Mosaic Animations from Video Inputs

Rafael B. Gomes, Tiago S. Souza, and Bruno M. Carvalho

Departamento de Informéatica e Matemética Aplicada
Universidade Federal do Rio Grande do Norte
Campus Universitdrio, S/N, Lagoa Nova
Natal, RN, 59.072-970 - Brazil

rafaelufrn@gmail.com, souza san@yahoo.com.br, bruno m carvalho@yahoo.com

Abstract. Mosaic is a Non-Photorealistic Rendering (NPR) style for
simulating the appearance of decorative tile mosaics. To simulate realis-
tic mosaics, a method must emphasize edges in the input image, while
placing the tiles in an arrangement to minimize the visible grout (the
substrate used to glue the tiles that appears between them). This paper
proposes a method for generating mosaic animations from input videos
(extending previous works on still image mosaics) that uses a combina-
tion of a segmentation algorithm and an optical flow method to enforce
temporal coherence in the mosaic videos, thus avoiding that the tiles
move back and forth the canvas, a problem known as swimming. The re-
sult of the segmentation algorithm is used to constrain the result of the
optical flow, restricting its computation to the areas detected as being
part of a single object. This intra-object coherence scheme is applied to
two methods of mosaic rendering, and a technique for adding and re-
moving tiles for one of the mosaic rendering methods is also proposed.
Some examples of the renderings produced are shown to illustrate our
techniques.

1 Introduction

Non-Photorealistic Rendering (NPR) is a class of techniques defined by what
they do not aim, the realistic rendering of artificial scenes. NPR techniques,
on the other hand, aim to reproduce artistic techniques renderings, trying to
express feelings and moods on the rendered scenes. Another way of defining
NPR is that it is the processing of images or videos into artwork, generating
images or videos that can have the visual appeal of pieces of art, expressing the
visual and emotional characteristics of artistic styles (e.g. brush strokes).

Animation techniques can convey information that cannot be simply captured
by shooting a real scene with a video camera. However, such kind of animation
is labor intensive and requires a fair amount of artistic skill. NPR techniques can
be used to generate highly abstracted animations with little user intervention,
thus, making it possible for non-artist users to create their own animations with
little effort.

Mosaic is an Non-Photorealistic Rendering (NPR) style for simulating the ap-
pearance of decorative tile mosaics. To simulate realistic mosaics, a method must

D. Mery and L. Rueda (Eds.): PSIVT 2007, LNCS 4872, pp. 87[99] 2007.
© Springer-Verlag Berlin Heidelberg 2007

88 R.B. Gomes, T.S. Souza, and B.M. Carvalho

emphasize edges in the input image, while placing the tiles in an arrangement
to minimize the visible grout (the substrate used to glue the tiles that appears
between them), i.e., maximizing the area covered by the tiles, as defined initially
in [I]. Another characteristic common to most real mosaic styles are that the
tiles are convex.

If one wants to generate mosaic animations, he/she has to track the tile loca-
tions and enforce that their geometrical relation maintains temporal coherence,
i.e., does not suffer from abrupt changes, to avoid discontinuities over time, or
swimming, where drawn features can move around the canvas. The method pro-
posed in this paper creates temporally coherent mosaic animations from input
videos, extending previous works on still image mosaics. This paper introduces
a method for enforcing temporal coherence in mosaic videos that is based on a
combination of a segmentation algorithm and an optical flow method. The result
of the segmentation algorithm is used to constrain the result of the optical flow,
restricting its results to the areas detected as being part of a single object. The
main contributions of this paper are the extensions of two still mosaic techniques
[213] for generating mosaic animations. These extensions include a method for
moving tiles in a temporal coherent way, as well as methods for adding and
removing tiles.

2 Still Image Mosaics

The generation of artificial still mosaics must follow a few rules if the intent is to
generate images similar to common man made mosaics, such as the maximization
of the area covered by the tiles, the use of convex tiles, and the emphasizing of
edges by orienting the tiles according to the edge orientation.

