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Abstract. Homographies are widely used in tasks like camera calibration,
tracking, mosaicing or motion estimation and numerous linear and non lin-
ear methods for homography estimation have been proposed in the case of
classical cameras. Recently, some works have also proved the validity of
homography for catadioptric cameras but only a linear estimator has been
proposed. In order to improve the estimation based on correspondence fea-
tures, we suggest in this article some non linear estimators for catadioptric
sensors. Catadioptric camera motion estimation from a sequence of a pla-
nar scene is the proposed application for the evaluation and the comparison
of these estimation methods. Experimental results with simulated and real
sequences show that non linear methods are more accurate.
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1 Introduction

Since thirty years, many computer vision studies have been performed in or-
der to have some information on the trajectory of a mobile perspective camera,
with only the image sequence and the intrinsic parameters (calibrated camera)
[11,12],[3]. Without prior knowledge about the scene, this motion is always par-
tially obtained because the translation is known up to a scale factor. In the case
of a planar scene or a pure rotation motion or both, two images are related
with a homography. From such a homography, the rotation, the direction of the
translation and the direction of the normal to the plane can be computed [4].
Homographies have also other multiple applications like camera calibration [5],
mosaicing[6], visual servo-control law computation in robotic [7]. Since the esti-
mation of a homography requires data matching between two images, different
kinds of primitives can be used. Thus, in [8] a dense matching based on grey level
of pixels is proposed. However, this approach is iterative and a right initial value
is required. Then, if the motion between the two images is too large, the method
becomes inadequate and a solution comnsists then in performing the estimation
with other kind of features such as contours [9], lines or points [10]. In this way,
lines or points can be used with a linear estimator in order to provide the ini-
tial value to an iterative non linear approach which provides more stability with
respect to correspondence coordinate noise [T1].
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Some recent works deal with the motion estimation with central catadioptric im-
age sequence. Some motion and structure reconstruction methods have been pro-
posed in [I2] and in [I3]. However, when the scene is planar and if only the motion
is required, some less computational methods can be applied. In [T4] the authors
mention that the epipolar geometry is non linear between two omnidirectional im-
ages. Then, in order to recover a similar epipolar geometry as in the perspective
case, the solution consists in projecting the images on the unitary sphere [I5]. In
this way, if two catadioptric images of a planar scene are projected on the sphere,
a homography relates them and it is then possible to use a linear estimation algo-
rithm almost similar to the one used with a perspective camera. However, the non
linear estimation of a homography has not yet really been studied in the catadiop-
tric case except in [I6] where a non linear approach has been suggested based on
grey level matching. However, in this case only small displacements are authorized
in order to perform the iterative process. In [I7], the authors also present a non lin-
ear estimation technique but only for the case of catadioptric camera calibration.

In order to test our different estimation algorithms, we consider that a cata-
dioptric camera moves in an urban area or in an indoor scene. Such environ-
ments are generally composed of planes. In fact, we consider just a planar scene,
a study with several planes will be performed in further works. We have a set
of matched image points (noisy inliers) and our aim is to optimise the homog-
raphy estimation process. The motion computation is then optimised because it
depends directly on the homography.

In order to perform the optimisation, we suggest in this article four non lin-
ear homography estimators for catadioptric sensors. The estimations are done
from matched points. Their stabilities with respect to correspondence noise are
quantified and compared with the results of the catadioptric linear estimator by
simulations. Some tests with matched points with real omnidirectional images
validate these simulations.

We also perform some simulation tests in the perspective case by quantifying
the precision of the perspective non linear estimator and by comparing it with
the results of the perspective linear one. It is well known that in the pinhole
case the non linear approach is better [I1]], but this experiment enables above all
to compare the precisions of the catadioptric estimators to their homologues of
the pinhole case. This paper is divided into four main parts. After introducing
catadioptric projection, we derive the homography equations for catadioptric
images in section 2. Then, we present in section 3 our different linear and non
linear estimators. Section 4 is devoted to the evaluation and comparison of the
methods. Finally, the estimators are tested on real sequences in section 5.

