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Abstract. 3D data is getting popular which offers more details and accurate in-
formation for posture recognition. However, it leads to computational hurdles 
and is not suitable for real time application. Therefore, we introduce a dimen-
sion reduction method using meshless parameterization with cylindrical virtual 
boundary for 3D posture representation. The meshless parameterization is based 
on convex combination approach which has good properties, such as fast com-
putation and one-to-one mapping characteristic. This method depends on the 
number of boundary points. However, 3D posture reconstruction using silhou-
ettes extraction from multiple cameras had resulted various number of boundary 
points. Therefore, a cylindrical virtual boundary points is introduced to over-
come the inconsistency of 3D reconstruction boundary points. The proposed 
method generates five slices of 2D parametric appearance to represent a 3D 
posture for recognition purpose. 

Keywords: 3D voxel, dimension reduction, meshless parameterization, posture 
recognition, cylindrical virtual boundary.  

1   Introduction 

The latest advances in computer vision have gained much attention especially for 3D 
posture recognition application. The 3D data offers more details and accurate posture 
information compare to 2D posture data. However, it leads to computational hurdles 
and is not suitable for real-time posture recognition. Therefore, 2D posture recogni-
tion application has attracted more researchers’ bias towards it [10, 15, 16]. The main 
reason is the simplicity and reasonable processing time for posture recognition appli-
cation. Still the 2D posture recognition only restricts to particular applications or 
methods to deliver the input pose. For example, sign-language recognition application 
[8, 14] which captures the 2D posture from a camera. However, the 2D input is not 
able to estimate some pose which caused by image projection and self-occlusion. The 
user might be facing away from the camera, hiding the pose, or some objects could 
block the camera's view of the user. Therefore, the input pose has limits on the space 
in which posture can be recognized. And it creates additional burden on the user of 
staying alert for this restriction. 
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In order to make the posture recognition application more meaningful and re-
sourceful, 3D posture recognition becomes a challenging and active research in com-
puter vision field. Multiple cameras usages are introduced to solve the limitation of 
placing model position. There are various kinds of approaches for 3D posture data 
reconstruction, some well known methods such as space carving, Shape-From-
Silhouettes (SFS), visual-hull reconstruction, voxel-based and etc [9].  

In this paper, we focus on a dimension reduction method for 3D posture represen-
tation. The key idea of dimension reduction method is to overcome the computational 
hurdles of 3D posture recognition and preserved the 3D information. There are vari-
ous kinds of approaches to apply for dimension reduction of 3D to 2D such as princi-
pal component analysis (PCA), multidimensional scaling (MDS), local linear embed-
ding (LLE) and etc [14, 17].  

PCA constructs a low-dimensional representation of the data that describes as 
much the variance in the data as possible. It is done by finding a linear basis of re-
duced dimensionality for the data. The main drawback of PCA is that the size of co-
variance matrix is proportional to the dimensionality of the data points. MDS repre-
sents a collection of nonlinear techniques that maps the high dimensional data repre-
sentation to a low dimensional representation while retaining the pairwise distances 
between the data points as much as possible. The quality of the mapping is expressed 
in the stress function, a measure of the error between the pairwise distances in the low 
dimensional and high dimensional representation of data. LLE is a local nonlinear 
technique for dimension reduction which constructs a graph representation of the data 
points. It attempts to preserve local properties of the data manifold in the low dimen-
sional representation of data points. However, these approaches are not able to pre-
serve the posture information. 

Since the 3D posture reconstruction using SFS results voxel as point clouds form. 
Then, the 3D posture representation over 2D domain using meshless parameterization 
is introduced. This method is known for parameterizing and triangulating single patch 
on unorganized point sets. The convex combination approach in meshless parameteri-
zation has good properties, such as fast computational and one-to-one mapping char-
acteristic [1-4]. Therefore, we chose meshless parameterization instead of the others 
approach for dimension reduction. However, the existing method of meshless parame-
terization is hardly to analyze the posture due to 3D voxel reconstruction drawback: 
inconsistency of boundary points where the boundary shape is deformed when cap-
tured from multiple cameras. In this paper, cylindrical virtual boundary is introduced 
to overcome the boundary point’s drawback. The cylindrical virtual boundary pro-
vides a consistent boundary shape. The results of meshless parameterization over 2D 
are studied and analyzed for matching purpose.  

An overview of our proposed approach is illustrated in Fig. 1. In this paper, the 3D 
posture data is reconstructed using SFS method where the silhouettes images are 
extracted from four web cameras. We introduce meshless parameterization using 
cylindrical virtual boundary and divide the 3D posture data into five segments for 
dimension reduction. This process overcomes the complexity of 3D posture data 
computation and it makes the recognition process more accurate and robust.  

