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Abstract. At DRM 2002, Chow et al. [4] presented a method for im-
plementing the DES block cipher such that it becomes hard to extract
the embedded secret key in a white-box attack context. In such a con-
text, an attacker has full access to the implementation and its execution
environment. In order to provide an extra level of security, an implemen-
tation shielded with external encodings was introduced by Chow et al.
and improved by Link and Neumann [10]. In this paper, we present an
algorithm to extract the secret key from such white-box DES implemen-
tations. The cryptanalysis is a differential attack on obfuscated rounds,
and works regardless of the shielding external encodings that are applied.
The cryptanalysis has a average time complexity of 214 and a negligible
space complexity.

Keywords: White-Box Cryptography, Obfuscation, DES, Data En-
cryption Standard, Cryptanalysis.

1 Introduction

White-box cryptography aims to protect secret keys by embedding them into a
software implementation of a block cipher. The attack model for these imple-
mentations is defined as the white-box attack model. In this model, an attacker
has full control over the implementation and its execution environment. This
includes static and dynamic analysis of the implementation, altering of compu-
tation, and modification of internal variables. In such a model, it is much more
difficult to protect cryptographic implementations than in the classical black-box
model. In the black-box model, an adversary can only use the input and output
behaviour of the implementation in order to find the key. Another model is the
grey-box model, where an adversary can use side-channel information such as
power consumption, and timing information.
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For the black-box model, several cryptographic block ciphers have been pro-
posed, such as DES (Data Encryption Standard) [13], and its successor AES
(Advanced Encryption Standard). Although these ciphers provide cryptographic
strength in their full number of rounds, attacks have been presented on reduced
round versions. Cipher designers aim to reduce the number of rounds, for which
a cipher provides sufficient security, while cryptanalysists try to construct an at-
tack on as many rounds as possible. For AES-128 and AES-192, a cryptanalysis
on 7 and 8 rounds has been presented respectively (out of 10 and 12 rounds) [9].
In a white-box attack model, this game of design and cryptanalysis fails com-
pletely, since an attacker has access to the round functions, and can thus perform
a cryptanalysis on a chosen part of the implementation representing a reduced
number of round functions.

In 2002, Chow et al. [4] proposed a white-box implementation of DES. The
main idea is to implement the block cipher as a network of lookup tables. All
the operations of the block cipher, such as the key addition, are embedded into
these lookup tables, which are then randomised to obfuscate their behaviour.
This process of obfuscation intends to preclude cryptographic attacks on a re-
duced number of rounds, timing attacks, such as cache attacks (e.g., [11]) or
implementation attacks [8]. Parallel with the white-box DES implementation
proposal, Chow et al. [3] described a white-box AES implementation based on
similar design principles. For both implementations, a variant was presented that
is shielded with external encodings. Several publications describe cryptanalysis
results of ‘naked’ white-box DES implementations, i.e., without the shielding
external encodings [4,7,10]. The encoded white-box AES implementation has
been cryptanalysed by Billet et al. [2]. They use algebraic properties of the AES
to attack the implementation on the obfuscated round functions.

In this paper, we describe a cryptanalysis which applies to both naked and en-
coded white-box DES implementations. Independently, Goubin et al. [6] present
similar results. Their paper describes a cryptanalysis of the improved naked
white-box DES implementation proposed by Link and Neumann [10]. Based on
this attack and the analysis of the typical external encodings, an attack is derived
for encoded white-box DES implementations. In contrast, the attack we discuss
in this paper is independent of the definition of the external encodings. Hence,
unlike the attack of Goubin et al., a white-box DES implementation cannot be
protected against our attack by choosing different external encodings. The attack
presented in this paper targets the internal behaviour of the implementation; it
is a differential cryptanalysis [1] on the obfuscated round functions, which are
accessible in a white-box environment. Because the attack is independent of the
definition and implementation of the external encodings, it applies to both the
(improved) naked and the encoded white-box DES implementations.

The reminder of this paper is organised as follows: in Sect. 2 we give a brief
overview of the white-box DES implementation. The core of this paper, the
cryptanalysis of the implementation, is described in Sect. 3. We have also imple-
mented our attack and performed tests on white-box DES binaries. The results
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and considerations of the implementation are described in Sect. 4. Section 5
presents the conclusions.