2 Perspective and Catadioptric Homography

2.1 The Unifying Catadioptric Projection Model

The projection model defined in [I8] covers all the catadioptric cameras with a
single point of view. The catadioptric systems can be modelled with the following
generic steps (fig [l):



486 C. Simler, C. Demonceaux, and P. Vasseur

1. Projection of an object point M of the scene in a point My on the unit sphere
centred on the inner focus F' of the mirror.

2. Non linear projection of the 3D point My of the sphere with respect to the
point C' in a 2D point, m, on a virtual plane (with the mirror parameter &).

3. Projection of the point m of the virtual plane in a point p on the image plane
(with the camera intrinsic parameters and the 2 mirror parameters).

Due to the non linearity of the projection in step 2, it is difficult to model the
geometrical relation between 2 images. However, by projecting them on the unit
sphere (from p to M) an epipolar geometry similar to the perspective case is
recovered.

Virtual plane

e Image plane

Fig. 1. Central catadioptric camera projection model

2.2 Homography Between Two Images

In this part we consider a couple of perspective images and another of cata-
dioptric images. The motion between the two images is composed of rotation
R and translation ¢. In the two cases, an image normalisation was done. In the
perspective case, the pixel coordinates were converted in meters, and in the om-
nidirectional case the projection on the unit sphere was done (see part 2.1). In
the perspective case, the motion means the camera frame motion, and in omni-
directional it means the mirror frame motion. Figure 2] shows an illustration of
these couples. M is a planar scene point, and m, and ms its images before and af-
ter the motion. With the pinhole, m; = (21, y1, 1) and mo = (22,%2,1)7 in the
image frame. In the catadioptric case, m1 = (z1,y1, 21)7 and my = (22, Y2, 20)7
in the mirror frame. It is shown in [7] and [I5] that both in perspective and
omnidirectional, m; and ms are linked with a homography, called H, which can
be written as follow :
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Planar scene Planar scene
M M
Image frame
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mi a m2
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a) Perspective case: homograpy between 2 planar images. b) Catadioptriic case: homography between two spherical images.

Fig. 2. Homography between perspective and catadioptric images

T2 1 x1 hiiz1 + hi2y1 + hizz 1 HT'm,
Y2 | = sH o= ha1x1 + hooy1 + hogz1 | = 5 HImy (1)
22 z1 hziz1 + h3ay1 + h3zz HImy

where s is an unknown scale factor,H; = (h;1, hi, hiz)T. In the pinhole case,
z1 = 2o = 1. H is defined up to a scale factor, thus it has only eight independent
parameters. To cope with the scale factor ambiguity, we impose an arbitrary
constraint, hgz = 1, in order to have an unique solution.

2.3 Motion from Homography

Homography H is expressed with motion (R, t) and scene plane normal 7. If the
norm of 7 is equal to the inverse of the plane initial distance, we have: H = R +
tmw”T. R, the direction of t and 7 can be computed with the singular value of H
[4]. However, this leads to 4 solutions, thus the right one was to be selected.

3 Homography Estimators

It has been seen in part 2 that two matched points are related with a homography
H in the case of a planar scene. We consider that the planar scene provides
N (N > 8 ) matched image points between two views. In the pinhole case,
z1 = zo = 1 . In part 3.1 we present a brief state of the art of homography
estimators, and in part 3.2 we introduce the non linear ones we suggest for
catadioptric cameras.