The various related works of posture or gesture recognition is presented in Section 
2. Section 3 describes the details of posture modeling using dimension reduction 
method on 3D posture data into five slices of 2D parametric appearance. The  
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dimension reduction process is using meshless parameterization with cylindrical vir-
tual boundary. Posture analysis is written in Section 4, for matching purpose. The 
experimental results of posture recognition are elaborated in Section 5. Conclusion 
and future work are presented in Section 6. 
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Fig. 1. Overview of the proposed system: from 3D voxel reconstruction, to dimension reduction 
using meshless parameterization, until posture analysis for recognition purpose 

2   Related Work 

There are various aspects involved in posture or gesture recognition, such as model-
ing, analysis, recognizing and etc. Therefore, recognizing posture is a complex task. 
In this section, we discuss the methods that have been proposed for posture or gesture 
recognition that involves in computer vision [5-16]. Generally posture recognition 
methods in vision-based can be divided into two categories: 3D model and 2D ap-
pearance modeling. 3D model provided more details and precise posture data com-
pared to 2D, however, this approach is too complex and expensive for computation. 
Hence, 2D appearance has low computational complexity and many applications are 
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adopted this approach. Somehow, 2D appearance has limited information of posture 
data due to the self-occlusion and projection error. 

Kenny Morrison et al. [10] made an experimental comparison between trajectory-
based and image-based representation for gesture recognition. The trajectory-based 
representation depends on tracking system which provides the temporal features of 
movement. The image-based recognition computed the values of pixel histories from 
image sequence and performed matching algorithm, such as statistical matching. Both 
approaches have its strengths and weakness. 

Usually, the Hidden Markov Model (HMM) is used for recognizing gesture where 
the 3D model is fitted to silhouettes images or extracted data, or analyze the raw data. 
This make the HMM process complex and computational expensive. Chi-Wei Chu 
and Isaac Cohen [9] introduced a method for posture identification, called atoms. By 
modeling the atom transition and observation, the state transition and HMM computa-
tional complexity is reduced. H.K. Shin and et al. [6] proposed 3D Motion History 
Model (MHM) for gesture recognition. Their method is using stereo input sequences 
that contain motion history information in 3D space and overcome the 2D motion 
limitation like viewpoint and scalability.  

Guangqi Ye and et al. [5] presented 3D gesture recognition scheme that combines 
the 3D appearance and motion features by reducing the 3D features with employing 
unsupervised learning. The proposed method is flexible and efficient way to capture 
the 3D visual cues in a local neighborhood around the object. Daniel Weinland at el 
[11] introduced motion descriptors that based on motion history volumes with advan-
tage to fuse the action cues from different viewpoints and in short period, into a single 
three dimensional representation.  

Xiaolong Teng et al. [14] proposed a real-time vision system to recognize hand 
gestures for sign language using linear embedding approach. They identified the hand 
gesture from images of normalized hand and used local linear embedding for feature 
extraction. 

In our proposed approach, we are using 2D silhouettes images to reconstruct the 
3D voxel and apply dimension reduction on 3D voxel using meshless parameteriza-
tion with cylindrical virtual boundary. The result of five slices of 2D parametric  
appearance model is used for posture analysis and recognition purpose. 

3   Posture Modeling 

The posture modeling process is difficult and complex to represent in 3D voxel. The 
meshless parameterization is introduced to represent the 3D point’s data into 2D rep-
resentation which adopts good characteristics of convex combination such as fast 
computation and one-to-one mapping.  However, this approach only works well for 
3D voxel with consistent boundary shape. In the process of the 3D voxel reconstruc-
tion, the deformation of boundary shape occurs quite often. The meshless parameteri-
zation method depends on the boundary shape information. It will cause a poor result 
of the dimension reduction of 3D voxel into 2D representation.  

Section 3.1 briefly describes the basic idea of meshless parameterization and fol-
lowed by section 3.2, introduction of cylindrical virtual boundary in meshless parame-
terization to solve the drawback of existing approach. 
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3.1   Basic Idea: Meshless Parameterization 

Meshless parameterization is a 2D parametric representation with some convex pa-
rameter where the one-to-one mappings of 3D voxel over 2D domain without using 
mesh information [1-4]. The method is divided into two basic steps. First, map the 
boundary points PB into the boundary of domain D plane. Then, the corresponding 
parameter points U = {un+1, un+2,…,uN} are laid around the domain D counter-
clockwise order. The chord length parameterization is used for the distribution of 
parameter points U. 

The second step, the interior points are map into the domain D plane. However, be-
fore mapping, a neighborhood pj for each interior point in PI where the points are 
some sense close by is chosen, and let Ni as a set of neighborhood points of pi. In this 
case, a constant radius r is chosen.  The points that fall within the ball with radius r 
are considered the neighborhood points of each interior point. Then, the reciprocal 
distance weights method is to compute the weight 

ijλ for each interior point pi. The 

parametric points for interior point’s ui can be obtained by solving the linear system 
of n equations of the number of interior points.  

