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Abstract. Correlation-immunity is a cryptographic criterion on Boolean
functions arising from correlation attacks on combining functions. When it
comes to filtering functions, the status of correlation-immunity lacks study
in itself and, if it is commonly accepted as a requirement for nonlinear filter
generators, this is for other concerns. We revisit the concept of correlation-
immunity and clear up its meaning for filtering functions. We summarize
existing criteria similar to correlation-immunity and attacks in two differ-
ent models, showing that such criteria are not relevant in both models. We
also derive a precise property to avoid correlations due to the filter function
only, which appears to be a bit looser than correlation-immunity. We then
propose new attacks based on whether this property is verified.

Keywords: Nonlinear filter generator, Boolean function, correlation-
immunity, distinguishing attacks.

1 Introduction

Most stream ciphers proposed in the literature are built upon Linear Feedback
Shift Registers (LFSR). One well-known proposal for destroying the linearity
inherent to LFSRs is to use a nonlinear function to filter the contents of a single
LFSR. All the components of a filter generator (i.e. the LFSR, the filtering
function and the taps) must be chosen carefully to ensure the cryptographic
security of the keystream generated by the generator. As often in symmetric
cryptography, criteria on the filter generator components are mostly derived
from known attacks.

The correlation-immunity property is a well-known cryptographic criterion
for Boolean functions. Correlation-immunity is sometimes stated as a criterion
dedicated to combining functions only, and sometimes as a requirement that also
applies to filtering functions. In order to clear up the role of correlation-immunity
for filtering functions, we investigate known distinguishing attacks on filter gen-
erators that consist in finding correlation relations between the keystream bits
by using properties of the filter function only.
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1.1 Related Work

The nonlinear filter model is a classical model of synchronous stream ciphers
that involves a nonlinear Boolean function to filter the contents of a single shift
register.

The correlation-immunity criterion has been introduced by Siegenthaler [15]
for combining functions, in order to protect them from a “divide and conquer”
attack well-known under the name (fast) correlation attack [17,11,4,5]. These
attacks also apply to nonlinear filter generators [16,7]. Notice that such attacks
require that the internal state memory of the generator is updated in a determin-
istic way. The only criterion on the filtering function involved in this attack is
the nonlinearity of the Boolean function, not the correlation-immunity. Canteaut
and Filiol [3] studied the fast correlation attack given in [5] for filter generators
and they showed that the keystream length which guarantees a successful attack
does not depend on the filtering function, except for functions which are very
close to affine functions. Then, they suggest that the choice of the Boolean func-
tion in the design of a filter generator should be mostly conditioned by other
types of attacks. Thus, fast correlations attacks are out of the scope of this paper.

Anderson [1] found other correlations in nonlinear filter generators and pro-
posed an optimum correlation attack. This attack is based on the (un)balanced-
ness of the augmented filter function. The update of the internal state memory
of the generator is assumed to be probabilistic. Hence, this attack does not
take advantage of a deterministic update, and it targets correlation relations
between the keystream bits that arise from properties of the filter function only.
Golic [8] studied a different definition of the augmented filter function and de-
rived a construction of Boolean functions that resist the optimum correlation
attack. Still in [8], Golic recommended to use in practice only filtering functions
coming from his construction (with additional criteria on the filtering function
including correlation-immunity). However, it is unclear to what extent this con-
struction captures all the filtering functions that are immune to this attack, as
Dichtl [6] showed by exhibiting such a filtering function that does not follow
Golic’s construction.

The relevance of the correlation-immunity criterion for filtering functions has
been partially studied by Ding et al. [7]. Many Boolean functions which are not
correlation-immune can be transformed into correlation-immune functions by
performing a linear transform on the input variables and adding a linear func-
tion. Indeed, Ding et al. gave a general method to construct, from a correlation
immune function f that filters an LFSR, an equivalent filter generator which
differs from the original one only by its initial state vector and by its filter func-
tion g, which is not correlation immune. Even if there is no efficient method
known to construct such an equivalent generator, stream ciphers with corre-
lation immune filter functions are theoretically vulnerable provided that those
with non-correlation-immune functions are. In [7], the authors concluded that
using correlation-immune filter functions may not get any advantage in the case
when the filter function and the feedback polynomial of the LFSR are known.
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Thus, from the state of the art on the application of the correlation-immunity
criterion to filtering functions, it is still unclear to what extent one must or not
choose a correlation-immune function when designing a filter generator.

1.2 Our Contribution

In this paper, we give in-depth analysis of correlation-related criteria in filter
generators. We investigate known distinguishing attacks on filter generators that
take advantage of correlation relations between the keystream bits that arise from
properties of the filter function only. So as to better understand the attacks, we
introduce two security models for filter generators depending on the memory
update procedure: the probabilistic nonlinear filter model and the deterministic
nonlinear filter model. We show that considering separately these two models
helps to shed light on the design criterion for filtering function, while there is no
interest to do the same for combining generators.

We revisit the optimal correlation attack [1,8] that targets correlation due
to the filtering function. We precisely study the criteria to resist this attack
depending on whether it is performed in the probabilistic or in the deterministic
model. We show that the relevance of this criterion in the deterministic model
is questionable, and that it does not target the initial attack in this model.