3.1 Main Estimator Overview

The linear estimator is currently used. Also, it exists several non linear ones
for the pinhole case but since their performances are quite similar [T9], we just
present the most generally used.
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The linear estimator (for pinhole and catadioptric camera):
If we isolate s in the third equation of expression (), we obtain:

Ty = Hlelz

2= g, 22 5
it (2)

y2 - Hg,Tm1 22

h

After linearization, the it correspondence provides:

T1i%2; Y1iZei 21i%2; 0 0 0 —z1we; —Y1iT2 B [ T2i% 3)
0 0 0 x1422; Y122 215%2i —T15T25 —Y1iT2; Y2i 21

where h = (HT, HY hsi,h32)T. The expression (@) has not a strict equality
because of the correspondence noise. With more than four matches it is possible
to solve an overdetermined linear system of 2 x N equations which can be written
as follows: A.l &~ b . The 2N x 8 matrix and the 2N vector b are built with
the correspondences. The solution obtained using the linear least squares is the
following:

N
h = arg min Ly(h) = argmin Z(Aih —b;)* = (AT A) 1A D, (4)
i=1

This estimator has the advantage to provide a closed-form and unique solution.
However, in the pinhole case this estimator is unstable with respect to the data
noise [I]. This instability is due to the linearization of equations (2)), which
complicates the distributions of the error terms and thus the linear estimator
@) derives from the maximum likelihood estimator in the presence of noise.
In fact, the maximum likelihood estimator is optimal because it is unbiased
with minimal variance. The estimators which are close to it are generally stable,
and the estimators far from it are generally unstable. In order to improve the
stability of the linear estimator, a solution consists in improving the condition of
the matrix ATA [2]. The techniques suggested in [2] are efficient, however they
do not enable to reach the performance of the non linear estimator for pinhole
camera () (see below). It can be noted that if the linear estimator (@) is used
with a catadioptric camera, there is no need to improve the condition of AT A.
It is obvious that the projection on the unitary sphere provides automatically a
low condition number.

The linear algorithm, with the pinhole as well as with the catadioptric cam-
era is not optimal because it is not a maximum likelihood estimator. This is the
reason why some non linear estimators exist for the pinhole, and why we suggest
some catadioptric non linear estimators.

The non linear estimator for pinhole camera:
Let us consider expression (2)) with z; = 2o = 1. The non linear least squares
solution consists in minimising the following criterion:

N

Ji(H) =) (w2 -

i=1

T
Hh'mli

T
Hgimli

T
Hzimli

T
Hgimli

2’21‘)2. (5)

Zzi)2 + (y2i —
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This function is generally minimised with the iterative algorithm of Levenberg-
Marquardt. This procedure needs to be initialised, and it is better to have a
correct initial value in order to limit the risks of convergence toward a local
minimum. The procedure is generally initialised with the linear least squares.

The advantage of this criterion with respect to the linear one is that it min-
imises the sum of the Euclidian reprojection errors. This means that it can
be generally assumed that each error term is independent and has the same
Gaussian centered distribution with respect to the exact solution. In other words
it is (almost) the maximum likelihood estimator, thus it is optimal in terms of
stability with respect to the noise.

3.2 Propositions of Catadioptric Non Linear Estimators

Our aim is to estimate with a good precision the catadioptric homography be-
tween two views, because the uncertainties of H directly affect the estimated
motion, which is always recovered by SVD in our work (see part 2.3). Because
the linear algorithm (@) is not optimal, we suggest some catadioptric non linear
estimators.

The first proposition is the minimisation of criterion (@) in the catadioptric
case. However, equation () is not a point-to-point relation on the sphere, thus
it is not the sum of the Euclidian reprojection errors which is minimised but
a quantity which has no physical interpretation. In this case, nothing is known
about the error term distributions. Thus, we do not know if this estimator is
near of the maximum likelihood estimator (we do not know if it is stable of not).