Fig. 2 illustrated the process of 3D voxel data in 2D parametric representation us-
ing existing method of meshless parameterization. However, the existing method has 
two drawbacks: first, the initial starting point is different for each posture generated 
from 3D voxel, and second, the boundary shape extracted from silhouettes generates 
variation of boundary shape. This both drawbacks cause the difficulties for posture 
analysis and recognition. In order to solve these problems, cylindrical virtual bound-
ary is generated on 3D voxel before performing meshless parameterization. The de-
tails approach of cylindrical virtual boundary in meshless parameterization is pre-
sented in Section 3.2. 

 

 

Fig. 2. The process of 2D parametric representation for 3D hand posture using the existing 
meshless parameterization 

3.2   Cylindrical Virtual Boundary 

The cylindrical virtual boundary is introduced to overcome the inconsistence shape of 
3D posture boundary. It is derived by computing the 3D voxel bounding area and 
identifies the center of the voxel data as the center point of cylindrical. The cylindrical 
radius is derived based on the length distance between the minimum and maximum 
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voxel points of x-axis. The x-axis is chosen as reference axis for cylindrical virtual 
boundary in our system. The cylindrical virtual boundary does not apply to whole 3D 
voxel data, there are only five cylindrical virtual boundaries place within the 3D 
voxel. This created five segments which consist of some interior points as interior 
points set and a cylindrical virtual boundary as boundary points set for each segment. 
Thus, for each segment of cylindrical virtual boundary, the radius size depends on the 
voxel data size for that particular segment. In our experiments, we are using an arti-
fact hand model and real human posture. The size for the models is suitable to divide 
into five segments. 

The meshless parameterization method is applied for each segment. The voxel data 
in each segment PI={p1,p2,…,pn} as a set of interior points with n points, and 
PB={pn+1,pn+2,…,pN} as set of boundary points with N-n points which is corresponding 
to the number  of cylindrical virtual boundary points. The constant radius r in section 
3.1 for computing the number of neighbors for each interior is set based on the radius 
size of the cylindrical virtual boundary. Therefore, the meshless parameterization with 
cylindrical virtual boundary generates five slices of 2D parametric appearance repre-
sentation. Fig. 3 shows the basic idea of cylindrical virtual boundary for 3D voxel 
which is divided into five segments and each segment of cylindrical virtual boundary 
act as corresponding boundary points for each segment. The number of cylindrical 
virtual boundary points is equal to all five segments.  

 

 

Fig. 3. The 3D voxel data of human pose is divided by five segments and each segment has a 
cylindrical virtual boundary. Each segment of cylindrical virtual boundary and 3D interior 
points are transform over 2D parametric domain using meshless parameterization. 

3.3   Meshless Parameterization with Cylindrical Virtual Boundary Algorithm 

This meshless parameterization works well on a surface patch with open disc of 3D 
posture data. Our proposed approach for meshless parameterization with cylindrical 
virtual boundary is described as below algorithm: 
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1. Find the minimum and maximum voxel data of 3D voxel 
2. Compute the center points of the 3D voxel 
3. Divide the 3D voxel into 5 segments based on the min-max of z-axis 
4. For each segments with n number of voxel data: 

i. Find the minimum and maximum of voxel data 
ii. Compute the radius for cylindrical virtual boundary 
iii. Generate the cylindrical virtual boundary with a constant distribution 
iv. Set the cylindrical virtual boundary as boundary points and voxel points 

as interior points 
v. Map the cylindrical virtual boundary points into 2D domain of 1 unit size 
vi. Set the constant radius r = radius of cylindrical virtual boundary to com-

pute the number of neighbor points of each interior point and using re-
ciprocal distance to compute the weights 

vii. Solve the n linear equations 
viii. Map the interior parameter values onto the 2D domain 

4   3D Posture Representation 

The result of meshless parameterization with cylindrical virtual boundary generates 
five slices of 2D parametric appearance separately, named it as multi layers 2D ap-
pearance. This result is preceded for analysis and matching purpose. In posture recog-
nition, template matching using 2D pixel points is the simple and easy approach by 
dividing the 2D domain into eight regions. However, the multi layers of 2D appear-
ance have various orientations for each pose. Thus, the 2D appearance is divided into 
eight regions from the center point. The cylindrical virtual boundary is uniform for 
five segments, the regions division makes it possible for pixel points matching. All 
the matching process will be based on the same clockwise orientation from highest 
pixel points region. 