Next, we reconsider the original observation of Anderson and give a practical
criterion on the filter to avoid the optimal correlation attack in both models.
This criterion also thwarts a recent distinguishing attack focusing on a filtering
function [19]. We call this new criterion quasi-immunity, since it appears to be
a bit looser than correlation-immunity. This criterion embeds previous criteria,
and it turns out to be the criterion most directly related to correlations of the
filtering function.

We then provide the complexity of different types of attack against filtering
function that do or do not meet the quasi-immunity requirement. We show that
if the filtering function f does not fulfil the quasi-immunity criterion (of or-
der 1), then there always exists a distinguisher between random sequences and
keystream outputted by the filter generator even when considering the proba-
bilistic filter generator model. We next evaluate the cost of state recovery attack
depending on whether the filtering function fulfils the quasi-immunity criterion.
Finally, we discuss the construction of equivalent filter generators that are po-
tentially weaker against such attacks.

1.3 Organization of the Paper

In Section 2, we give the main cryptographic properties of Boolean functions, we
briefly describe the components of filter generators and update procedure, and we
summarize well-known criteria on the filter generator components. In Section 3,
we study correlation attacks targeted at the filtering function in filter generators,
and next we derive a new criterion called “quasi-immunity” criterion. In Section 4,
we study the complexity of general attacks for filters that do or do not meet the
new criterion. At last, we give directions for future work and we conclude.
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2 Preliminaries

In this section, we briefly recall the main properties of Boolean functions. Next,
we describe the components of a filter generator and give the main known design
criteria.

2.1 Boolean Functions

Every n-variable Boolean function f can be uniquely represented by its alge-
braic normal form, f(x1, . . . , xn) =

∑
I⊆{1,...,n} a

I

∏
i∈I xi, where the a

I
’s are

in F2. The terms
∏

i∈I xi are called monomials. For any Boolean function f

of n variables, we denote by F(f) the quantity F(f) =
∑

x∈GF (2)n(−1)f(x) =
2n − 2wH(f), where wH(f) is the Hamming weight of f , related to the Fourier
transform of f . In the following, we denote by e1, . . . , en, the n coordinate vec-
tors of the vector space GF (2)n with Hamming weight 1. For u ∈ GF (2)n, we
denote by ϕu the linear Boolean function x �→ x · u where · denotes the inner
product.

A Boolean function f is called balanced if 0 and 1 have the same number of pre-
images by f . The nonlinear order of a Boolean function f equals the maximum
degree of those monomials whose coefficients are nonzero in its algebraic normal
form. The nonlinearity of an n-variable Boolean function f is the minimum
Hamming distance between f and the set of affine functions.

An n-variable Boolean function f is correlation-immune of order m with
1 ≤ m ≤ n if the output of f and any m input variables are statistically in-
dependent. The correlation-immunity criterion can be characterized by means
of Walsh coefficients:

Proposition 1. [20] A Boolean function f : GF (2)n → GF (2) is correlation-
immune of order m if, and only if, F(f +ϕu) =

∑
x∈GF (2)n(−1)f(x)+u·x = 0 for

all u with 1 ≤ wH(u) ≤ m.

The nonlinear order and the nonlinearity of a Boolean function are both affine
invariant whereas the correlation-immunity is not [12].

2.2 Nonlinear Filter Generators

A nonlinear filter generator is defined by a finite memory, a filtering function, a
tapping sequence defining the input stages to the filter function and a procedure
to update the memory.

Finite memory. We assume that every nonlinear filter has a finite input mem-
ory of r bits. The value of the initial state of the memory is assumed to be
random. At each time t, the r − 1 first bits of the memory are shifted right
by one position and the leftmost bit is a new bit, that is either random, or
determined by the current bits in the register. The indexes in the register are
numbered from right to left, starting at 1. We denote by s = (st)∞t=−r the binary
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sequence of the state memory. Then, the finite sequence (st)−1
t=−r is the initial

state of the memory.
It is recommended to choose r ≥ 2L where 2L is the target security level to

avoid time-memory tradeoff attacks [2,9]. More precisely, the number of possible
initial states before keystream generation should be at least 22L.

Filtering function. Let f be a Boolean function of n non-degenerate input
variables with 1 ≤ n ≤ r. The inputs of the filtering function f are some values
st−γ1 , st−γ2 , . . . , st−γn of the finite memory, where γ = (γi)n

i=1 is an increasing
sequence of positive integers such that γ1 = 1, and γn ≤ r. The output sequence
z = (zt)∞t=0 of f is called the keystream sequence.

The function f must be balanced since the output sequence is expected to be
balanced. The nonlinear order of f must be high enough and f should include
many terms of each order up to the nonlinear order of f [13]. Indeed, filter
generators can be vulnerable to the Berlekamp-Massey algorithm if the linear
complexity of the output sequence is too small. Also, the Boolean function f must
not be close to affine functions in order to avoid fast correlation attacks [3].

Taps. The sequence γ = (γi)n
i=1 defining the indexes of the input to the filtering

function is called the tapping sequence, and the corresponding output sequence
z = (zt)∞t=0 is defined by zt = f(st−γ1 , . . . , st−γn), t ≥ 0 . The choice of the
tapping sequence defining the input stages to the filter function f must be done
as indicated in [8]: the input memory size should be close to its maximum value
r − 1, and the set of the tap positions should be a full positive difference set.