The second proposition ensures to work with the maximum likelihood es-
timator. For this, we propose coming back to equation (). The first prob-
lem with this equation is to determine the unknown scale factor s. We set
s = /(HI'm1)2 + (HI'm1)2 + (HT'm,)? because it forces my to be on the uni-
tary sphere. In this condition, we suggest minimising the sum of the Euclidian
reprojection errors (proposition 2):

N
HTm, Hj;m, ]:1',1;177,Z
JQ(H)ZZ(CEQi— D L (T R R C S LD RN ()

i=1 7 K2 K2

The properties of criterion (Gl are the same as the ones of the non linear estimator
for pinhole camera (see the end of part 3.1). In summary, it is optimal because
it is the maximum likelihood estimator.

However, in [I7] the authors suggest an estimator which applies a spherical met-
ric to spherical images in the context of calibration. The idea is attractive because
it enables to work with the metric which corresponds to our images. The adapta-
tion of this estimator to the context of homography estimation leads us to suggest
minimising the sum of the spherical reprojection errors (proposition 3):

N
1
Jg(H) = Z arccos[Sl (xgiH%;mu + ygnggmu + ZQZngmh)} (7)
1=1

K3
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In our opinion, this estimator is theoretically equivalent to the estimator (@),
because the Euclidian reprojection error is proportional to the spherical reprojec-
tion error. It will be interesting to compare them. The drawback of criterion ()
is not its quality, but if the Levenberg-Marquardt algorithm is used to minimise
it, the singularity of the derivative of arcos could be prejudicial.

To cope with this problem, two solutions are mentionned in [I7], the minimi-
sation can be done with the simplex method, or we can minimise the rope error
sum (proposition 4):

N
2
J4(H) = 2[2 — S (axgin;mM + ygng;mu + ZQng;mli)P. (8)

i=1 v

This criterion has been introduced in [I7] as the solution to solve the drawback
of the previous. However, it is not the sum of the (Euclidian or spherical) repro-
jection errors which is minimised, thus the same remarks can be done than for
the first suggested estimator J;.

4 Simulations

4.1 Simulation Conditions

We use 3 planar patterns, containing 9, 25 and 81 points in a square of side
respectively equal to 80, 120 and 160m. These patterns are centered on the
camera initial optical axis, perpendicular to this axis and situated from 100m
to the imaging device projection centre. The scene frame coincides with the
initial camera frame. The intrinsic parameters of our pinhole are: f = 1m,
sy = T68pixels/m, s, = 768pixels/m, x, = 511.5pixels, y. = 383.5pixels. Our
catadioptric camera is composed of a parabolic mirror and an orthographic cam-
era. The latus rectum of the parabolic mirror is equal to 2. The actual motion
between the two acquisitions is: roll= —5°, pitch= 10°, yaw= 20°, ¢, = 2m,
t, = 5m, t, = 3m. With the 3 patterns and the 2 devices, we build 6 correspon-
dence sets. A central Gaussian noise is added to the matching point coordinates.
We work in fact with 5 Gaussian noises of standard deviation equal to 1/3, 1,
5/3, 7/3, 3 pixels. The eventual outliers are rejected. The matches are then nor-
malised (see part 2.2). After, the homography is estimated with the estimators
of part 3, and the motion and the normal of the plane are computed (see part
2.3). Among the different solutions obtained by SVD, we retain the roll, pitch
and yaw angles corresponding to the smallest quadratic error with the reference.
Also, we retain the translation and the normal of the plane corresponding to the
highest scalar product in absolute value with the reference (after normalising
the vectors). The arccos of the selected scalar product provides us the angular
deviation with respect to the exact direction, a7 for the translation and apn
for the normal of the plane. Finally, we are able to estimate and to select the
right solution for the parameters: A( roll= —5°, pitch= 10°, yaw= 20°, aep = 0°,
anN = 0° )
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4.2 Comparisons and Quantification of the Estimator Precision

We evaluate the 7 estimators of the part 3: the linear ones for perspective and
catadioptric camera, Li, the non linear one for perspective camera, Ji, and the
non linear ones for catadioptric camera (propositions 1, 2, 3 and 4 of part 3.2) :
Ji, Ja, Js3 and Jy. Because the homography parameters have not obvious physical
interpretations, we compare the 5 parameters A (roll, pitch,yaw,cr,an ). For each
of the three patterns and for each of the five image point noise variances, the
error on /A is computed with 20000 estimations as follows:

Erry. o2 (A) = |bias(A)| + /var(A).