2 White-Box DES Implementations

For the sake of completeness and to introduce the notation and terminology
used in the description of the cryptanalysis, we briefly outline the construction
of white-box DES implementations as presented by Chow et al. [4].

The Data Encryption Standard (DES) is a block cipher operating on 64-bit
blocks and with a key length of 56 bits; it is a Feistel cipher with 16 rounds,
embedded between an initial permutation IP before the first round, and its
inverse permutation IP−1 after the last round. Fig. 1 (a) depicts one round of
the DES. It has the following building blocks: an expansion operation E ; an
addition of a 48-bit round key kr which is generated from the key schedule; 8
S-box operations Si (each S-box is a non-linear mapping from 6 bits to 4 bits);
and a bit permutation P .

A DES white-box implementation represents DES as a functional equivalent
sequence of obfuscated lookup tables. In this section, we describe the transforma-
tion techniques as presented by Chow et al. [4]. Figure 1 (a) depicts one round
of DES, and (b) a functionally equivalent representation which consist of the
functions Cr and Dr. The DES permutation, XOR, and expansion operation are
implemented as a 96-to-96 bit affine function Dr, which can be represented as a
matrix. Using a technique referred to as matrix decomposition by Chow et al.,
Dr is transformed into a sequence of lookup tables. To avoid sparse submatrices,
Dr can be split into non-sparse matrices by introducing mixing bijections [4].

32

32

32 32

48 16

3232

48 16

16

P E

E

Lr−1 Rr−1

RrLr

S1...8

E

Yr

P

(a) (b)

Lr−1

RrXrLr

Rr−1

Dr

Xr−1Lr−1 Rr−1

select

k

S1...8
merge

Cr

Non-Linear Layer

Affine Layer

k

Fig. 1. (a) One round of DES (b) One round of white-box DES, before internal encod-
ings are applied
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At the heart of each round of the white-box DES implementation are 12 T-
boxes that implement the Cr function. These T-boxes contain the S-boxes and
the round key addition and are defined as{

T r
j = b0b1||b2b7||Sj(b2b3b4b5b6b7 ⊕ kr

j ) ∀j = 1 . . . 8
T r

j = b0b1b2b3||b4b5b6b7 ∀j = 9 . . . 12 ,

where r denotes the round number (1 ≤ r ≤ 16), b0...7 represent the 8 input bits
to each T-box, and kr

j represents 6 bits of the round key. The first 8 T-boxes are
called non-linear T-boxes, as they contain the non-linear S-boxes. The other 4
are called bypass T-boxes. The 12 T-boxes of Cr are defined in such a way that
they are functionally equivalent to the round key addition, S-box operations and
the bypass of all 32 left bits (Lr−1) and 32 right bits (Rr−1). Moreover, due
to the bijective relation between the inner 4 input bits and the output bits of
an S-box, these T-boxes are 8-to-8 bit bijections. This 8 bit entropy property is
desirable as it prevents the isolated T-boxes to leak information as described by
Chow et al. [4]. The order of the T-boxes can be permuted. Note that in that
case, the affine operations Dr−1 and Dr must be adjusted accordingly. Denote
with π the permutation operation, i.e., Si is implemented inside T r

π(i).
The result is a network of key dependent lookup tables. To protect the key

information in these tables, input and output encodings are applied to them. Let
Λ be a lookup table, and f and g be random bijections. Then g◦Λ◦f−1 is defined
an encoded lookup table. We encode all the lookup tables in the network in such
a way that an output encoding is canceled by the input decoding incorporated
into the next lookup table. Note that these input and output encodings are not
wide, because they cannot exceed the boundaries of the lookup tables they are
applied to. From now on, we refer to an encoded T-box as gi ◦ T r

π(i) ◦ f−1
i , and

the internal state as the 12-byte vector f1||f2|| . . . ||f12(Φr(Lr−1||Xr−1||Rr−1))
where Φr is the function which arranges the bits to the inputs of the T-boxes.
Remark that in Fig. 1 the internal states are depicted unencoded.