Update of the leftmost bit. In the literature, depending on the context,
authors either consider that the leftmost bit is a random bit, or that it is deter-
mined by the current bits in the register. Nevertheless, these two points of view
and their impact in terms of security model have not been studied or even un-
derlined. We call these two models respectively the probabilistic nonlinear filter
model and the deterministic nonlinear filter model.

Probabilistic nonlinear filter model. At each time t, the leftmost bit b is the
output of an unbiased random bit source. In this case, the input sequence is
perfectly random and then s = (st)∞t=−r is a random sequence. In this model,
the aim of an attack is not to recover the key since the knowledge of (st)i−1

t=−r

does not reveal anything about si. Here, the aim is to distinguish the keystream
sequence z from a random sequence. Thus, an attack on the nonlinear filter
generator in the probabilistic model reveals weaknesses of the filter.

Deterministic nonlinear filter model. At each time t, the leftmost bit b is com-
puted from the current memory state, e.g. by using a linear feedback of the reg-
ister. The best-known criterion on the feedback polynomial is that it should be a
primitive polynomial of degree r to ensure that the LFSR sequence s = (st)∞t=−r

is a binary maximum-length sequence of period 2r − 1 [14]. In this model, the
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aim of an attack can be either to recover the initial state or to distinguish the
keystream from a random sequence.

A successful attack in the probabilistic nonlinear filter model can be adapted
to the deterministic model, whereas the converse is not true. However, a criterion
to prevent an attack in the probabilistic model does not always translate to the
deterministic model.

3 Correlation Attacks on the Filtering Function

In this section, we first review the optimal correlation attack presented by An-
derson [1] that targets correlations due to the filtering function, before studying
criteria to resist this attack in the probabilistic and deterministic models. Next,
we consider a distinguishing attack on a filter generator that targets exactly the
optimal correlation of Anderson. At last, we deduce the quasi-immunity criterion
for filtering functions.

In the sequel, we assume the filtering function f to be balanced.

3.1 The Optimal Correlation Attack

The optimal correlation attack proposed by Anderson [1] is the first attack on
filter generators that exploits correlations due to the filtering function only. This
attack relies on the fact that each bit going along the register is input to the
filtering function at each one of its taps. This results in correlations between
the internal register state and the keystream produced. These correlations are
avoided if an augmented filter function defined accordingly is balanced.

This augmented filter function is constructed as follows: consider a single bit
b moving along the register. Each time this bit is at a tap location, the filter
combines it with other register bits to form a keystream bit. The augmented
function is the vectorial function that maps all these (independent) register bits
to the n-bit-vector consisting of the n values that involve bit b. One can then
distinguish the generator from a random sequence by studying the distribution
of the n-tuples in the output sequence that correspond to the output of the
augmented filter function.

Anderson provides an example of a filter whose taps are consecutive entries
of the register:

f(x1, x2, x3, x4, x5) = x1 + x2 + (x1 + x3)(x2 + x4 + x5) + (x1 + x4)(x2 + x3)x5.

This Boolean function is balanced, correlation-immune of order 2 and of non-
linear order 3. However, the augmented function that maps 9-tuples of the shift
register sequence to 5-tuples of the keystream output is not balanced, which
yields an attack. Notice that here, as the attacks takes place in the probabilistic
model, we assume that all 9-tuples are equiprobable.
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3.2 Analysis of the Optimal Correlation Attack - Probabilistic
Model

Both in [1] and in [8], the authors consider a probabilistic model in which the
input sequence s = (st)∞t=−r is regarded as a sequence of balanced and indepen-
dent bits. The output sequence z = (zt)∞t=0 is a sequence of balanced bits if and
only if the filter function f is balanced. The aim of the attacker is to distinguish
the keystream outputted by the filter from a random sequence.

Augmented filter function. The augmented filter function h̄ constructed by
Anderson in [1] makes it possible to find an optimal correlation between the
output keystream bits and the internal state of the register. The keystream bit
produced at time t is equal to

zt = f(st−γ1 , . . . , st−γn) .

The function h̄ is defined as follows. Consider the n2 (not necessarily distinct)
variables involved in the n values of the filter function at time t + γ1, . . . , t +
γn, which all involve the bit st, and denote by G the set of all independent
variables among those n2 variables. The function h̄ maps every element of G to
the corresponding n-tuple of keystream bits (zt+γi)i=1...n.

In [8], Golic studied the randomness of the keystream in the probabilistic
model. Assuming that the input sequence s = (st)∞t=−r is a sequence of balanced
and independent bits, the output sequence z = (zt)∞t=0 is a sequence of balanced
bits if and only if the filter function f is balanced. The output sequence z is
purely random if and only if for each t ≥ 0, the output bit zt is balanced for any
fixed value of the previous output bits (zi)t−1

i=0 .
For a finite nonlinear filter generator with input memory size r, zt depends

only on the current input bit st and on the r preceding input bits (si)t−1
i=t−r .

Golic showed that the output sequence is purely random given that the input
sequence is such if and only if the vectorial Boolean function FM+1 that maps
2M + 1 consecutive input bits to the M + 1 corresponding consecutive output
bits is balanced, where M = γn − γ1.

It appears that Golic’s construction generalizes the augmented filter function
h̄ and the corresponding attack to an arbitrary choice of taps for the filter. The
criterion for the keystream to be purely random and thus to resist the optimum
correlation attack in the probabilistic model is the balancedness of this new
augmented filter function.