In fact, Erry -2 can be seen as a five components vector, each component is not
a scalar but a 3 x 5 matrix. For each estimator, the mean values with respect to
N and 02 of the five components of the estimation error ([&2)) are in Table [II

Table 1. Mean values of the error matrices (mean error [degree]) for each estimator

Perspective Camera Catadioptric Camera
L1 J1 L1 J1 J2 J3 Ju
roll 0.2593  0.2584 0.7077 0.6921 0.7058 0.7058 0.7398
pitch 0.2541 0.2540 0.6376 0.6401 0.6382 0.6386 0.6666
yaw 0.1130  0.1127 0.2720 0.2687 0.2690 0.2689 0.2845
ar 7.8027  7.7959 18.0361 17.9363 18.0032 18.0038 18.9386
any 6.0727 6.0872 14.0271 13.7943 13.7378 13.7374 14.6840

According to the presentation of part 3.2, it is assumed that the estimators J
and Js are optimal (maximum likelihood estimator) and equivalent. Thus they
should be better than the linear estimator L; (which is not optimal, it does not
minimise a physical quantity). However, it was also mentioned that we are not
sure about the stabilities or the estimators J; and Jy.

It can be seen in Table [0 that, as predicted in part 3.2, the suggested non
linear estimators Jo and J3 are more stable than the linear estimator L;. Thus,
it has been checked that they are nearer from the maximum likelihood estimator
than L, this is a very encouraging result. It can also be seen in Table [I] that
they present very similar results, thus the Euclidian metric is not penalizing
with respect to the spherical one, and the equivalence has been checked. The
small difference is due to the computation round-off errors. It can be noted that
because we use the Levenberg-Marquardt algorithm to minimise each criterion,
the singularity of the derivative of arcos could have deteriorated the results of
Js, but it was not the case in our experiment.

It can be seen in Table[lthat the estimator Jy is by far the worst and even the
linear estimator L, works better. Thus, the error term distribution is certainly
very far from a Gaussian, then this estimator is far from the maximum likelihood
estimator and that explains its instability. Because of the bad results obtained
by J4 in the simulations of Table [, we consider that this estimator should not
be used and we not consider it in the comparisons with real images of section 5.
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Surprisingly, the results of the estimator J; seem to be as good as the results
of Js. Thus, the error term distribution is certainly close to a Gaussian, then
this estimator is close to the maximum likelihood estimator and that explains
its stability. That could be checked in further works. Also, an advantage of this
criterion is that its simplicity may be enables a more accurate convergence in the
Levenberg-Marquardt iterative minimisation process. In summary, J;, Js and Js
give better results than L, and are very similar in quality.

With the perspective camera, it can be seen in Table[Ithat the non linear esti-
mator J; provides some better results than the linear one L;. It is not surprising
because it is well known in the litterature [I1].

It is interesting to compare the precisions of the catadioptric estimators L, and
J1 to their homologues of the pinhole case. According to Table 1 the perspective
estimators are more precise. However, it was assumed in our simulations that
the image plane of the pinhole is not limited and thus the advantage of the large
field of view provided by the catadioptric camera was cancelled (in practice the
huge field of view provided by a catadioptric device is sometimes essential to
perform the matching between two views). In fact, what is interesting to retain
about the perspective-catadioptric comparisons is that the projection of noisy
data on the unitary sphere is prejudicial for the estimations.