The use of Voronoi diagrams to generate artificial mosaics is very popular,
since they discretize the 2D space into finite convex regions (tiles) and maximize
the space covered by the tiles. The first attempt to produce images with a mosaic
style effect was proposed by Haeberli [4], that worked by creating random sites
for the Voronoi diagram and painting each region with a color sampled from the
input image. In order to produce a smoother flow of tiles that follow the edges
detected in the input images, Hausner [I] proposed to use a generalization of
Centroidal Voronoi diagrams (CVDs), that are Voronoi diagrams that have the
additional property that each site is located in the center of mass of its region.
The CVDs are calculated using an iterative algorithm that updates the centroid
positions and recomputes the Voronoi diagrams until it converges, and it can be
implemented in hardware, thus speeding up its execution. The orientations of the
tiles are controlled by a direction field that can be created using the Euclidean
distance or the Manhattan distance from the edges, if the desired tile shapes are
hexagonal or square, respectively.

Dobashi et al. [5] proposed a method where the initial sites are positioned
approximately at the centers of an hexagonal mesh, and thus, are approximately
centroidal. The sites are then moved to minimize a metric defined based on the
color of the pixels contained in each tile and the Voronoi diagram is recom-

Mosaic Animations from Video Inputs 89

puted, thus, representing global features of the input image. In [3], Faustino and
Figueiredo proposed an adaptive mosaic method where tiles of different sizes are
used, according to the feature size in the input image, according to an image
density function.

Recently, Di Blasi and Gallo [2] proposed a mosaic method based on the
Distance Transform Map (DTM) to create chains spaced periodically according
to a pre-defined tile size, where the DTM is produced based on a guideline (edge)
image that encodes the edges to be emphasized in the rendering. The tiles are
then placed following these chains. This technique has problems handling noisy
images, since the existence of small guidelines (edges) produce small cut tiles
and images that do not resemble a typical man made mosaic.

In this work we use Voronoi diagrams and CVDs to create an animated mosaic
rendering style, whereas the mosaics obtained from the CVDs are more similar
to the traditional man made mosaics. Another problem with the animations
produced by using the Voronoi diagrams is that distances between neighbor
tiles can vary throughout the animation, generating a distracting effect. We also
propose to use a new initial site distribution scheme for computing the CVDs,
followed by the use of a Constrained Optical Flow method to maintain intra-
object temporal coherence throughout the animation.

3 Animated Mosaics

One of the objectives of NPR techniques for video stylization is to make au-
tomatic or semi-automatic procedures that mimic real life artistic styles, thus
allowing a user to stylize real movie sequences captured with a camera with little
effort when compared to the task of creating an animation from scratch. Video
stylization also offers the choice of mixing real movies with stylized objects, ren-
dering with one or more NPR techniques only parts of a movie sequence, leaving
the rest of the video sequence intact.

When producing a NPR video from a modeled 3D scene, it is important to
maintain temporal coherence, moving the elements of the drawing (e.g. brush
strokes) with the surfaces of the objects being drawn, otherwise, these elements
stick to the view plane and the animation appears as if it is seen through a
textured glass. due to this nature this is referred as the shower door effect,
named by Meier in [6].

However, if the input for the NPR video is a normal video, it has been reported
in the literature that not maintaining temporal coherence incurs in swimming,
where features of the animation move within the rendered animation. This flick-
ering comes not only from changed objects being rendered with elements that
follow the object movement but also from static areas being rendered differently
each time.