Once the full network of lookup tables has been encoded, the input encodings
at the beginning and output encodings at the end of the implementation are not
canceled out. Without these encodings, we call the white-box DES implementa-
tion naked. Attacks on a naked implementation have been presented in [4,7,10].
In order to avoid such attacks, Chow et al. recommend to add affine mixing
bijections before and after DES. As a result, not DES, but an encoded variant
G ◦ DESk ◦ F is implemented. F and G are called external encodings.

3 Cryptanalysis

Examination of the white-box DES implementation as presented by Chow et
al. shows that plaintext input differences between the rounds do not propagate
randomly. Denote the internal state before round r as the 96 bits that represent
the encoded version of Lr−1||Xr−1||Rr−1. This is a 12-byte vector vr

1 ||vr
2 || . . . vr

12,
where vr

j is the encoded input to a T-box T r
j . In our cryptanalysis we apply

changes to the internal states and analyse their propagation in the consecutive
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rounds to gain information about the implementation. This information is then
used to recover the key. The applied technique builds on a generic strategy
described for the first time by Billet et al. [2]. The cryptanalysis also applies to
the improved implementation as presented by Link and Neumann [10], because
only the inputs to the T-boxes are used. Merging Cr and Dr, or any change
to Dr ◦ Cr (e.g., with mixing bijections) that does not change the inputs to Cr

beyond the input size boundary, does not affect the attack.
Below, we present the steps to classify differences to the input of the T-boxes

and show how this results in the recovery of the embedded secret key. In Sect. 3.1,
we identify the set of differences which represent flips of restricted (Rr−1) bits.
This leads to the identification of flips of the two middle input bits of S-boxes
in round r + 2, and results also in the identification of single input bit flips to
S-boxes in round r + 3, as described in Sect. 3.2. This information is then used
in Sect. 3.3 to identify the S-boxes contained inside the T-boxes, and the precise
value of the input to these S-boxes. In Sect. 3.4, we explain how this leads to
the recovery of the embedded key.

Initialisation Phase. At the initialisation of our cryptanalysis, we choose a
random plaintext and run it through the implementation, storing all internal
states. We will deduce the inputs to the S-boxes for this plaintext in Sect. 3.3.
Because we are only interested in the propagation of differences applied to the
internal states, the value of the plaintext is of no importance. Hence, preceding
external input encodings do not affect the success of this cryptanalysis.

3.1 Finding Restricted Bit Flips

Let T r
j be an arbitrary encoded T-box in round r, encoded with input encoding

f r
j and output encoding gr

j . Let vr
j denote the 8-bit input vector to the encoded T-

box computed at the initialisation phase. In this section we present an algorithm
to construct the set SR(T r

j ) = {Δv = vr
j ⊕ v′ | v′ ∈ GF (2)8; v′ �= vr

j ; f r
j (vr

j ) ⊕
f r

j (v′) an Rr−1 bit flip} of all input differences to the encoded T r
j which represent

flips of one or two restricted bits (|f r
j (vr

j ) ⊕ f r
j (v′)| = 1, 2). Similarly, we define

the sets SR(T r
j ) and SR\R(T r

j ). An input difference Δv is applied to T-box T r
j as

follows: change the jth byte of the internal state before round r from vr
j into v′,

and compute the round function Dr ◦ Cr with this new internal state as input.
The algorithm consists of two parts: (1) constructing the set SR(T r

j ) of all
differences which represent single bit flips and some double bit flips of Rr−1, and
(2) to divide this set into SR(T r

j ) and SR\R(T r
j ).

Finding Single Rr−1 Bit Flips. Let Δv = vr
j ⊕ v′(= Δvr

j ) be a difference
of the input of T r

j while the inputs vr
l to the other T-boxes T r

l are fixed to
the values from the initialisation phase (∀l �= j : Δvr

l = 0). The following two
properties can be proved for Δv. The proofs are given in Appendix A.

Property 1. If Δv represents a single bit flip of Rr−1, then in round r + 2, at
most 2 T-boxes are affected (i.e., their input change).
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Property 2. If Δv represents flips of bits of Lr−1 or Yr, then in almost all
cases more than 2 T-boxes are affected in round r + 2. The exceptions (false
positives) can be detected by repeating this process up to α times with different
fixed inputs to the other T-boxes T r

l .