5 Experimental Results

In the simulations of section 4 the seven estimators of part 3 were evaluated.
We performed some simulations with perspective camera which have provided
some useful additional information. However, in this part we compare only the
catadioptric estimators, because it is the central point of our study. A sequence
of seven images of a room is taken with a catadioptric calibrated camera (Fig.
B). The mirror frame relative attitude of each acquisition with respect to the
initial acquisition is in Table 2l The homography is estimated with 18 matched
points (Harris corners) belonging to a plane of the scene.

The non linear estimator J; is not considered because of the bad results
obtained in simulation in part 4. As it was the case with the simulations of part
4, with real images it was also noticed that the non linear estimators J;, Jo and J3
give some very similar results. Thus it is difficult both in simulation and with real
images to separate them because their performances are very similar. In addition,
with real images the imprecisions on the attitude of reference complicate the
selection of an eventual best among them. In term of performance we are not
able to separate them, but conceptually J> has some advantages: it minimises the
Euclidian reprojection error sum and there is no risk of singularity by using the
Levenberg-Marquardt algorithm. This is the reasons why in this section only the
results of J5 are represented and compared with the linear estimator L. Table 3]
shows the roll, pitch, yaw errors, and the translation angular deviation between
each couple of successive images using 18 matched points. Figure @] shows the
errors between each image and the first.
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Fig. 3. Example of real scene images used in our experiments associated to the 18
matched points. The reference plane is composed of the locker on the right of the
image.

Table 2. Mirror frame real attitude at each acquisition with respect to its initial
position

Image2/1 Image3/1 Image4/1 Image5/1 Image6,/1 Image7/1

te [m] 0.7 0.7 0.7 0.7 0.7 0.7
t, [m] 0 0 0.7 0.7 0.7 0.7
t. [m] 0 0.1 0.1 0.1 0.1 0.1
ll ] 0 0 0 0 5 5
pitch (] 0 0 0 10 10 10
yaw [°] 0 0 0 0 0 10

Table 3. Roll, pitch, yaw absolute errors, and translation angular deviation between
each couple of successive images [degree| using 18 matched

Image2/1 Image3/2 Image4/3 Image5/4 Image6/5 Image7/6
L« i Ln L1 L S i i Li i Ln S
roll 0.7 0.3 0.1 0.2 0.2 01 3 2 03 01 09 03
pitch 3 2 16 15 07 07 2 2 2 2 08 2
vaw 0.3 1 04 0.1 02 02 08 07 07 04 03 0.5
ar b5 4 21 10 3 3 8 5 34 28 78 30

The results show that the non linear criterion J» is more precise than the
linear criterion Li. Thus the results with real images are coherent with the results
obtained in simulation in part 4. However, it can be noticed in Table [3] and in
figure [ that rarely, but sometimes, L; provides better results than Jy . This
can be explained by the fact that a poorer estimator can have a better estimate
than a better one, with a probability which is low but not null in general. Also,
the non linear criterion is minimised with the Levenberg-Marquardt iterative
algorithm, and there is always a small risk to converge toward a local minimum.
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Fig. 4. Motion error between each image of the sequence and the first using 18 matched
points

It can be noticed on figure 4 that the errors not always increase with respect
to the image number. That is normal because a larger motion does not mean
a poorer estimation. The estimation depends on the correspondences, and they
are always established whatever the motion due to the large field of view of the
catadioptric camera.

6 Conclusion and Perspective

In this paper four non linear catadioptric homography estimators were suggested
and compared in a quantitative way. It has been noticed both in simulation and
with real images that the performances of three of them are very similar, and
above all better than the linear estimator. Our tests do not enable us to separate
these three winners, but we advice to use the one called J, because it is the single
which has these two qualities: it minimises the sum of the reprojection errors
and there is no singularity problem when the minimisation is performed with the
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Levenberg-Marquardt algorithm. It is thus (almost) the maximum likelihoods
estimator. The motion estimation is now optimised with a planar scene. Because
we are going to work with scenes composed of several planes (urban scenes), the
next step consists in optimally exploiting the different planar data sets in order
to improve the motion estimation.
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