To solve part of this problem, Litwinowicz [7] introduced a method for main-
taining temporal coherence in video sequences stylized using an impressionist
style. The method consists of using optical flow tracking movement in the scene
and move, add or remove brush strokes from frame to frame. An approach for

90 R.B. Gomes, T.S. Souza, and B.M. Carvalho

coherent rendering of static areas in successive frames was proposed by Hertz-
mann [§], by detecting areas of change from frame to frame and painting over
them, i.e., keeping the brush strokes of the static areas. Intra-object temporal
coherence is achieved by warping the brush stroke’s control points using the out-
put of an optical flow method. Wang et al. proposed in [9] a method for creating
cartoon animations from video sequences by using a mean shift segmentation
algorithm for end-to-end video shot segmentation. After the segmentation is
performed, the user specifies constraint points on keyframes of the video shot
through a graphical interface. These points are then used for interpolating the
region boundaries between keyframes.

The animated mosaic technique described by Smith et al. in [10] proposes a
method for moving groups of 2D primitives in a coordinated way, thus, allowing
a user to create mosaic animations with temporal coherence. The tiles are geo-
metric shapes that are fitted inside 2D containers (polygons) with the help of the
user in the first frame. Then, the system automatically advects the container’s
tiles to the other frames, in a way that enforces temporal coherence; a step that
can be followed by manual refinement. However, since the method of [T0] takes
as input an animated scene represented as a collection of polygons, it cannot be
directly applied to a real video. An extension of this method was proposed in
[11], where a Fast Fourier Transform based method was used to perform effective
tile placements, allowing the packing of 3D volumes using temporally repeating
animated shapes.

Our method for producing intra-object temporally coherent NPR, animations
is divided into three parts, the segmentation of the input video, followed by the
calculation of the Constrained Optical Flow map, and the rendering of objects
using some NPR style (in this case, animated mosaics), which we proceed to
describe now. Actually, our method could be used to generate the polygon col-
lection representation needed by the method of [I0]. The interactions between
the parts mentioned above can be seen in Figure [11

3.1 Video Segmentation

As mentioned above, the segmentation images are used to delimit the extent
of the objects, in other words, the search area for the optical flow algorithm.
The system described by Collomosse et al. in [12] uses 2D algorithms for seg-
menting objects in the frames independently followed by the application of a
region association algorithm with an association heuristics. This results in a set
of temporally convex objects that can then be rendered.

In this paper, the video shots were treated as a 3D volume and interactively
segmented using a variant [T3] of the fast fuzzy segmentation algorithm introduced
by Carvalho et al. in [I4], that was extended for segmenting color 3D volumes.
The algorithm works by computing, for every voxel of the 3D volume I(z,y, 2)
(considering the frames as z slices), a grade of membership value, between 0 and
1 to a number of objects in the scene, i.e., a segmentation map S(z, y, z).

The user interaction of the segmentation algorithm is the selection of seed
voxels for the objects to be segmented. This interaction allows the user to solve

Mosaic Animations from Video Inputs 91

Segmentation

Tiles creation

&

Optical Flow

h 4

Constrained Optical Flow

Optical Flow

R B

Fig. 1. Diagram showing the interactions between the parts of our method for gener-
ating intra-object temporally coherent NPR animations

Tiles update

Segmentation

problems pointed out by Collomosse in [12] as drawbacks for end-to-end 3D seg-
mentation of the video sequence, such as the segmentation of small fast moving
objects, gradual shape changes, and texture segmentation, since the user can
put seeds throughout the video sequence to capture such object changes.

The fuzzy nature of the segmentation algorithm allows that we render a single
object using different styles, according to their grade of membership, e.g., small
features inside an object may be detected by their low grade of membership to
the surrounding object and be rendered using the original input value.

Here, the objects were segmented based on their color information, but these
end-to-end segmentations can be made more robust using not only intensity and
color information, but also motion cues, such as the algorithms presented in
Galun et al. [T5] and Khan and Shah [I6], allowing the algorithm to differentiate
between foreground and background objects of similar color as one occludes the
other.

