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Abstract. The conventional implementation of the Hough Transform is 
inadequate in many cases due to its integrative effects of the discrete spaces. 
The design of an algorithm to extract optimal parameters of curves passing 
through image points requires a measure of statistical fitness. A strategy for 
image feature extraction called Tracking Hough Transform (THT) is presented 
that combines Extended Kalman Filtering with a Hough voting scheme that 
incorporates a formal noise model. The minimum mean-squares filtering 
process leads to high accuracy. Computing cost for real-time applications is 
addressed by introducing a converging sampling scheme. Extensive 
performance tests show that the algorithm can achieve faster speed, lower 
storage requirement and higher accuracy than the Standard Hough Transform.  

Keywords: Hough Transform, Parametric curve detection, line detection, 
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1   Introduction 

The Standard Hough transform (SHT) [1] provides a technique in image processing 
for extracting the parameters of a straight line from its feature points (or edgels) and 
that involves applying a co-ordinate transformation to the image, such that all the 
feature points belonging to a contour of a given type in the image space map into a 
single location in the transformed space. Although this technique has been widely 
studied [2], conflicts in accuracy, computing cost and memory requirement are still 
serious. The accuracy achieved depends on the resolution of the parameter space or 
the number of accumulator cells, but with a corresponding increase in computation 
cost. A class of solutions has been proposed [2] which employs non uniform or 
multiple resolutions techniques, based on the observation that it is only necessary to 
have high accumulator resolution where a high density of votes accumulates. 
Alternatively, higher accuracy can also be achieved by a curve fitting post-process [3] 
or interpolation [4]. However, the conventional least square distance method of fitting 
a line to a set of feature points is unreliable when feature points due to noise and to 
other edges are present [5-6]. A class of Hough-like techniques appeared in the 
literature [2] to reduce the computing cost through the redundancy of the range of the 
parameter or image space , such as the Randomised Hough Transform (RHT) [7] and 
the subimage processing strategy [8]. The RHT only uses feature points that have a 
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high probability of forming lines. This can also avoid the use of a conventional 
quantisation scheme, which greatly influences the accuracy and detection capabilities 
of the algorithm, as well as the computational and storage requirements. However, in 
practice, due both to noise in the coordinates of the feature points and to the 
quantisation of the parameter space, the sampled, quantized line segments do not in 
general intersect precisely at a common point in the parameter space. Thus, variations 
of the RHT [9,10] have been proposed such as the curve fitting post-process after the 
accumulation. In the subimage strategy, as only partial features or subsets of the 
whole image are used, its performance depends on the quality of the image, the type 
and the fraction of the image feature points that is selected [2]. Further work has been 
carried out to derive stopping rules for selection of image feature points [11]. Behrens 
et al [12] report a method to Kalman track a set of features (ellipses) from a resulting 
from a prior Hough transform stage. Accuracy is determined by the accuracy of the 
preliminary stage whereas in our case Kalman filtering is used as an integral part of 
the voting process. Hills et al [13] and French et al [14] report how objects can be 
tracked in a sequence of frames using groups of features detected using a Hough 
Transform, in this case tracking is used to denote correspondence between frames 
rather than a trajectory in a single image. 

In this paper a Hough transform method (based on previous results [15][16], but 
explained in more detail here) called the Tracking Hough Transform, is presented 
combining the Extended Kalman filter technique with a converging sampling scheme, 
which achieves faster speed, lower memory requirement and higher accuracy than the 
SHT. 

2   Standard Hough Transform 

A straight line in 2D space can be represented by the equation, 

 ( ) 0sincos, =−+= iikikik yx ρθθaZf   (1) 

 
where [ ] 2ℜ∈= T

kkk yxZ , ( )Mk ,...,1= , [ ] 2ℜ∈= iii ρθa , ( )Ni ,...,1= , f, is a 

function from 22 ℜ×ℜ  into 1ℜ , iρ  is the length of the normal vector from the image 

origin to the line, iθ  is the orientation of the normal vector and ( )kk yx ,  are the co-

