeddings of Trees

In this section we investigate the constrained point-set embeddability problem for
a tree T on a set S of points. We present lower and upper bounds to the maximum
number of bends per edge in a constrained point-set embedding Γ (T, D(S)).
These bounds depend on the number of vertices of the partial drawing D(S).

3.1 Lower Bounds

We first show that there exist a tree and a set of points such that, even for a
partial drawing consisting of a single edge, a constrained point-set embedding
requires at least one edge bend. A more general lower bound is then provided.

Lemma 1. There exist a tree T of n vertices, a set S of n points, and a partial
drawing D(S) of T on S consisting of a single edge, such that every constrained
point-set embedding Γ (T, D(S)) has an edge with at least 1 bend.

Sketch of Proof: Consider the tree T and the drawing D(S) in Figure 2. Let s
denote the single edge of D(S). Let v0, v1, v2, and v3 denote four vertices of
T as illustrated, i.e., v0, v1, v2, and v3 form a path from the root of T to a
leaf. Assume that we have a drawing Γ (T, D(S)) without bends. Notice that no
point above s can be connected to a point below s without a bend. Because of
symmetry we only need consider three cases: either (v0, v1), (v1, v2), or (v2, v3)
is mapped to s.

(v0, v1) is mapped to s: Removal of v0 and v1 splits T into three sub-trees,
one with 3 vertices and two with 4 vertices each. Each sub-tree either has to be
drawn above or below s. This cannot be done since there are 6 points above and
5 points below s and no combination of {3, 4, 4} adds up to 5.

(v1, v2) is mapped to s: Removal of v1 and v2 splits T into three sub-trees,
two with 1 and one with 9 vertices. No combination of {1, 1, 9} adds up to 5.

(v2, v3) is mapped to s: Removal of v2 and v3 splits T into two sub-trees,
one with 1 and one with 10 vertices. No combination of {1, 10} adds up to 5. �

Lemma 2. There exist a tree T with n > 7 vertices, a set S of n points, and
a partial drawing D(S) of a tree with 7 ≤ k < n vertices, such that every
constrained point-set embedding Γ (T, D(S)) has n− k edges each having at least
k − 3 bends.

Sketch of Proof: Consider a tree T consisting of a path v0, v1, . . . , vk−3 of k − 2
vertices, a vertex u adjacent to v1, a vertex w adjacent to v2 and n − k vertices
adjacent to vk−3 (see Figure 3 for an illustration with k = 9 and n = 14). Let
T ′ be the subgraph of T containing all vertices of T except the n − k vertices
adjacent to vk−3. There is exactly one subgraph in T isomorphic to T ′, and the
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T

s

D(S)v0

v1

v2

v3

Fig. 2. A tree T , a set S of points, and a partial drawing D(S) with a single edge s

remaining n− k vertices of T are adjacent to vk−3 which is the only leaf node of
T ′ with a degree 2 neighbor. Notice that for such a leaf to exist we require k ≥ 7.
Let D(S) be a partial drawing of T on S constructed as shown in Figure 3; the
edges of D(S) (the solid edges in the figure) form a tree isomorphic to T ′. Since,
as already observed, there is only one subgraph in T isomorphic to T ′, the edges
that we must add to D(S) to get a drawing Γ (T, D(S)) are those adjacent to
vk−3 (see, e.g., edge e in Figure 3). As also shown in the figure, it is not hard to
see that each of these edges requires at least k − 3 bends. �

v4

v0

v6 = vk−3

v1
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v5
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e

e
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T D(S)
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w
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w

Fig. 3. Illustration of the proof of Lemma 2. A tree T with n = 14 vertices, a set S
of n points, and a partial drawing D(S) (with solid edges) with k = 9 vertices. Every
Γ (T, D(S)) requires n − k = 5 edges each having at least k − 3 = 6 bends (see for
example the dashed edge).

3.2 Upper Bound

Let T be a tree with n vertices and let S be a set of n points. In this section we
show that if D(S) is a partial drawing of T on S such that D(S) represents a tree
with k vertices, then we can always construct a constrained point-set embedding
Γ (T, D(S)) with at most 1 + 2�k/2� bends per edge. This means that each edge
of T that we add to complete D(S) is drawable with a number of bends that is
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linear in the number of vertices of D(S) and that does not depend on the size
of T . Notice that the bound 1 + 2�k/2� is equal either to k + 1 (if k is even) or
to k + 2 (if k is odd). This implies that the difference between this upper bound
and the lower bound given in Lemma 2 is at most 5.

We start by providing two lemmas that are the technical foundation of our
drawing technique. The first lemma sheds more light on a point-set embeddabil-
ity problem studied by Kaneko and Kano [9,10].