3.2 Constrained Optical Flow

In video stylization, some authors have used optical flow techniques for enforcing
temporal coherence, such as the work of Litwinowicz [7] or the work of Hertz-
mann [§]. However, the local characteristic of the optical flow techniques and
their sensitivity to noisy images somehow limit their applicability. To overcome

92 R.B. Gomes, T.S. Souza, and B.M. Carvalho

;\\\\:Q\::Q\: q‘v ¥ FFATNY TR s e e
NSNS = =S e
t:xz::&:\:““,“%——m e = 5 -
R R R e
NN
NN g
NN
\ﬁ?j
NS Z
N > 3
SRS S R
Ny % .
N s
::::: T _:==--\~? ..
R o iii‘::\ N
I \:_\\N}; b
- 13__:_\\\ =
v S .
R SN
NN r——y, —--.:*"v\\s\\\\.\.\ v\\ .
s, N, T .
e RIS TR
TSN ERENE
Y \.\".\ <N -
\:..‘\ HEPY
I = \‘\ :
gy et SN Sy NN
B e e e
= —— A
e S o

Fig. 2. Application of the optical flow algorithm to two subsequent frames of the Pooh
sequence, on the whole image (left) and to the segmented object only (right). Looking
at the original sequence, one can see that the Constrained Optical Flow yields better
results, specially close to the borders of the Pooh.

those problems, segmentation algorithms have been applied to video shot seg-
mentation to produce end-to-end segmentations that are later used to enforce
temporal coherence, as done by Collomosse et al. [I2] and Wang et al. [9].

Wang et al. [9] proposed a method where the user selects keyframe points to
guide the segmentation, with a typical keyframe interval of 10 to 15 frames, and
no intra-object coherence is needed, since the NPR style used are cartoon styles.
If sub-regions within an object are needed, the user has to add them using
keyframe point selection. In the approach proposed by Collomosse et al. [12],
intra-object temporal coherence is achieved by computing an homography, with
the strong assumption that the object in question is approximately flat. This
may cause severe intra-object distortion in areas with high curvature values.

In this work, we advocate the usage of an optical flow algorithm for enforcing
temporal coherence in video NPR sequences, but with the search area for the
pixel matching restricted by object boundaries obtained during the segmenta-
tion phase. Thus, the optical flow information can be used to enforce intra-object
temporal coherence on these sequences. The use of high level knowledge, in the
form of a segmented image, provides important information regarding relation-
ship of different objects through time but can also encode information about the
type of animation sought by the user. Figure 2] shows two optical flow maps of
a frame of the Pooh video sequence.

In order to detect parts of the Pooh object that are moving in adjacent frames,
a high value has to be used for the smoothness criterion of Proesmans’ algorithm,
propagating flow vectors to the background area, even though it is not moving.
To use such information would case the background tiles to move unnecessarily.

Mosaic Animations from Video Inputs 93

Furthermore, it can be observed from the input sequence that the Constrained
Optical Flow map is much more accurate than the global optical flow map.

The optical flow algorithm chosen for computing intra-object optical flow was
the one published in Proesmans et al. [I7] because it produces a very dense op-
tical flow map (with one motion estimate per pixel). An evaluation performed
by McCane et al. [I8] with three complex synthetics scenes and one real scene
showed that the algorithm of Proesmans et al. [I7] was the only of the evalu-
ated algorithms to produce accurate and consistent flow vectors for every pixel
of the image. The algorithm uses a system of 6 non-linear diffusion equations
that computes a disparity map and also depth discontinuity map, containing
information about occluded parts. This depth discontinuity map may be useful
in maintaining the temporal coherence in parts of objects that are occluded for
short periods.

The Constrained Optical Flow can be defined as follows: given, for every
voxel of the 3D image I(z,y, z) (considering the frames as z slices), a grade of
membership value, between 0 and 1 to a number of objects in the scene, in the
form of a segmentation map S(z,y, z), we have that Sk(z,y,z) = 1 if the pixel
(z,y) of the z slice belongs to the kth object, and S (z,y,z) = 0, otherwise.