Hence, we are able to distinguish flips Δv that represent flips of Rr−1 bits, and
build the set SR(T r

j ). Algorithm 1 describes this procedure. The total number of
differences representing flips of bits of Rr−1 for all the T-boxes of one round, is
exactly 40: 16 single flips of bits of Rr−1 originating from Xr−1, 16 single flips
of bits of Rr−1, and 8 double flips of bits of Rr−1. To agree with property 2,
these double flips of restricted bits are those that affect the both middle bits of
an S-box in round r+2, and are bypassed together through the implementation.
Therefore they cannot be distinguished from single bit flips of Rr−1. Because
there are only 8 S-boxes, there cannot be more than 8 double bit flips. Depending
on the design of Φr, the number of double flips can reduce, but this does not
influence our cryptanalysis. To keep the discussion clear, we assume the bypass
bits are ordered, and therefore we will have 8 double bit flips.

Algorithm 1. Selecting single Rr−1 bit flips

1: Set all vr
l

2: for all Δv ∈ GF (2)8\{0} do
3: Compute 2 round functions
4: while # affected T-boxes ≤ 2 and # checks ≤ α do
5: Extra check: set new vr

l ; ∀l �= j
6: Compute 2 round functions
7: end while
8: if # affected T-boxes ≤ 2 then
9: Δv → SR(T r

j )
10: end if
11: end for

Split Rr−1 into Rr−1 and Rr−1\Rr−1 Flips. Let Δv represent flips of Rr−1

bits. The following properties can be proved for Δv ∈ SR(T r
j ). The proofs are

given in Appendix A.

Property 3. If Δv represents a flip of bits of Rr−1, there are exactly 2 prop-
agated differences in round r + 2: Δm, Δn. One (say Δm, input difference to
T-box T r+2

m ) will affect strictly more than 2 T-boxes in round r + 4, the other
difference will affect at most 2 T-boxes in round r + 4. Moreover, T r+2

m will be
a non-linear T-box; Δm represents flips of one or both of the two middle bits of
the internal S-box; and Δn represents flips of respectively one or two Rr+1 bits.

Property 4. If Δv represents a flip of bits of Rr−1\Rr−1, there are exactly
2 propagated differences in round r + 2. Both affected T-boxes are non-linear
T-boxes, and each of their input differences will affect strictly more than two
T-boxes in round r + 4.
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Based on these properties, we have a tool to identify restricted bit flips, and
to distinguish non-linear T-boxes. In Algorithm 2, this procedure is described.
Note that during the algorithm, we also store the differences Δm representing
flips of middle bits (b4b5) to an S-box Sm in the set SM (T r+2

m ).

Algorithm 2. Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips

1: for all Δv ∈ SR(T r
j ) do

2: Compute 2 round functions
3: Δm, Δn← propagated differences in round r + 2 of T r+2

m , T r+2
n m �= n

4: δm← # affected T-boxes in round r + 4 propagated by Δm in round r + 2.
5: δn← # affected T-boxes in round r + 4 propagated by Δn in round r + 2.
6: if δm > 2 and δn = 2 then
7: Δv → SR(T r

j ); Δm→ SM (T r+2
m )

8: Denote T r+2
m as non-linear T-box

9: else if δm = 2 and δn > 2 then
10: Δv → SR(T r

j ); Δn→ SM (T r+2
n )

11: Denote T r+2
n as non-linear T-box

12: else if δm > 2 and δn > 2 then
13: Δv → SR\R(T r

j )

14: Denote both T r+2
m and T r+2

n as non-linear T-box
15: end if
16: end for

The combination of Algorithm 1 and Algorithm 2 results into the following
useful information:⎧⎨

⎩
Sr

R
= ∪jSR(T r

j ): differences representing restricted bit flips
Sr+2

M = ∪jSM (T r+2
j ): differences representing S-box middle bit flips

T r+2
π(1) . . . T r+2

π(8): the 8 non-linear T-boxes (π unkown)