Lemma 3. Let G consist of a forest of trees T0, T1, . . . , Th−1. Let Ti = (Vi, Ei)
for all 0 ≤ i < h. Let S = {p0, p1, . . . , pn−1} be a set of points in general
position such that p0, p1, . . . , ph−1 are points of the convex hull of S. There exists
an O(n2 log n)-time algorithm that computes a geometric point-set embedding
Γ (G, S) such that the root of Ti is on pi (0 ≤ i < h).

Sketch of Proof: Let CH(S) be the convex hull of S. Without loss of generality,
assume that p0, p1, . . . , ph−1 occur in this order on the boundary of CH(S) in
clockwise order (if this is not the case, we can simply reorder them).

We first show that we can find a line a with the following properties: (i) a
does not intersect any point pi of S and there are points from S on both sides
of a; (ii) denoted by I ⊂ {0, 1, . . . , h − 1} the set of indices for which all convex
hull points pj , with j ∈ I, lie on one side of a, we have that the total number of
points on that side is equal to

∑
j∈I |Vj |.

We call such a line a dividing line. An example of dividing line is shown in
Figure 4. We can use a ham-sandwich type argument to prove that a dividing
line exists. We say that a side of a is too light if we have convex hull points pj

with j ∈ I ⊂ {0, 1, . . . , h − 1} to that side of a and the total number of points
to that side of a is smaller than

∑
j∈I |Vj |. If one side of a is too light, the other

side is said to be too heavy.
Consider points p0 and p1 on CH(S). Let a0 and a1 be lines through p0 and

p1 and such that any other point of a0 and a1 is outside the polygon defined by
CH(S) (refer to Figure 4 for an illustration). Let p be the intersection point of
a0 and a1 (the proof will still work if p is a point at infinity). We start with line
a = a0 and rotate a around p in the counterclockwise direction until a = a1.
We can always slightly perturb a0 and a1 (and hence p) in such a way that a
never intersects two points of S at the same time. Without loss of generality
assume that the range of motions for a does not include a horizontal line and
that when a = a0, all remaining points of S lie to the right of a when moving
along a toward p. If we rotate a slightly away from a0, only p0 lies to the left of
a. If T0 consists only of its root, a is a dividing line and we are done; otherwise
the left side of a is too light. If we place a such that only p1 is on its right, then
either T1 consists only of a root and we are done, or the left side of a is too
heavy. If the left side of a is too light and during the rotation of a from a0 to
a1 it passes a point pj with 0 ≤ j < h, the left side of a remains too light. Since
during rotation at any time at most one point moves from the right to the left
side of a, and since in the beginning the left side of a is too light and at the end
the left side of a is too heavy, it follows that at some moment a is a dividing line.
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T1 T2

T0

CH(S)

Fig. 4. An example of dividing line a. G consists of three trees T0, T1, and T2, where
T0 has 3 vertices and T1, T2 have 4 vertices each. On one side of a there are the root
points p0 and p2 for trees T0 and T2, and a total number of points equal to the number
of vertices of T0 and T2; on the other side of a there are the points for drawing T1.

The complexity of finding a dividing line is O(n log n), because we can first
radially sort the points of S around p and then execute a scan-line algorithm
from a0 to a1 to find a dividing line. Also, if p must be perturbed by an ε > 0
to avoid that it is collinear with any two points of S before starting the search
of a dividing line, such an ε can be determined in O(n) time, using the radial
sorting of the points around p itself.

Once we have found a dividing line, the polygon whose boundary is CH(S) is
divided into two subregions. By recursively applying the same procedure on each
of the two subregions we can find dividing lines that split CH(S) into convex
subregions P0, P1, . . . , Ph−1 such that each Pi contains |Vi| vertices. Therefore
we find the required drawing by executing the following algorithm:

Step A. Divide CH(S) into convex subregions P0, P1, . . . , Ph−1 such that each
Pi contains |Vi| vertices.

Step B. Draw each Ti inside Pi with the technique of Bose et al. [3].

Since all h dividing lines can be found in O(h · n log n) time, where h ≤ n,
and the algorithm of Bose et al. [3] runs in O(n log n) time, it follows that the
given algorithm runs in O(n2 log n). �

The next lemma extends the previous result to the case where the roots of the
trees are placed on the boundary of a non-convex polygon. In this case, the
number of bends along the edges depend on the number of reflex corners of the
polygon.