Based on the membership information of the segmentation, we define the
image I}, as

— I(l'7y,2),lf S;c(ruy,Z) =]‘7
In(z,y,2) = {T7 otherwise, @

where T is a value outside the range of the images. This ensures that the optical
flow is computed only inside a particular object. Thus, the Constrained Optical
Flow calculated from two successive frames is given by the union of non-null flow
vectors of the calculated Constrained Optical Flow from the individual objects.
It is important to note that we do not have to compute the Constrained Optical
Flow for all objects, since we can choose not to render an object using a NPR
technique, or to render it using a technique that needs only temporal coherence
between the borders of objects.

3.3 Rendering

The rendering phase is divided into the definition of the initial distribution,
followed by the application of Lloyd’s algorithm, and the final rendering of the
tiles, that we describe now.

Centroidal Voronoi diagrams tend to fill the space uniformly, creating regions
that are approximately regular polygons. In our work, as was done by Hausner
[1] and Faustino and Figueiredo [3], we transform a Voronoi diagram obtained
from an initial site distribution into a CVD using Lloyd’s algorithm [19]. The
initial distribution greatly influences the convergence of Lloyd’s algorithm, and
starting from an initial guess that is approximately centroidal usually requires
less site movements and iterations to reach convergence. The initial site distri-
bution can be used to emphasize image characteristics, for example, by using
regions of different sizes, specially close to edges, as was done by Faustino and

94 R.B. Gomes, T.S. Souza, and B.M. Carvalho

Fig. 3. Distance Transform Matrix (left) and the initial point distribution for the
initial frame of the Pooh video input sequence (right). (For visualization purposes, the
histogram of the DTM image has been equalized and the gray level have been inverted.)

Figueiredo [3]. On the other hand, successive iterations of Lloyd’s algorithm will
tend towards a uniform region distribution, a result that goes against the desired
emphasis of some image characteristics. If a close to centroidal distribution is
used, Lloyd’s algorithm can be used without substantially affecting the initial
non-uniform point distribution.

In our method, we use point chains formed from Distance Transform Matrices
(DTM), as done by Di Blasi and Gallo [2] to distribute the tiles. Thus, we can
render mosaics using CVDs, as done by Hausner [I] and Faustino and Figueiredo
[3], as well as quadrilateral tiles, as done by Di Blasi and Gallo [2]. A DTM is
calculated by evaluating at each pixel, its distance from an object border, as
can be seen on the left side of Figure Bl where distance zero is white and the
farthest pixels are black. Based on the DTM M, the gradient matrix G can be
computed by

M(z,y+1)— M(z,y—1)

M(z+1,y) — M(x —1,y)’ 2)

G(z,y) = arctan
that will be used to determine the tile orientations in the mosaic.
Then the DTM M is used to determine the level line matrix L, computed by

1, if mod(M (z,y),2tSize) = 0;
L(z,y) =« 2,if mod(M (x,y),2tSize) = tSize; (3)
0, otherwise,

where tSize is the tile size. This matrix then determines the lines in which the
center of the tiles can be located (pixels x,y such that L(z,y) = 2), as can be
seen on the right side of

However, here we use their technique to compute an initial site distribution
that is approximately centroidal. Figure [3] shows the DTM and initial point
distribution of an input video sequence.

Mosaic Animations from Video Inputs 95

However, the method of Di Blasi and Gallo [2] handles only tiles of the same
size. This is not the case with our method, since we segment the video sequence
into disjoint objects that can have different characteristics associated with them,
such as the tile size, emphasizing regions close to borders, as was done in Faustino
and Figueiredo [3]. We could even render different objects using different NPR
styles, even though this is not done here.

3.4 Adding and Removing Tiles

As objects move closer or further away from the camera, or when new parts of the
scene appear in the video, we have to insert or remove new tiles in the animation
to maintain a consistent appearance of the tiles, i.e., an homogeneously dense
animated mosaic. We now describe a technique we developed to maintain this
homogeneous tile packing in animated mosaics.