ordinates of the image feature points. The SHT uses the idea that the constraint 
equation above can be viewed as a mutual constraint between image feature points 
and parameter points. Therefore, it can be interpreted as defining a many-to-one co-
ordinate transformation from the space of image points to the space of possible 
parameter values and a one-to-many mapping from an image feature point to a set of 
possible parameter values. The intersection points in the parameter space represent 
the parameters of the possible lines in the image space. Thus, the objective is to find a 
subset of significant ia  from the superset of all possible a  in the parameter space, 

represented by a discrete "accumulator" array whose elements contain a count of the 
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number of image feature points associated with a straight line and whose size depends 
on the required resolution for the parameter space. The procedure is performed in two 
stages: an incrementation or voting stage followed by an exhaustive search for 
maximum counts in the accumulator array. The accumulating function can be 
expressed formally as 
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The search stage is a peak detection process on the ia  stored in the accumulator 

array, where the number of significant peaks is selected using global thresholding, 
local peak enhancement, etc. In this way, the SHT converts a difficult global detection 
problem in the image space into a more easily solved local peak detection problem in 
the parameter space. 

3   Tracking by Extended Kalman Filtering 

3.1   Models 

The Kalman Filter (KF) is a minimum mean squares filtering technique based on a 
state-space formulation, whose recursive nature makes it appropriate for use in 
systems without large data storage capabilities. In this paper, the EKF is used for 
tracking a sequence of positions (coordinates of feature points) in the image space. 
The special characteristic in this case is that the trajectory of the feature points 
followed is restricted to be a straight line (or any particular known curve) and the final 
results from the "tracking" will be the parameters of the trajectory. 

1

2 3

4 5

6  

Fig. 1. Viewing line detection as a position tracking process 
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The KF is based on three probabilistic models: the system or state model, the 
measurement model and the prior model. The system model considers the process as 
the result of passing white noise through some system with linear or non-linear 
dynamics. For straight line detection by the Hough transform, the probabilistic models 
can be considered as follows: 

• The measurement model, which relates the measurement vector kZ  to the state 

vector a , is non-linear. Therefore, the Extended Kalman Filter (EKF) is used.  
• During a sequence of independent detection of a particular straight line, the state 

vector representing the line remains constant. Thus, the system model can be 
thought of as being a deterministic random process that satisfies the differential 
equation 0=a& .  

The prior model which describes the knowledge about the initial system state 0â  is 

obtained by sampling or digitising the parameter space for the HT accumulation. 

3.2   Basic Formulation 

Considering a static case only (single image), let the feature points kZ  associated 

with an accumulator cell vector ai  satisfy the general non-linear relationship, 

( )f Z ak i, = 0   (4) 

where Zk
m∈ℜ  and ai

n∈ℜ  and f  is a function from ℜ × ℜm n  into ℜ p . It is 

assumed that Z k  and a i  are independent zero-mean stochastic processes for which 

only estimate values of $Z k  and $a i  are available i.e. 

[ ]E k kZ Z− =$ 0            (5) 
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Here, R k  is the measurement covariance matrix (directly related to image space 

resolution) and Pi  is the model error covariance matrix (directly related to parameter 
space resolution and deviations from an ideal model). Using a first-order Taylor's 
expansion around ( )$ , $Z ak i

, 
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which can rewritten as the linear measurement equation: 

Y Ma U= +i   (10) 
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where 
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It can then be shown that U  is a random variable with zero-mean uncorrelated 

noise, i.e.  
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Therefore, the linear Kalman Filter equations can now be applied directly leading 

to the recursive EKF algorithm: 

( )K P M MP M Wk k k
T

k= +
−1

 ,  Kalman "gain"  (16) 

( )$ $ $a a K Y Maik ik k k ik= + − ,  update state  (17) 

( )P I K M Pk k k= − ,               update state covariance matrix (18) 

 
where k is the iteration number. It can be seen that the previously estimated parameter 
$a ik  is corrected by an amount proportional to the current error ( )Y Mak ik− $  called the 

innovation. The proportionality factor (Kalman gain) K k  minimises the mean-square 

estimation error [17] (i.e. the terms along the major diagonal of the P matrix that 
represent the estimation error variances for the elements of the state vector being 
estimated). 