3.2 Finding Single Bit Flips

In Sect. 3.1, differences representing flips of the 2 middle bits (b4b5) of the S-
boxes of round r + 2 are found. Let T r+2

j be an arbitrary non-linear T-box in
round r + 2, and SM (T r+2

j ) its set of middle bit flips. We have SM (T r+2
j ) =

{Δm1, Δm2, Δm3} with Δmi : vr+2
j → vr+2

j ⊕Δmi the 3 generated differences.
One can verify that, except for S-box S8, each of the four output bits of the
S-box Sr+2

j are flipped at least once by going through one of the values vr+2
j ⊕

Δm1, v
r+2
j ⊕Δm2, v

r+2
j ⊕Δm3. Furthermore, as the middle bits are not bypassed

in the same T-box, no other output bits of the T-box are affected. Due to the
diffusion property of the DES permutation P, the 4 output bits of an S-box
affect a single input bit of 6 S-boxes in the next round, with two of them middle
input bits (See Coppersmith [5]). Based on the previously mentioned study, the
two differences representing bypass bits can be detected. Under the assumption
of ordered bypass bits, we have already built this set to compare with (Sr+3

R
).

The other propagated input differences to the T-boxes in round r + 3 represent
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single bit flips. Algorithm 3 describes this procedure, which constructs the set
SS(T r+3

i ) of differences representing single bit flips.
As mentioned, the described property does not hold for S8: for the input

11b4b501, with arbitrary b4 and b5, the rightmost output bit cannot be flipped
by flipping the input bits b4 and b5. Thus, with a probability of 1/16, we are not
able to find all single bit flips of round r + 3. However, it will become clear in
the next section that we do not need all information to successfully apply our
cryptanalysis.

Algorithm 3. Finding single bit flips

1: for all Δv ∈ SM (T r+2
π(j)) j = 1 . . . 8 (for non-linear T-boxes) do

2: Compute one round function
3: for all Δwi propagated difference to a non-linear T-box T r+3

i do
4: if Δwi /∈ SS(T r+3

i ) then
5: Δwi → SS(T r+3

i )
6: end if
7: end for
8: end for

3.3 Obtaining the Inputs to the S-Boxes

Let T r+3
j be an arbitrary non-linear T-box in round r + 3. Using the acquired

information from the steps above, we deploy a filter algorithm to identify the
S-box (Sπ−1(j)) in the T-box T r+3

j , and to find the value of its 6-bit input vector
(f r+3

j |2...7(vr
j ) ⊕ kr+3

j ).
We define the set P(T r+3

j ) = {(Sq, wl) | 1 ≤ q ≤ 8, wl ∈ GF (2)6} as the set of
all possible pairs of S-boxes and input vectors. Our strategy is to remove all the
invalid pairs from the set. We can do this by comparing the number of affected
T-boxes in round r +4 when a difference Δvi ∈ SS(T r+3

j )∪SM (T r+3
j ) is applied

to the input of T r+3
j , with the number of affected S-boxes in a non-white-box

DES simulation with a pair (Sq, wl) ∈ P(T r+3
j ).

We define δi as the number of non-linear T-boxes that are affected in round
r+4 when Δvi is applied to the input of T r+3

j . To verify a pair (Sq, wl), we take
part of a non-white-box DES implementation with S-box Sq and S-box input wl,
and simulate the behaviour of a flip of the i’th input bit to the S-box. Then, δ′i
is defined as the number of affected S-boxes in the next round of this simulation.
Define Δwi as the difference to the input of the internal S-box of the T-box to
which Δvi is applied (Δwi : wl → wl ⊕ f r+3

j |2...7(Δvi)).
If (Sq, wl) is a candidate solution, it should satisfy the following conditions:

– There can only be one Sq for each round.
– Δv7 = SM (T r+3

j )\SS(T r+3
j ) is the flip of both middle bits, represented as

Δw7 = 001100, for which δ′7 can be computed. δ′7 must be smaller or equal
to δ7.
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– {Δv3, Δv4} = SM (T r+3
j ) ∩ SS(T r+3

j ) represent the two single flips of the
input bits to the S-box, but we do not know in which order. Moreover they
only affect bits of Yr+3, and thus we must have {δ′3, δ′4} ≤ {δ3, δ4}.