4.1   Multi Layers of 2D Appearance 

The result of multi layers of 2D appearance represents a 3D posture. It consists of five 
slices of 2D parametric appearance. Each slice is divided into 8 regions through the  

 

    
(a)                                                                            (b) 

Fig. 4 (a) One of segment slice in 2D parametric appearance which is divided into eight regions 
from the domain center point; (b) Graph of normalized distribution of each region pixel points 
in 2D slice segment 
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center of 2D domain.  We had chosen eight division regions for the best matching 
region purpose due to small Euclidean distance of voxel data distribution and cylin-
drical virtual boundary distribution. Another reason is to perform a fast processing, 
so it is possible to apply real-time posture application. The number of pixel points 
in each region is computed and represented into a graph as shown in Fig. 4 for one 
segment. 

4.2   Synchronization of Starting Region 

The eight division regions do not provide the posture orientation information for 
matching purpose.  Therefore, the number of pixel point’s distribution in each re-
gion is re-ordered to ease the matching. From the graph distribution, the highest 
number of pixel points of the region is referred as a starting region. And from the 
start region, the matching process is continuing to match within the region in 
clockwise order of the regions from the 2D parametric appearance. Fig. 5 shows the 
method of choosing the starting region, which based on the highest number of pix-
els region. The regions are ordered in clockwise order distribution is shown in the 
represented graph.  

 

            

      (a) Original distribution                  (b) Ordered distribution 

 

  

     (c) Original Graph   (d) Re-ordered Graph 

Fig. 5. Segment 1: Multi layers of 2D appearance, the 2nd region in (a) has highest number pixel 
points and re-ordered the sequence as start region (1st region); (b) with clockwise order se-
quence; (c) Graph of original pixel distribution; (d) Graph of re-ordered distribution based on 
highest number of pixels 
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Table 1. Hand posture database and re-ordered distribution of 2D graph 

No. Pose DB Re-ordered Distribution of 2D Graph 

1 

 
 
 

 

2 

 
 
 

 

3 

 
 
 

 

4 

 
 

5   Experimental Results 

In order to validate the proposed method for posture recognition application, artifact 
hand gestures experiment were carried out. Table 1 shows part of database for hand 
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pose and re-ordered distribution of 2D graph for each pose. The re-ordered distribu-
tion of 2D graph shows the pixel points distribution for each region of each segment. 
The segment is referred to a cylindrical virtual boundary and the 3D voxels of each 
segment division. For this hand postures experiment, there are total 10 poses are cre-
ated in database (see Fig. 6). Table 2 shows two examples of test hand pose to recog-
nize the test pose from the defined database. 

The matching results for hand test poses recognition are shown in Fig. 7 and Fig. 8. 
The Fig. 7 shows the details process of matching the hand pose for pose test 1 within 
 

Table 2. Test hand pose and re-ordered distribution of 2D graph 

No. Pose Test Re-ordered Distribution of 2D Graph 

1 

 

 
 
  

2 

 

 

 

 

Fig. 6. The 10 poses of hand posture are derived in the proposed system database 
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Fig. 7. Example of matching process for Pose Test 1 within poses in database: the lowest error 
difference of Pose Test 1 is Pose 1 DB with 1.983 of total error rates for five segments. 

 

 

Fig. 8. Example of matching process for Pose Test 2 within poses in database: the lowest error 
difference of Pose Test 2 is Pose 4 DB with 2.819 of total error rates for five segments 
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each segment from the database. The error difference is computed from 10 poses and 
the total lowest value of error difference of the pose is matched. The figure shows 
only four poses of database and the pose test. From the experiment result show that, 
the pose test 1 is matched with Pose 1 DB with total error difference 1.983. Fig. 8 
shows another experimental result of pose test 2 data with four poses from the data-
base. The matched result is Pose 4 DB with lowest total error difference is 2.819. This 
experimental results show the matching process of the 3D hand posture using the 
multi layers of 2D appearance is reasonable and simple approach for posture recogni-
tion application.  

6   Conclusions and Future Work 

This paper presented dimension reduction method using meshless parameterization 
with cylindrical virtual boundary for 3D posture representation. This method provides 
posture modeling in multi layers of 2D appearance representation for 3D posture. The 
results of meshless parameterization with cylindrical virtual boundary overcome the 
inconsistency of boundary shape of 3D posture and it is also easy to identify the start-
ing position on 2D domain for matching purpose. The experimental results show the 
proposed system is possible to recognize posture using matching method at reasonable 
performance. The 2D representation graph with the lowest total error difference match-
ing rate is recognized as candidate posture from the database. Moreover, the system is 
good enough and simple to implement for recognizing the 3D posture easily. 

As for the future work, we will continue to study and upgrade the system in order 
to recognize human hand posture and a series of 3D temporal gesture data. We intend 
to make this algorithm to extract the specific features of each pose automatically. We 
also plan to evaluate the performance of recognition using specific features for each 
posture based on the multi layers of 2D appearance. 

Acknowledgments. This work was supported by the Soongsil University Research 
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