3.3   Voting Function of the THT 

The clustering criterion used to reject outliers when dealing with multiple lines is the 
Mahalanobis distance (MD) test, defined as 
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where ε is a suitable threshold (normally selected from a χ2 distribution table), and 
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Thus, the voting stage of the THT takes place through the computation of the MD 
accumulating function 
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During the EKF, a feature point is rejected if it does not satisfy the MD test. 

Otherwise, the point is processed to update the tracked trajectory. The refined value 
for a i  and the updated Pi  (eqs. (17) and (18)) are fedback to the MD test to be used 

by the next image point. At the same time, the vote in the accumulating cell a i  is 

incremented by one unit. All the points used by the EKF are then removed if the vote 
is larger than a threshold. Because of the central role played by the EKF, we have 
called this approach the “Tracking Hough Transform” (THT). 

4   Converging Tracking Strategy 

4.1   Converging Sampling of Parameter Space 

The SHT is a one-to-many transform where the whole parameter space is sampled, 
i.e. each image point is mapped to a curve in the Hough space (intersections of such 
curves indicate the presence of a significant feature). This exhaustive sampling wastes 
a great deal of computing time, especially for low line-density images, as the voting 
stage of the SHT usually dominates the execution time. A converging feature tracking 
strategy is proposed by combining the EKF with a converging sampling strategy. This 
maps a set of image feature points into a single location in the parameter space and 
achieves high accuracy. In other words, the scheme combines voting and feature 
refinement in a single stage. The converging sampling mechanism is based on the fact 
that a pair of feature points defines a straight line and hence a single value a i  (c.f. 

Randomised Hough Transform [9]). During the sampling process, two feature points 
( )x y1 1,  and ( )x y2 2,  are selected to obtain initial parameter values ( )θ ρ,   

θ = −
−

⎛
⎝
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⎞
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x x

y y
1 2

2 1

                              (23) 

ρ θ θ= +x yi icos sin  i = 1 or i = 2                        (24) 

 
Obviously, these two selected image feature points must be different. Then, the 

EKF process is started from these initial parameter values. The method reduces 
storage requirement and accumulating time significantly. An overview of the THT 
algorithm is shown in diagrammatic form in Figure 2. 
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Fig. 2. THT (overview) 

4.2   Criteria 

Random Selection: 
As there is no prior knowledge about the features in an image, any pair of image 
points is equally likely to form part of a significant feature. Therefore, these points are 
selected at random. 

 
Stopping Criteria: 
Selection and tracking is carried out until the candidate image points are exhausted. 
Two situations are considered to satisfy the exhausted condition (Exhausted Iteration 
Control): 

(1)  There are no feature points left in the image. 
(2)  All the image points have been at least selected once. 

 
Using these criteria, even if there no feature points are removed, every feature 

point can be selected once. However, some feature points might have a chance to be 
selected again, when there are some feature points removed from the image space 
after a few selection and tracking processes. Thus, the computing cost of the selection 
and tracking process can be further reduced if the following criterion is applied 
(Minimum Iteration Control): "No repetitive selection of any image feature points will 
be allowed even if they can never be removed from the image", e.g. they are noise.  

5   Properties of the THT 

5.1   Computing Complexity 

One of the effects of removing feature points from the image space is that the 
subsequent THT process can be regarded as performing on a "subimage" of the 
original image, but without losing any useful feature points. This is an advantage over 
Kiryati's subimage strategy. With less feature points in the subimage, the computing 
cost is also reduced. Combined with the converging sampling process, the THT can 
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reduce the computing complexity even further by continuously reducing the number 
of feature points in the image, subimage, sub-subimage, …, and so on. 

5.2   Memory Requirement 

In the THT, once the tracking process on a candidate line is finished, the accumulated 
peak value is compared with a threshold to decide if a line has been detected. This can 
be regarded as "on-line" peak detection. Thus, there is no need in the THT to use a 
multi-dimensional accumulator array to register the parameter values for subsequent 
peak detection process or for further accumulation when the counts are not large 
enough, such as in the RHT. Instead, only a one-dimensional array is needed to 
register the counts. In this way, the THT reduces memory requirement significantly 
from a multi-dimensional accumulator array into a one-dimensional array. 
Furthermore, converging sampling reduces the range of the parameter space. By using 
EKF tracking and feature point removal, the THT reduces the range of the parameter 
space and hence memory requirements even further. The memory required is only 
proportional to the number of lines (curves) in the image. 