– Similarly {δ′1, δ′2, δ′5, δ′6} ≤ {δ1, δ2, δ5, δ6}.
Any pair (Sq, wl) that does not fulfil these conditions is removed from the set
P(T r+3

j ). At the end, if only pairs with one type Sq remain, then this Sq is the
internal S-box of T r+3

j (π(q) = j). As soon as S-boxes are identified, we can also
make use of S-box relations between consecutive rounds. E.g., S1 in round r
does not affect S-box S1 and S7 in round r + 1. Moreover, if for example S3 is
identified in round r + 1, then S1 affects its second input bit, which allows us to
narrow down the conditions (δ2 = δ′2).

Because all 8 DES S-boxes are very different, and are highly non-linear, the
filtering process will reduce most P(T r+3

j ) sets to a singleton (Sq, wl), where
Sq = Sπ−1(j) is the internal S-box and wl = f r+3

j |2...7(vr+3
j ) the 6-bit input

vector to this S-box.

3.4 Key Recovery

Given that we have found a sufficient number of inputs to S-boxes, we start an
iterated recovery of key bits, initiated by guessing one single key bit, using the
following two observations:

– The expansion operation E maps some of the input bits to 2 different S-
boxes, prior to the key addition. From Sect. 3.3, we know the value of the
input bits to these S-boxes, after the round key addition. Hence, if we know
one of the corresponding two bits of the round key, we are able to compute
the other key bit.

– The value of one single bit can be followed through several rounds. Consider
an Rr−1 bit. In round r and r + 2, after the expansion and the round key
addition, this is the (known) input to an S-box. In round r + 1 it is XOR-ed
with an output bit b of an S-box after the permutation P operation. Because
P is known, the S-boxes in round r + 1 are identified and their input is
known, we can compute the value of b. Hence, if one bit of the round key bit
in round r or r + 2 is known, we can compute the other key bit.

Iterated use of these algorithms generates the DES key bits. When a new
round key bit is computed, we can pull this back through the DES key schedule.
This is possible, because the 48-bit round key is a fixed permutation of a subset
of the 56-bit DES key. New key bits in turn result into new round key bits, to
which the two described methods can be applied.

Depending on the initial key bit guess, two complementary keys k0 and k1

can be computed. Because of the complementation property DES exhibits, both
keys are a valid result. The complementation property of DES [12] is defined
as DESk =

⊕
1 ◦DESk⊕1 ◦ ⊕

1 , where
⊕

1 represents the XOR with the all
one vector. Then G ◦ DESk ◦ F = G′ ◦ DESk⊕1 ◦ F ′ , with F ′ =

⊕
1 ◦F and

G′ = G◦⊕
1. Hence if k is the original DES key, and F, G the external encodings
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used to shield the white-box DES implementation, then the complementary key
k ⊕ 1 is also a valid DES key with external encodings F ′, G′.

3.5 Recovery of the External Encodings

The main goal in cryptanalysis of white-box implementations is to find the em-
bedded secret key. However, to break specific white-boxed implementations or
decode ciphertext, recovery of the external encodings can be required.

These external encoding can be recovered as follows: for every input vEXTin

to the encoded implementation, we are able to find the inputs to the S-boxes.
For Feistel ciphers, given the input to two consecutive rounds and the secret
key, the plaintext can be computed easily. Hence we are able to compute the
input to the naked DES, i.e., vDESin = F (vEXTin). Moreover, we can also
compute the output of the naked DES, i.e., vDESout = DESk(vDESin). This is
the input to the external output encoding for which its output vEXTout is the
output of the white-box implementation. Hence for any given input to the white-
box implementation, we can build different input-output pairs of the external
encodings. This way, with a sufficient number of chosen inputs, the external
encodings can be computed. Here we assume that these encodings are not too
complex, that is, rather affine or simple non-linear mapping.

Chow et al. [4] proposed a specific class of external encodings, which are block
encoded affine mixing bijections. Suppose these block encodings are nibble en-
codings. Then, for each of the 24 nibble encodings, we run over all its possible
inputs (24), and compute the value of the 96-bit output vDESin. With the knowl-
edge of all these mappings, we are able to recover the external input encoding.
The external output encoding can be recovered similarly.