We now precisely establish the link between the augmented functions of An-
derson and Golic.

Proposition 2. If the augmented function of Golic FM+1 is balanced, then the
augmented function of Anderson h̄ is balanced.

Proof. The functional graph in Figure 1 links h̄ and FM+1 augmented functions,
with P and Q being projections respectively from the 2M + 1 bit variables onto
those involved in h̄, and from the M + 1 consecutive output bits to the subset
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F
2M+1
2

FM+1−−−−−→ F
M+1
2

P

⏐
⏐
�

⏐
⏐
�Q

G
h̄−−−−−→ F

n
2

Fig. 1. Commutative diagram of augmented functions of Anderson and Golic

of n output bits observed at t + γn, . . . , t + γ1. Using the commutative diagram
in Figure 1, the proof is straightforward. ��

Remark 1. The augmented function h̄ is a restriction of the augmented function
FM+1, and both functions h̄ and FM+1 coincide if all the filter taps are consec-
utive. Thus, h̄ being balanced does not imply that FM+1 also is. Indeed, for the
register with output zt = st−3 + st−6 · st−1, the function h̄ is balanced, whereas
FM+1 is not.

Golic’s formulation in the same framework as Anderson is thus a generaliza-
tion that enables finding optimal so-called correlations, as it involves the whole
memory of the generator. Thus, a nonlinear filter generator is immune to the
optimum correlation attack in the probabilistic model if, and only if, Golic’s
augmented filter function is balanced.

Unfortunately, straightforward study of the balancedness of FM+1 is too com-
plex when the taps of the function are located at both ends of the register as
recommended in [8].

Criterion on the filter function. We now study the criterion on the filter
function for the augmented filter function FM+1 to be balanced, which is equiv-
alent to the output being purely random. Golic in [8] gave a characterization
in terms of the filter function f and the tapping sequence γ in the following
theorem, for which only the sufficiency of the conditions was proven:

Theorem 1. [8] For a nonlinear filter generator with the filter function f and
independent of the tapping sequence γ, the output sequence is purely random
given that the input sequence is such if (and only if) f(x1, . . . , xn) is balanced
for each value of (x2, . . . , xn), that is, if

f(x1, . . . , xn) = x1 + g(x2, . . . , xn), (1)

or if f(x1, . . . , xn) is balanced for each value of (x1, . . . , xn−1), that is, if

f(x1, . . . , xn) = xn + g(x1, . . . , xn−1), (2)

Function FM+1 depends on the choice of the taps, while Theorem 1 gives a char-
acterization independent from the tap sequence. However, filtering functions that
yield a purely random output for a specific choice of the taps exist, thus con-
tradicting Theorem 1. Indeed, Sumarokov in [18] had already defined perfectly
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balanced Boolean functions as those functions whose augmented function is bal-
anced when the taps are consecutive, and had given an example that is not of the
form (1) or (2). Dichtl [6] also found a similar filtering function. More recently,
Logachev [10] gave a general construction to obtain new such functions.

Then, it appears that perfect balancedness of filter functions was not properly
defined by Golic, and the definition should enclose the choice of the taps. The fil-
ter function to consider is thus the M +1-variable Boolean function constructed
from f and γ = (γi)n

i=1 by adding M + 1 − n mute variables. However, filter-
ing functions of the form (1) or (2) have the particularity that the associated
augmented functions are balanced regardless of the choice of the taps.

To summarize, the set of filters that thwart the optimum correlation attack
in the probabilistic model includes not only the functions from [8], but also
functions whose suitability may depend on the choice of the taps.

3.3 Analysis of the Optimal Correlation Attack - Deterministic
Model

We now consider a deterministic model such that the memory is updated using
a deterministic linear relation. At each clock, the new leftmost bit is a linear
combination of the memory state bits. Then, the input sequence s = (st)∞t=−r

is regarded as a sequence of balanced bits which are dependent. The output
sequence z = (zt)∞t=0 is a sequence of balanced bits if and only if the filter
function f is balanced. The aim of the attacker is to distinguish the keystream,
i.e. the output of the filtering function, from a random sequence.

In this case, the approach of [1] and [8] is not valid anymore. Indeed, a very
simple counterexample shows that correlation may appear even in the case of
functions of the form (1) or (2).

Proposition 3. Consider the filter generator consisting of a 4-bit register with:
{

zt = st−2 + st−4 · st−3

st = st−4 + st−3

The deterministic counterparts of the augmented functions of Anderson and
Golic are unbalanced.

Proof. Anderson’s augmented function h̄ is defined as follows:

h̄ : F
4
2 → F

3
2

st−4, st−3, st−2, st−1 �→ (st−2 + st−4 · st−3, st−1 + st−3 · st−2, st + st−2 · st−1)

Taking the correlation into account yields st+st−2·st−1 = st−4+st−3+st−2·st−1.
Thus, the edge random variable x4 (in the random input model) which had a
balancing role disappears, and, whenever pattern 101 appears in the keystream,
the register content is 0101, hence the result. ��
The reason for this observation is that, as feedback bits are produced by bits
that have already passed through the register and mixed in previous values of
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the filter function, the criterion in Theorem 1 is less relevant. Indeed, there is no
reason to consider the edge bits as being “more random” than the others, and
to consider filtering functions of the form (1) or (2) only.