Lemma 4. Let G consist of a forest of trees T0, T1, . . . , Th−1. Let Ti = (Vi, Ei)
for all 0 ≤ i < h. Let S = {p0, p1, . . . , pn−1} be a set of points in general
position such that p0, p1, . . . , ph−1 are points along the boundary of a polygon P
and the remaining points of S are inside P . Also, let k be the number of reflex
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corners of P . There exists an O(n2 log n)-time algorithm that computes a point-
set embedding Γ (G, S) inside P such that the root of Ti is on pi (0 ≤ i < h) and
each edge of Γ (G, S) has at most 2�k/2� bends.

Sketch of Proof: For an illustration of this proof, refer to Figure 5. In the figure
the forest to be drawn consists of two trees, T0 and T1, and the polygon P has
three reflex corners. We prove the lemma by construction:

Step 1. We partition P into k + 1 convex polygons, for example by iteratively
drawing a bisector from each reflex vertex until this bisector hits another
line segment. We perturb the subdivision in such a way that no point from
S lies on any of the added subdivision edges and so that none of the convex
polygons has an angle equal to π. We call the added subdivision edges dummy
edges (the dashed edges in the figure).

Step 2. Consider the dual graph of this subdivision, find a spanning tree T of
the dual graph and select a node r of T with the property that the number
of edges in T from r to any leaf node of T is at most �k/2�. Make r the root
of T . In the following, for any node v of T , Pv will denote the convex polygon
corresponding to v (Pr is the convex polygon corresponding to the root). In
the figure, the nodes of the dual graph of the subdivision are represented by
big squares and the edges of the selected spanning tree are in bold.

Step 3. The objective of this step is to add extra points on the boundary of
Pr so that each of these points corresponds to a distinct point of S that
does not lie in Pr. Let S′ = S. We add dummy points to S′ by executing a
post-order traversal of T . For each visited node v of T distinct from r we do
the following. Let e be the dummy edge that separates Pv from the polygon
corresponding to its parent node in T . Recall that no points from S lie on
e, except possibly at its end-points. Let Sv be the set of points in S′ ∩ Pv

except possibly those at some end-point of e (we include every other point
of S that is on the boundary of Pv). Place |Sv| dummy points on e in such
a way that none of the points on e lies on a line through two points from
Sv. Construct a straight-line perfect planar matching from the |Sv| points
in Pv to the |Sv| points on e. Add to S′ the dummy points placed on e. In
the figure, the dummy points are represented by empty circles.

Step 4. After the execution of Step 3 all nodes of T have been visited except the
root r of T . Notice that there are n points in S′ ∩ Pr. In order to guarantee
that no three points of S′ are collinear, we slightly modify the boundary of
Pr, by replacing each dummy edge of Pr with a “slightly convex” polygonal
chain. More precisely, if e is a dummy edge of Pr such that ne dummy points
are placed on e, we replace e with a convex polygonal chain Ce such that
Ce has ne vertices and it does not change the inside/outside relations of the
points of S with respect to Pr. Then we move each of the ne dummy points
on a distinct vertex of Ce, in such a way that the linear ordering of these
points along Ce is the same they had along e.

Step 5. Compute a straight-line drawing of Γ (G, S′ ∩ Pr) inside Pr by using
Lemma 3; the root of each Ti (i ∈ {0, . . . , h − 1}) is placed either on pi (if
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pi belongs to the boundary of Pr) or on the dummy point of the boundary
of Pr that corresponds to pi. Finally, we replace all edges of the drawing
connected to a dummy point by narrow tunnels and we use these tunnels to
planarly draw the edges of the tree; the number of dummy nodes traversed
by an edge of the tree corresponds to the number of bends of that edge in
the final drawing.

In Step 5, any edge of G is drawn from a point p of S via dummy points until
it reaches Pr. Every time an edge passes through a point on a dummy edge, a
bend is added. Since the longest path in the spanning tree T of the subdivision
passes through �k/2� dummy edges and an edge of the drawing of G may connect
two points that lie in two (possibly coincident) polygons whose corresponding
nodes are at distance �k/2� from the root r of T , the number of bends per edge
is at most 2�k/2�.