PR

Fig.4. DTM with the guidelines for tile placement (for the background object) of a
frame from the Frog sequence (left) and the areas not covered by tiles of the previous
frame moved using the Constrained Optical Flow information (right).

Tile Removal. Tile removal must be used when areas visualized in the previous
frame are occluded by the movement of some object in the video or when an
object moves further away from the camera. The last case of tile removal happens
because the technique of Di Blasi and Gallo [2] uses tiles with the same size, and
so, the decrease in area of the object in question, means that less tiles will be
used to render it.

In both cases, we use a threshold that specifies the maximal superposition that
two tiles can have. The superposition of two tiles appears as if the one on the back
has been slightly cut to fit in the area left by the other tiles. Remember that
we do have information about the object delineations from the segmentation
result. Thus, we render the objects, and compute, based on the Constrained
Optical Flow information, which tiles moved to different segmented objects.
These tiles, together with the tiles that moved to outside the image are removed
and not rendered. As mentioned above, their removal is subject to comparing
their intersection area with other segmented object areas or areas outside the
frame, to the specified threshold.

96 R.B. Gomes, T.S. Souza, and B.M. Carvalho

Tile Addition. The addition of tiles may be rendered necessary when the area
not covered by the tiles grow. This happens when areas not seen in the previous
frame appear in the current frame or when no tile is mapped to some area due
to an object becoming bigger. In this last case, what happens is that tiles from
an object that is moving closer to the camera are moved away from each other,
using the Constrained Optical Flow information, and, at some point, the area
between them is big enough for a new tile to be rendered. The addition of a
tile is done in the following way: working object by object, first we compute the
DTM of the object. Then, as done before, we compute the lines in which the
center of the tiles can be located. Finally, using a map with 0 where there is
a tile and 1 where there is no tile, we insert a new tile, if its intersection with
other tiles is smaller than a specified threshold. The maps used in this process
can be seen in Figure[d Playing with the threshold we can achieve more or less
tightly packed tiles in areas where the video is changing.

Fig. 5. The 1st and 25th frames of the Frog video, on the top row, were rendered using
our techniques for enforcing temporal coherence and for adding and removing tiles.
The bottom row shows the 1st and 15th frames of the Mug video, rendered using the
same techniques.

4 Experiments

The first and second experiments shown here demonstrate the use of our tech-
nique for adding and removing tiles. The top row of Figure [l shows the first and
22nd frames of the Frog video, where the thresholds set for removing existing

Mosaic Animations from Video Inputs 97

Fig. 6. Three frames of the Pooh input video sequence (left) and the correspondent
frames of the mosaic animation (right), where only the Pooh object has been rendered
in the mosaic NPR style

tiles and adding new tiles are both 50%. Note that we chose to render the frog
with smaller tiles than the background. We do have this flexibility because we
segment the video into semantic regions, or temporal objects. As a matter of
fact, we can even render different objects using different NPR styles. The bot-
tom row of Figure Bl shows the first and 15th frames of the Mug video, that was

98 R.B. Gomes, T.S. Souza, and B.M. Carvalho

rendered using the same thresholds for tile additions and removals as the Frog
video. Note how the tile placements of the background object change very little
when comparing both frames.

In the third experiment, shown on Figure [f, we rendered the Pooh object
of the 70 frames long Pooh input video sequence as an animated mosaic while
rendering the other areas with their original values. This is only possible due
to the flexibility allowed by the segmentation of the video sequence end-to-end
followed by treating each object as a layer of a video frame. The tile size choice
is very important in determining the overall look of the output video, since tiles
that are too big will remove important characteristics from the animation (the
same is true for still image mosaic). After selecting the initial site distribution
performed using the DTM and gradient matrix, Lloyd’s algorithm was run for
10 iterations and the approximated CVD was tracked using the result of the
Constrained Optical Flow method proposed here.