We now study the augmented function of Golic with respect to the deter-
ministic model in general. Remember that the augmented function FM+1 maps
2M + 1 consecutive input bits to the M + 1 corresponding consecutive output
bits. A proper choice of the taps implies maximizing the size of the range of
the inputs to the filter [8], so that the length of the register is equal to M + 1.
Therefore, among the 2M + 1 input bits of FM+1, the last M bits are uniquely
determined by the first M + 1 input bits. Therefore, we have

Proposition 4. Consider a register with length M + 1, filtered by a Boolean
function f whose distance between the extremity taps is M . In the deterministic
model, the augmented function FM+1 maps the internal state of size M + 1 to
the first M + 1 output bits.

In the deterministic model, the balancedness of the original augmented filter
function is not relevant, as not all inputs of the function are possible. Therefore,
instead of studying the augmented function FM+1 itself, it is necessary to study
its restriction to its possible inputs. This amounts to study the balancedness of
the first M +1 output bits of the nonlinear filter, which is related to well-known
distinguishing attacks consisting in studying the distribution of the first output
bits, and also to algebraic attacks.

3.4 A Practical Criterion to Avoid Optimal Correlations

As we have seen, in the deterministic model, not only cannot we assume that
the leftmost bit is perfectly random, but also the definition of the augmented
filter function is no longer sound. Instead of studying the augmented function, it
is necessary to take the feedback function into account and to study the output
sequence itself.

Therefore, in this section, we refer to the probabilistic model, and we consider
a distinguishing attack on a filter generator that attempts to exploit a weakness
of the filtering function only to distinguish the output of the filtering function
from a random sequence.

The study of the balancedness of Golic’s augmented filter function FM+1

captures related biases, but the complexity is too high when the length between
extreme taps is maximal: in this case, FM+1 maps 2r − 1-bit-vectors to r-bit-
vectors, which makes finding a bias as hard as an exhaustive search.

We thus come back to the original idea of Anderson in [1] to derive a criterion
that prevents optimal correlations from appearing in the output, by considering
only the n output bits that share an equal bit in the input to the filter.

The aim of the attack is to correlate n keystream bits that are output within
intervals equal to each difference between two consecutive tap positions having
at least one bit in common.
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We denote by x(t) the input of the filtering function at time t, i.e. , x(t) =
[st−γ1 , . . . , st−γn ]. At time t, the value of the i-th variable xi which is st−γi is
denoted by xi(t).

Proposition 5. Consider a nonlinear filter generator with filter f , where f is
an n-variable Boolean function. Assume that the input sequence s = (st)∞t=−r is
purely random, and that the tapping sequence γ is a full positive difference set.
For 1 ≤ i ≤ n, let δi = γi − γ1.

Then, for every t > 0, the n-tuple (zt+δi)1≤i≤n is unbiased, if and only if,

F(f + ϕei) =
∑

x∈GF (2)n

(−1)f(x)+xi = 0 (3)

for at least n − 1 integers i, 1 ≤ i ≤ n.

Proof. First, notice that the bit st−γ1 is at tap xi at time t + δi for each i,
1 ≤ i ≤ n. For 1 ≤ i ≤ n, let pi be the probability defined by

pi = Prob (f(x(t + δi)) = 0 | xi(t + δi) = 1) .

The LFSR sequence being balanced, we have

Prob(f(x(t)) = 0) =
1
2

=
1
2
(Prob(f(x(t)) = 0 | xi(t) = 1)

+ Prob(f(x(t)) = 0 | xi(t) = 0)).

We deduce
pi = Prob (f(x(t + δi)) = 0 | xi(t + δi) = 1)

= Prob (f(x(t + δi)) = 1 | xi(t + δi) = 0)

1 − pi = Prob (f(x(t + δi)) = 0|xi(t + δi) = 0)
= Prob (f(x(t + δi)) = 1|xi(t + δi) = 1) .

Thus, the probability that f(x(t+δi)) is equal to a given bit bi given xi(t+δi) =
st−γ1 = 0 is equal to (1−bi)(1−pi)+bipi, and it is equal to (1−bi)pi +bi(1−pi)
given xi(t + δi) = st−γ1 = 1.

As the choice of the taps is a full positive difference set, two n-tuples of
bits input to the filter share at most one bit in common, and their other bits
are supposed to be independent. Therefore, the n-tuple (zt, zt+δ2 , . . . , zt+δn)
is equal to a given n-tuple (b1, . . . , bn) of bits with probability 1

2

∏n
i=1((1 −

bi)(1 − pi) + bipi) + 1
2

∏n
i=1(bi(1 − pi) + pi(1 − bi)). In order to have no bias

in (zt, zt+δ2 , . . . , zt+δn), it is thus necessary and sufficient that the equality
1
2

∏n
i=1((1 − bi)(1 − pi) + bipi) + 1

2

∏n
i=1(bi(1 − pi) + pi(1 − bi)) = 1

2n holds
for all choices of bi’s. This is equivalent to all the pi’s being equal to 1

2 , apart
from at most one pi. This is true if and only if Equation 3 holds for at least n−1
integers i, 1 ≤ i ≤ n. ��
The attack we considered also generalizes the attack against the stream cipher
Decim presented by Wu and Preneel in [19] where a bias in the probability that
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two output bits with a common input bit were equal was taken advantage of.
Therefore, the criterion in Proposition 5 thwarts this attack, as it encompasses
all the biases arising from the fact that several outputs of the function can share
a common input bit.