For example, suppose that the resolution of the parameter space is high enough for 
detection, e.g. ( )Δ Δρ θ= =1 180, Isize  where I I Isize x y= = . Typical accumulator 

sizes required for the SHT are shown in Table 1. These are typically much larger than 
the expected number of lines in the image. As the dimensionality of the accumulator 
array in the SHT is proportional to the dimensionality of the curves to be detected, the 
situation is aggravated for curves other than straight lines (circles, ellipses and so on). 

Table 1. Accumulator size required by the SHT 

Image Size ( )I Ix y×  64 64×  128 128×  256 256×  

Accumulator Size 4K 

( )= ⋅2 26 6  

16K 

( )= ⋅2 27 7  

64K 

( )= ⋅2 28 8  

5.3   Ease of Peak Detection 

In the SHT, the peak detection is carried out after the accumulation. As the SHT is a 
one to-many mapping from the image space to the Hough space, votes from a feature 
point spread among several accumulator cells. When there are other edges present in 
the image, the peak detection process sometimes becomes difficult. In the THT, on 
the other hand, the selection and tracking is a detection-rejection process. When a 
parameter is obtained, the THT tracks all the feature points on the trajectory. If the 
number of feature points tracked is high enough, these feature points are removed 
from the image space; otherwise a new selection and tracking process starts. The 
process that removes feature points from the image space totally cancels the chances 
of the contributions to the later detected parameter cell from these feature points. This 
has an effect similar to the back-projection strategy for peak detection proposed 
elsewhere [18,19]. 
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5.4   Accuracy 

The tracking of feature points by the EKF uses a stochastic model and avoids the need 
for a quantised parameter space. Therefore, it provides higher accuracy compared to 
conventional HTs or other algorithms such as the RHT or the subimage strategy. 

5.5   Connectivity 

The connectivity problem can be directly addressed in the THT during tracking of a 
line from the starting to the terminating positions, as the positions of the feature points 
are tracked continuously and recorded in a dynamic array. Thus, after the THT the 
end-points of lines are automatically obtained [20]. Linking and merging techniques 
reported in the literature, such as in [21], can be further used to locate the end-points. 

6   Tests 

The performance of the algorithm presented here has been studied using the HT Test 
Framework (HTTF) developed by Hare and Sandler [22]. The HTTF generates a large 
number of images with randomly distributed geometric features (e.g. position and 
length of straight lines) for gathering statistical data (parameter accuracy, detection 
and false alarm rates) on the behaviour of a given HT algorithm. This avoids the 
problem of choosing a representative data set to compare different algorithms which, 
unless carefully selected, might result in little more than “anecdotal” evidence. In the 
HTTF, characteristics such as detection rates, false alarm rates, average errors and 
relative computing cost are used to characterise detection capability, 
location/accuracy and speed. From a signal detection theory point of view, the 
performance of a HT algorithm can be considered as a composite of detection 
capabilities and location accuracy [23]. Thus, alternative HT algorithms can be 
applied to each random image set and compared in terms of these characteristics. The 
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Fig. 3. Detection rates (%) as a function of line density 
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Fig. 4. False alarm rates (%) as a function of line density 

SHT is used here as a reference as it is the algorithm with best performance reported 
in [22]. In these tests R k  (equation 6) is set to a 2x2 matrix where the diagonal 

elements are equal to 0.25 (corresponding to a pixel standard deviation σ of 0.5) and 
the non-diagonal elements are set to zero (i.e. the x and y image components are 
uncorrelated). Following usual practice the P matrix is set initially to have all  
elements set to a high value (10,000), implying there is no prior knowledge of the 
process. 