Step 1

Step 3 Step 4 Step 5

Step 2

T0 T1

p1p1

p1 p1

Pr

p1

p0 p0

p0 p0 p0

r

Pr

Fig. 5. Steps of the constructive proof of Lemma 4

We now briefly discuss the time complexity of the drawing algorithm described
above. Step 1 can be performed in O(n2) time by using standard partitioning
techniques of a polygon into convex regions (see, e.g., [14]). Step 2 is executed
in O(k) time, because T has k + 1 vertices. Regarding Step 3, for each polygon
Pv 	= Pr we need to project the points of Sv on a dummy edge e of the boundary
of Pv, so that the straight-line edges used in the projection do not intersect. To
accomplish this we can for example radially sort the points of Sv by rotating
counterclockwise the line containing e around the middle point q of e, and then
project all points of Sv with slope less than π/2 onto points of e to the right of q,
and points of Sv with slope greater than π/2 onto points of e to the left of q (see
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Figure 6 for an example). Since each Sv contains at most n points, this step can
be executed in O(n2 log n) time. Step 4 can be executed in O(n) time, and the
complexity of Step 5 is dominated by the complexity of the drawing algorithm
of Lemma 3, which is O(n2 log n). �

π/2

Pv

q
e

Fig. 6. Illustration of the technique used in Step 3 in the proof of Lemma 4

We can now prove the following theorem.

Theorem 1. Let T be a tree with n vertices and let S be a set of n points in
general position. Let D(S) be a partial drawing of T representing a subtree with
k vertices. There exists a constrained point-set embedding Γ (T, D(S)) with at
most 1 + 2�k/2� bends per edge, which can be computed in O(n2 log n) time.

Sketch of Proof: Since D(S) is a partial drawing of T on S, it is a straight-line
drawing of a subtree T ′ of T . We first construct a polygon P that follows the
boundary of T ′ and that leaves T ′ outside (refer to Figure 7 for an illustration).
More precisely, draw a convex polygon P that properly contains S and then
modify it as follows: Find a location p on a side of P from which we can draw a
straight-line segment to a location q on an edge of D(S). Cut P at p and draw
a line segment from p in the direction of q until it almost reaches q. We then
continue to draw line segments that trace around the edges of D(S). Once we
have gone around the tree T ′ and are almost back at q, we draw a line segment
back to the original boundary of P , close to p; in other words we have cut a
tracing of T ′ out of P , while keeping inside the polygon all other points of S.
For each vertex v of T ′, polygon P has deg(v) corners close to v, where deg(v)
denotes the degree of v in T ′. At the corner of P closest to a leaf of T ′ there
is an angle almost equal to 2π (i.e., this vertex is a reflex corner of P ). At the
corners of P close to an internal vertex of T ′ there is at most one angle larger
than π. Near the points p and q the polygon P has angles less than π. Therefore,
P has at most one reflex corner for each vertex of T ′, and hence it has at most
k reflex corners.

We now place k dummy points on the boundary of P close to the k vertices of
T ′. Namely, for each vertex v of T ′ we place a dummy point pv close to v on the
boundary of P . For a vertex v of T ′, let Tv denote the subtree of T rooted at v
and consisting only of the edges of T that do not belong to T ′. Using Lemma 4,
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we construct each subtree Tv so that its root is placed on pv instead of v. From
Lemma 4 we know that this drawing has at most 2�k/2� bends per edge, and
can be computed in O(n2 log n) time. Then, for each v we connect pv to v with
a straight-line segment and remove the dummy point pv, thus creating one more
bend per edge. The theorem follows. �

p

q

P

Fig. 7. Cutting a tree out of a polygon P . The tree is represented by solid edges while
P has dashed segments.

The next result is a consequence of the proof of Theorem 1. Indeed, in that proof
T ′ is an arbitrarily chosen subtree of T among those isomorphic to D(S).

Corollary 1. Let T be a tree with n vertices, S a set of n points in general
position, and T ′ any subtree of T with k vertices. If Γ (T ′, S) is a geometric
point-set embedding of T ′ on a subset of S, then T has a point-set embedding
Γ (T, S) on S such that Γ (T ′, S) ⊂ Γ (T, S) and every edge that does not belong
to T ′ has at most 1+2�k/2� bends. Also, Γ (T, S) can be computed in O(n2 log n)
time.

4 Conclusions and Open Problems

This paper introduced the problem of computing a point-set embedding of a
graph G on a set S of points, with the constraint that a partial straight-line
planar drawing of G on a subset of S is given. We concentrated on trees, and
presented lower and upper bounds to the maximum number of bends per edge.
We showed a lower bound equal to k−3 and an upper bound equal to 1+2�k/2�,
where k is the number of vertices of the partial drawing. The upper bound is
proved by means of an O(n2 log n)-time drawing algorithm. The drawing tech-
nique exploits a partial solution of a well-investigated and still unsolved compu-
tational geometry problem.

We mention in the following three open problems related to the results of
this paper and that could be the subject of further investigation: (i) Extend the
study to families of graphs other than trees. (ii) Compute constrained point-set
embeddings with the minimum number of bends. (iii) Study the constrained
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point-set embeddability problem in the case that the partial drawing to be ex-
tended contains some bends along its edges.
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