Remark 2. Notice that the condition stated in Proposition 5 is close to the
correlation-immunity of order 1, as introduced in Proposition 1. Indeed, this
new criterion allows for at most one unbalanced 1-variable restriction, instead
of none.

Definition 1. We say that a Boolean function satisfying the property in Propo-
sition 5 is quasi-immune to correlations of order 1.

Quasi-immunity of order 1 is not only close to correlation-immunity of order 1,
but it is also close to the perfect balancedness definition from Golic. Indeed, it
is also a criterion on the filter function only, and a function that is not quasi-
immune has a bias, as shown in the proof of Proposition 5, so its output for
a random input cannot be random. Moreover, functions satisfying the criterion
given by Golic in Theorem 1 are quasi-immune of order 1.

More precisely, quasi-immunity of order 1 is exactly equivalent to the bal-
ancedness of the augmented filter function h̄ of Anderson in the setting of Propo-
sition 5. Unlike the balancedness of FM+1, the balancedness of h̄ is thus easy
to check, which makes quasi-immunity a practical criterion to avoid optimal
correlation attacks. However, this criterion should be completed to avoid key
recovery attack based on a weakness of the filtering function. We will see in the
next section that this amounts to bound the bias of the only possible unbalanced
1-variable restriction of a quasi-immune function.

4 Attack Complexity and Quasi-immunity

In this section, we compare different types of attacks targeting filtering functions
that are quasi-immune to correlations of order 1, and functions that are not.

4.1 Distinguishing Attack

The scope of this attack is to distinguish the output sequence from a random
sequence.

Case of a quasi-immune filtering function. In the probabilistic model, the
input sequence is assumed to be random. In this case, if f is perfectly balanced,
then the output is also random. Therefore, the output cannot be distinguished
from a random sequence.

However, as we have shown, this is not always the case in the deterministic
model. On the contrary, in this model, some quasi-immune functions which are
not perfectly balanced, might result in balanced augmented functions with a prop-
erly chosen feedback polynomial. Recall that a function f that is quasi-immune
to correlations of order 1 has at most one restriction ei, 1 ≤ i ≤ n, such that
x1, . . . , xn �→ f(x1, . . . , xn)⊕ϕei(x1, . . . , xn) = f(x1, . . . , xn)⊕xi is unbalanced.
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Case of a non quasi-immune filtering function. When a function is not
quasi-immune to correlations of order 1, then there exist two unbalanced restric-
tions ei and ej, with two associated probabilities both distinct from 1

2 :

p = Prob (f(x(t)) = b1 | xi(t) = 1) and

q = Prob (f(x(t + γ)) = b2 | xj(t + γ) = 1)

Without loss of generality (by exchanging bi and b̄i if necessary), we assume
p < 1

2 and q < 1
2 . Then, the output bits pair (zt, zt+γ) related to the two

inputs x(t) and x(t + γ) is equal to (b1, b2) or (b̄1, b̄2) with probability pq +
(1 − p)(1 − q) > 1

2 . Therefore, in order to distinguish between the output and a
random sequence, it is sufficient to consider pairs of output bits distant from one
another by γ, and to check that pairs (b1, b2) and (b̄1, b̄2) appear with probability
pq + (1 − p)(1 − q). Thus, if the filtering function f is not quasi-immune to
correlations of order 1, then there always exists a distinguisher between random
sequences and keystream output by the filter generator (even when considering
the probabilistic filter generator model).

4.2 State Recovery Attack

A standard aim of an attack against an LFSR-based cipher is to retrieve the
internal content of the register. This attack takes place necessarily in the deter-
ministic model.

Case of a quasi-immune filtering function. In the case of a quasi-immune
function f , if there is one unbalanced restriction ei, it is possible to guess the
internal state of the cipher as the output bit is correlated to the bit with unbal-
anced restriction. For instance, suppose

p = Prob (f(x(t)) = b | xi(t) = 1) 
= 1
2 ,

with p < 1
2 for instance (otherwise exchange b and b̄). Then, for each bit in the

output, we guess the input bit with probability 1 − p. The complexity of the
related attack is

(
1

1−p

)r

.

Remark 3. Even if f is perfectly balanced, it can have unbalanced restrictions, so
perfect balancedness is not sufficient to avoid such correlation attacks. Here, we
need to choose f and r such that ( 1

1−p )r ≥ 2k where k is the security parameter.

Case of a non quasi-immune filtering function. Suppose now that the
function is not quasi-immune to correlations of order 1. Then, we have:

Proposition 6. Let (xi, xj) be a pair of variables whose relative restrictions are
unbalanced, and let

p = Prob (f(x(t)) = b1 | xi(t) = 1) ,

q = Prob (f(x(t + γ)) = b2 | xj(t) = 1) ,
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with b1 and b2 such that p < 1
2 and q < 1

2 . Then, the nonlinear filter generator
with filter f and internal state of length r is vulnerable to a state recovery attack
of complexity O

(
P (r)

(
1 + pq

(1−p)(1−q)

)r)
, with P a polynomial corresponding to

the resolution of a linear system.