Figures 3 to 5 show detection rates, false alarm rates, and relative computing cost 
for the SHT and the THT (using exhausted and minimum iteration control) 
respectively, for a randomly generated set of 12000 images (image size 128 128× , 
parameter space resolution is ( )Δ Δθ π ρ= =128 1, , threshold set to 30 and 40 votes for 

low and high line densities respectively [22]). The Relative Computing Cost in Figure 
5 is defined as the ratio of CPU time between the SHT and the THT. 
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Fig. 5. Relative Computing Cost (THT/SHT) 
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Table 2. Average parameter errors 

Lines/Image THT 
(Exhausted) 

THT 
(Minimum) 

SHT 

1 (0.057, 0.141°) (0.057, 0.142°) (0.246, 0.429°) 
2 (0.063, 0.152°) (0.062, 0.152°) (0.254, 0.444°) 
4 (0.067, 0.173°) (0.071, 0.171°) (0.256, 0.450°) 
8 (0.093, 0.221°) (0.092, 0.221°) (0.262, 0.462°) 

12 (0.087, 0.196°) (0.084, 0.189°) (0.258, 0.448°) 

It can be seen that the computing costs in the THT (using either exhausted or 
minimum iteration control) is less than that of the SHT for detection in low density 
images. For the high density case, the THT with the minimum iteration control 
criterion still costs less. It also achieves similar detection performance to the THT that 
uses exhausted iteration control criterion. It should be noted (Figure 3, Figure 4 and 
Table 2) that the computing cost saved by the minimum iteration control does not 
sacrifice performance.  

Table 2 shows average parameter errors, between generated and measured features, 
obtained by the SHT and the THT over the complete test (12000 images). Since the 
THT provides sub-parameter space accuracy, for direct comparison votes are assigned 
to discrete cells using tolerance bands of Δρ and Δθ .  

Detection performance or capabilities can be characterised by the interaction 
between probability of detection and the probability of false alarm [24]. For a given 
detection scheme, these two probabilities will depend on the value of the threshold is 
used. Broadly speaking, higher thresholds improve detection but, at the same time, 
increase false alarms. For practical applications, therefore, a compromise has to be 
reached to achieve acceptable levels of detection and false alarms. To visualise the 
performance of a HT algorithm in this context, we use “Performance Characteristic 
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Fig. 6. PCCs of the THT and the SHT (1 line/image) 
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Fig. 7. PCCs of the THT and the SHT (12 lines/image) 

Curves” (PCC). The PCC is a plot of the probability of detection versus the 
probability of false alarm for different thresholds and shows the maximum detection 
rate that can be achieved for a given maximum false alarm rate. Since the 
performances of the THT with minimum or exhausted iteration control criterion are 
similar except in terms of computing cost, only the THT with exhausted iteration 
control is used here.  

In the low density case (1 line/image) the superiority of the THT over the SHT is 
clear. High detection rates can be achieved for low false alarm rates (e.g. 99.92% 
detection for 0.008% false alarm). Thus the PCC of the THT is close to the ideal case, 
essentially on the y-axis (Figure 6). In the higher density case (12 lines/image) the PCC 
of the THT also illustrate the superiority of this algorithm over the SHT (Figure 7). 

7   Conclusions 

The THT algorithm presented here achieves faster speed, lower memory requirement, 
and higher accuracy than the SHT. The minimum iteration control strategy achieves 
even faster speed without sacrificing performance. This has been demonstrated by 
extensive statistical performance tests. The method is based on a converging sampling 
scheme which avoids sampling the whole image space, thus saving significant storage 
and reducing iteration times. Unlike usual post-processing strategies combined with 
the HT algorithms, high accuracy is obtained by a single-stage combination of voting 
with feature refinement based on Extended Kalman filtering. A Mahalanobis Distance 
test is used to reject outliers, so that points which are far from the candidate line do 
not contribute to voting or refinement. This addresses one of the common practical 
weaknesses of least-squares methods, as the MD test is dynamically updated by the 
refinement process. The incorporation of a noise model for image quantisation deals 
with the so called "errors in the variables" problem. A formal noise model for 
parameter space quantisation allows control of Hough space "coarseness" (e.g. when 
establishing a compromise between accumulator array size and accuracy) while 
maintaining accuracy. Computing cost will increase with line density, in a way 
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similar to the SHT, but the effect can be minimised by dividing the image into several 
subimages for parallel processing. This algorithm has also been extended to deal with 
features of higher dimensionality (e.g. circles, ellipses, etc.). 
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