4 Implementation

We have implemented our cryptanalysis in C++, and conducted tests on a Pen-
tium M 2GHz. On average, about 6000 ≤ 213 obfuscated round functions of
the white-box DES implementation are needed to be computed to check the
difference propagations. This is less than our complexity study in Appendix B
indicates, due to some extra optimisations we have applied (e.g., introducing
requirements regarding round r + 1 in Property 1 substantially improves the ef-
ficiency of the algorithm). Moreover, our tests indicate that computations with
8 consecutive obfuscated round functions is sufficient for the attack to succeed.
There is no restriction on which window of 8 round functions to chose.

In the conducted tests on several white-box DES implementations, our crypt-
analysis algorithm extracted the DES key in all tests in under a second. On
average the cryptanalysis requires 0.64 seconds.

5 Conclusion

We have described how to extract the embedded secret key of both the naked as
encoded white-box DES implementations of Chow et al. [4]. This cryptanalysis
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also applies to the improved implementation as presented by Link and Neu-
mann [10], because the outputs of the T-boxes are not used, only their inputs.
The attack is a differential cryptanalysis on the obfuscated rounds, and is inde-
pendent of the definition of the external encodings, in contrast to the attack of
Goubin et al. [6].

The success of this cryptanalysis originates from properties which are specific
to the DES. The confusion property of the DES S-boxes, the diffusion property
of the DES permutation P and the design of the expansion operation are used
to extract the key. The analysis, while specific to DES, nevertheless points the
way to techniques to analyse other ciphers.
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A Appendix: Proofs

Property 1. If Δv represents a single bit flip of Rr−1, then in round r + 2, at
most 2 T-boxes are affected (i.e., its input changes).

Proof. When Δv represents a flip of a single bit of Rr−1, then in round r + 1
it represents a flip of single bit of Lr, as the reader can deduce from Fig. 1(b).
Because of the expansion and selection operation, this will result into 2 bits
flipped to round r + 2 (one of Xr+1 and one of Rr+1; or both Xr+1 flips). Thus
at most 2 T-boxes in round r + 2 are affected. ��
Property 2. If Δv represents flips of bits of Lr−1 or Yr, then in almost all
cases more than 2 T-boxes are affected in round r + 2. The exceptions (false
positives) can be detected by repeating this process up to α times with different
fixed inputs to the other T-boxes T r

l .

Proof. In round r+1, besides bypass bits, these differences represent flips to the
inputs of S-boxes. Therefore, the number of flips to the inputs of round r + 2
explodes, and strictly more than 2 T-boxes will be affected.

There are a few exceptions in which not more than 2 T-boxes are affected
(false positives). Observe an affected S-box in round r+1. (There will always be
at least one affected S-box). The input to this S-box changes in at least one and
at most 3 bits (one for Yr and two for Lr−1 bit flips). The effect on the output
bits of this S-box depends on its other input bits, which depend on the inputs
vr

l set at the initialisation phase. Hence the number of affected T-boxes in round
r + 2 will very likely change if we set other inputs to T r

l , witch l �= j. With a
very high probability, 2 extra checks are sufficient to detect these false positives,
if we change all the inputs to the other T-boxes (α = 2). ��
Property 3. If Δv represents a flip of single bits of Rr−1, there are exactly 2
propagated differences in round r + 2: Δm, Δn. One (say Δm, input difference
to T-box T r+2

m ) will affect strictly more than 2 T-boxes in round r + 4, the other
difference will affect at most 2 T-boxes in round r + 4. Moreover, T r+2

m will be
a non-linear T-box; Δm represents flips of one or both of the two middle bits of
the internal S-box; and Δn represents flips of respectively one or two Rr+1 bits.

Proof. Let Δv ∈ SR(T r
j ) represent a flip of single (or double) bits of Rr−1.