The proof is given in Appendix A.

4.3 Building of a Weaker Equivalent Filter Generator

From the attacker side, the first step to attack a filter generator by focusing on
the filtering function is to look for an equivalent filter generator with a weaker
filtering function. Indeed, correlation-immunity is not an affine invariant, and
neither is quasi-immunity. Indeed, the quasi-immunity of the filtering function
of a given filter generator does not guarantee the quasi-immunity of the filtering
functions of equivalent generators.

We consider an LFSR of length r with feedback polynomial C(x) = 1+ c1x+
c2x

2 + · · ·+ cr−1x
r−1 + xr. The sequence generated by the LFSR with feedback

polynomial C and initial value [s−r, . . . , s−1] is denoted by s = (st)∞t=−r. The
filtering function f0 is an n-variable Boolean function where 0 < n ≤ r. Let
γ = (γi)n

i=1 be an increasing sequence of positive integers such that γ1 = 1, and
γn ≤ r.

We denote by f̃0 the r-variable Boolean function constructed from f0 and
γ = (γi)n

i=1 by adding r − n mute variables. The function f̃0 is defined by
f̃0(x1, . . . , xr) = f0(xγ1 , xγ2 , . . . , xγn). The keystream sequence z = (zt)∞t=0 is
the output sequence of f̃0, i.e. zt = f̃0 (st−1, . . . , st−r), t ≥ 0. We consider in the
following the filter generator FG0 =

(
C, f̃0, [s−r, . . . , s−1]; z = (zt)∞t=0

)
.

For every i > 0, it is possible to construct an equivalent generator FGi with
the same feedback polynomial and output sequence, but with different initial
state and filtering function: FGi =

(
C, f̃i, [s−r+i, . . . , s−1+i]; z = (zt)∞t=0

)
.

We now show how to construct f̃i. Given an LFSR state [x1, . . . , xr], the
previous state is computed using the transformation

A : {0, 1}r → {0, 1}r

x1, . . . , xr �→ (xr + cr−1x1 + cr−2x2 + · · · + c1xr−1, x1, . . . , xr−1),

For every i ≥ 1, we have: f̃i(x1, . . . , xr) = f̃i−1 ◦ A(x1, . . . , xr). We deduce that
f̃i(x1, . . . , xr) = f̃0 ◦ Ai(x1, . . . , xr), where Ai(x1, . . . , xr) denotes the iteration
of i times the transformation A.

Proposition 7. Consider a filter generator with a balanced and quasi-immune
of order 1 filtering function f0. All the functions f̃i are quasi-immune of order
1 for every i ≥ 0 if, and only if, for every i > 0, one of the following properties
is satisfied:
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1. the function x1, . . . , xr �→ f̃i ◦ A(x1, . . . , xr) ⊕ xr is balanced,
2. the restrictions of f̃i following xj, for all 2 ≤ j ≤ r, are all balanced.

The proof is given in Appendix B.

Remark 4. Balancedness is invariant under linear transformations. Hence, Con-
dition 1 of Proposition 7 is fulfilled if and only if the function x1, . . . , xr �→
(f̃i ◦ A + ϕer ) ◦ A−1(x1, . . . , xr) is balanced, i.e. , if and only if x1, . . . , xr �→
f̃i(x1, . . . , xr) ⊕ x1 ⊕ cr−1x2 ⊕ · · · ⊕ c2xr−1 ⊕ c1xr is balanced.

As we have seen, the quasi-immunity criterion is not affine-invariant, so it should
be satisfied not only by the filtering function of a given filter generator, but also
by the filtering functions of equivalent generators. Thus, the filtering function f0

should be chosen such that f̃i is quasi-immune of order 1 for every i ≥ 0. Note
that this requirement is clearly a consequence of taking the linear feedback into
consideration, and it is therefore related to the notion of an extended augmented
function as mentioned in Section 3.3.

4.4 Summary of Our Results on Attacks Complexity

Recall that if the filtering function of a filter generator is balanced then all
the filtering functions f̃i, i ≥ 0, of equivalent generators are balanced since the
balancedness is an affine invariant. We summarize our complexity attack results
by taking into account, given a filter generator, all the filtering functions of
equivalent generators.

Proposition 8. Let f be the filtering function of a filter generator, and let f̃i,
i ≥ 0, be the filtering functions of the equivalent generators. Assuming that f is
balanced, we have:

1. if f̃i is quasi-immune and has a unique unbalanced restriction xj, then the
filter generator is vulnerable to a state recovery attack that exploits this re-
striction, with time and space complexity O

((
1

max(p,1−p)

)r)
, where p is the

probability that the value of the restriction of f̃i in xj is equal to 0 (c.f.
subsection 4.2);

2. if fi is not quasi-immune, then the filter generator is vulnerable to a straight-
forward distinguishing attack based on a bias of pq + (1− p)(1− q)− 1

2 , with
p and q being the probabilities relative to two distinct unbalanced restrictions
of f̃i (c.f. subsection 4.1);

3. if f̃i is not quasi-immune, then the filter generator is vulnerable to a state
recovery attack of time and space complexity O

((
1 + pq

(1−p)(1−q)

)r)
(c.f.

subsection 4.2).