Then, in round r + 2, this will propagate to a flip of one (or both) of the two
middle input bits of an S-box Sm in T-box T r+2

m . Hence T r+2
m is a non-linear

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
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T-box. Denote Δm the propagated input difference to T r+2
m . Furthermore, this

flip will also be bypassed because of the selection operation (see Fig. 1(b)). If
this would be bypassed by T r+2

m as well, then this T-box has an entropy of 7, in
contradiction to the T-box design. Thus a second T-box T r+2

n is affected, with
input difference Δn. Therefor, Δv will affect exactly 2 T-boxes T r+2

m , T r+2
n with

input differences Δm, Δn.
Consider the following DES S-box design properties [5]:

Δin = 0wxyz0 ⇒ |Δout| ≥ 2 (1)
|Δin| = 1 ⇒ |Δout| ≥ 2 , (2)

with Δin the input difference to an S-box, Δout its resulting output difference,
and wxyz ∈ GF (2)4\{0}. Because of (1), Δm represents a flip of at least two
Yr+2 bits at the output of the S-box. Due to the DES permutation P diffusion
property and (2), Δm will affect more than 2 T-boxes in round r + 4. Δn
represents a flip of bits of Rr+1, and affects no more than two T-boxes in round
r + 4 (see Property 1). ��
Property 4. If Δv represents a flip of bits of Rr−1\Rr−1, there are exactly
2 propagated differences in round r + 2. Both affected T-boxes are non-linear
T-boxes, and each of their input differences will affect strictly more than two
T-boxes in round r + 4.

Proof. If Δv ∈ SR(T r
j ) represents a flip of bits of Rr−1\Rr−1, then for 2 S-

boxes in round r + 2, exactly one input bit will be affected, and thus exactly 2
non-linear T-boxes in round r + 2 are affected.

Because of S-box design property (2), each of these differences will represent
a flip of at least two Yr+2 bits. As a consequence of the DES permutation P
diffusion property, both these differences in round r + 2 will affect strictly more
than two T-boxes in round r + 4. ��

B Complexity

We define the complexity of the cryptanalysis as the number of round functions
of the white-box implementation that need to be computed. The first step de-
scribed, to retrieve flips of bits of Rr−1, has the largest complexity. Because
of the lack of any prior information on internal flips, all differences have to be
computed through several rounds in order to learn this bit flip information.

In Algorithm 1, for all 12 T-boxes, and all 28−1 possible differences, 2 rounds
need to be computed to observe the difference propagation. This corresponds
to a total of 12 · (28 − 1) · 2 = 6120 round function computations. For each
positive result, we perform at most 2 double checks as described in Property 2.
Algorithm 2 requires 6 round computations for each difference of SR (2 for Δv, 2
for Δl and 2 for Δm). Hence, 240 round functions computations are performed.

Consequently, we can retrieve all flips of bits of Rr−1 for one round in less than
213 round computations in total. As described in Property 2, from Δv ∈ Sr

R
, we
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can efficiently compute Δn ∈ Sr+2

R
. Because of the one-to-one relation between

Δv and Δn, this is sufficient to find all the single Sr+2

R
bit flips. Thus, when for

two consecutive rounds, SR is found, we can compute this set for all subsequent
rounds using Property 3 only. Hence, with about 214 round computations, we
can compute all flips of single bits of Rr−1 for all rounds.

The complexity of the other steps of the cryptanalysis is negligible. In Algo-
rithm 3, for each Δm ∈ Sr

M , one round function needs to be computed. Hence, for
each round, at most 24 round computations are needed (for 16 single bit flips and
at most 8 double bit flips). To compute the exact inputs to the S-boxes, a filtering
process needs to be applied to each non-linear T-box. In the worst case, we need
to compute the difference propagation for all 7 input differences. Thus at most
7 round computations for each of the 8 non-linear T-boxes. The simulation pro-
cess for each T-box needs to be performed at most 26 · 8 = 29(= |P(T r

j )|) times,
which is the equivalent effort of computing one white-box DES round function
(which consists of 552 ∼ 29 lookup table computations). The total complexity
to compute the inputs to all S-boxes of one round is thus 8 · (7 + 1) = 26.

The space complexity is negligible too. Most space is used in Sect. 3.3 to
store the set P(T r

j ) of candidate pairs (Si, wl). We can also choose to store the
simulations of these pairs. They can be pre-computed because the simulation
does not require any information on the implementation or the key.
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