Thus, when designing a filter generator, the filtering function must be chosen
quasi-immune of order 1 to avoid distinguishing attacks focusing on the filtering
function. Furthermore, the at most unbalanced 1-variable restriction must be
chosen such that O

((
1

max(p,1−p)

)r)
≥ 2k where k is the security parameter to

avoid key reconstruction attack focusing on the filtering function.
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5 Conclusion

In the case of nonlinear filter generators, correlation-based attacks and the cri-
teria to avoid them depend heavily on the considered security model. We have
shown that perfect balancedness prevents the optimal correlation attack in the
probabilistic model, but that it does not apply to the deterministic model. In the
deterministic model, perfect balancedness is equivalent to the absence of bias in
the output of the system.

We also extracted a precise criterion on filtering Boolean functions, related to
correlation between the output bits as in the optimal correlation attack, based
on the fact that input bits at different stages may be correlated in case of non-
linear filter generators. This is a major difference with combiners, and pointing
this out clears up the status of correlation-based attacks against nonlinear filter
generators. We also provided the complexity of different types of attacks against
filtering function that do or do not satisfy this new criterion.

Still, several criteria related to correlation exist, but their relevance is now
clear. This should provide a convenient basis for designers. Moreover, we believe
that the distinction between two security models is also promising, and new
attacks should refer to one model or the other in order to precise their relevance.
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A Proof of Proposition 6

Proof. Every bit in the input sequence (st)∞t=0 is a linear combination of the
initial state bits of the register, that is, in the variables (st)−1

t=−r. Therefore, in
order to reconstruct the initial state, one can proceed as follows: first, guess
R ≥ r bits of the input sequence, write the R equations in the r initial state
bits, solve the system to find the initial state, and at last check that the guess is
correct by comparing the keystream it generates with the actual keystream. In
practice, R is chosen to be equal to r, and, if the system solving leads to multiple
solutions, there are two solutions: either we add one (or more) equation(s) by
guessing some more input bits, or we drop this system and construct another
from r new input bits.

In order to guess R bits of the input sequence, we parse the keystream into
pairs of bits distant from one another by γ, and guess the value of the correspond-
ing input bit xk(t) = xj(t+γ). When the pair belongs to B = {(b1, b2), (b̄1, b̄2)},
then we guess the input bit - 0 when (b1, b2) is observed, 1 for (b̄1, b̄2) - with
probability (1−p)(1−q)

pq+(1−p)(1−q) .
If the pair belongs to B′ = {(b1, b̄2), (b̄1, b2)}, then we guess it with proba-

bility max(p(1−q),q(1−p))
p+q−2pq . However, it is easy to show that max(p(1−q),q(1−p))

p+q−2pq <
(1−p)(1−q)

pq+(1−p)(1−q) , so the R bits we guess are those producing pairs of B.

http://eprint.iacr.org/
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We notice that knowing the output pair (zt, zt+γ) does not impact the prob-
ability that the pair (zt+γ , zt+2γ) belongs to B or not, as the bit z(t + γ) is the
first bit of exactly one pair of bits in B and in B′. Therefore, the probability
that a pair of bits is or is not in B does not depend on previous output, and it is
equal to pq + (1 − p)(1 − q). This value being greater than 1

2 , finding such pairs
of bits is easy.

Let us now assume that we know R pairs of output bits distant from one
another by γ, and that all these pairs belong to B. Then, the success probability
of reconstruction is (

(1 − p)(1 − q)
pq + (1 − p)(1 − q)

)R

.

In practice, we have R = r, and the reconstruction complexity (both in time and

space) is thus O(P (r)
(
1 + pq

(1−p)(1−q)

)r

), with P the polynomial corresponding
to solving the system to retrieve the r bits of the initial state. ��

B Proof of Proposition 7

Proof. For f̃0, if the filtering function f0 fulfils the quasi-immunity criterion,
then so does the entire function f̃0. Indeed, f0 is balanced and thus x1, . . . , xr �→
f̃0(x1, . . . , xr)⊕ϕej (x1, . . . , xr) is balanced for every mute variable xk. Therefore,
f̃0 is quasi-immune.

Suppose now that f̃i is a r-variable quasi-immune function such that
x1, . . . , xr �→ f̃i(x1, . . . , xr)+ ϕej (x1, . . . , xr) is unbalanced for every j such that
1 ≤ j ≤ r, apart for at most one value j0 of j.

Due to the special form of A, we have:
{

(f̃i + ϕej ) ◦ A(x) = f̃i+1(x) ⊕ xj−1

(f̃i + ϕe1) ◦ A(x) = f̃i+1(x) ⊕ xr ⊕ cr−1x1 ⊕ cr−2x2 ⊕ · · · ⊕ c1xr−1

If j0 > 1, then x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xj is balanced for every 1 ≤
j ≤ r − 1, apart from j = j0 − 1. As f̃i+1 is quasi-immune if, and only if, it is
unbalanced for at most one 1-variable restriction, then it is quasi-immune if, and
only if, x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xr is also balanced, which is equivalent
to x1, . . . , xr �→ f̃i ◦ A(x1, . . . , xr) ⊕ xr being balanced.

If j0 = 1, then x1, . . . , xr �→ f̃i+1(x1, . . . , xr) ⊕ xj is balanced for every 1 ≤
j ≤ r − 1, so f̃i+1 is quasi-immune. ��
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