It is very important for the success of our method that the segmentation of the
objects be of good quality, otherwise, the flexibility of our method turns against
us, rendering in an erroneous way parts of the object that were mistakenly
segmented. Of course, noisy videos will affect the quality of the Constrained
Optical Flow result, even to the point of making it useless. To better handle
noisy input videos, a multi-scale approach such as the one proposed by Galun
et al. [T5], may be useful. However, the segmentation method described here has
been successfully used to segment very diverse videos, some of which contained
several overlapping objects and moving shadows [20].

5 Conclusion

We presented a method for generating mosaic animations while maintaining
intra-object temporal coherence. Our method is based on the use of a segmen-
tation algorithm for segmenting a video shot, followed by the application of an
optical flow algorithm that produces a dense flow map, allowing it to be used
to move the tiles between successive frames with reduced coherence problems.
The segmentation of the video shot into objects, that are treated as different
layers in the rendering process also provides many options in the rendering
phase, such as the use of tiles of different sizes to emphasize characteristics
of the input movie, or the use of completely different NPR styles for different
objects.

We also presented a method for adding and removing tiles in mosaic ani-
mations, and showed some frames of two mosaic movies generated using our
techniques. The user can influence the generation of the addition/removal of
tiles by adjusting thresholds for both tasks.

Future work include the use of weighted Voronoi diagrams, allowing new tiles
to grow gradually and current tiles to shrink until a minimum size that would
trigger their removal, and the addition of mathematical morphology tools to
the segmentation program, thus, allowing the user to correct manually small
segmentation errors in a post-processing step.

Mosaic Animations from Video Inputs 99

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hausner, A.: Simulating decorative mosaics. In: Proc. of ACM SIGGRAPH, pp.
207-214. ACM Press, New York (2001)

Blasi, G.D., Gallo, G.: Artificial mosaics. The Vis. Comp. 21, 373-383 (2005)
Faustino, G., Figueiredo, L.: Simple adaptive mosaic effects. In: Proc. of SIB-
GRAPI, pp. 315-322 (2005)

. Haeberli, P.: Paint by numbers: Abstract image representations. In: Proc. of ACM

SIGGRAPH, pp. 207-214. ACM Press, New York (1990)

. Dobashi, Y., Haga, T., Johan, H., Nishita, T.: A method for creating mosaic images

using Voronoi diagrams. In: Proc. of Eurographics, pp. 341-348 (2002)

. Meier, B.: Painterly rendering for animation. In: Proc. of ACM SIGGRAPH, pp.

477-484. ACM Press, New York (1996)

. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proc.

of ACM SIGGRAPH, pp. 407-414. ACM Press, New York (1997)

. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: Proc.

of NPAR, pp. 7-12 (2000)

. Wang, J., Xu, Y., Shum, H.-Y., Cohen, M.: Video tooning. ACM Trans. on

Graph. 23, 574-583 (2004)

Smith, K., Liu, Y., Klein, A.: Animosaics. In: Proc. of 2005 ACM SIG-
GRAPH/Eurograph. SCA, pp. 201-208. ACM Press, New York (2005)

Dalal, K., Klein, A.W., Liu, Y., Smith, K.: A spectral approach to NPR packing.
In: Proc. of NPAR, pp. 71-78 (2006)

Collomosse, J., Rowntree, D., Hall, P.: Stroke surfaces: Temporally coherent artistic
animations from video. IEEE Trans. on Visualiz. and Comp. Graph. 11, 540-549
(2005)

Carvalho, B., Oliveira, L., Silva, G.: Fuzzy segmentation of color video shots. In:
Kuba, A., Nyul, L.G., Paldgyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 402—407.
Springer, Heidelberg (2006)

Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of
multiple objects. Disc. Appl. Math. 151, 55-77 (2005)

Galun, M., Apartsin, A., Basri, R.: Multiscale segmentation by combining motion
and intensity cues. In: Proc. of IEEE CVPR, pp. 256-263. IEEE Computer Society
Press, Los Alamitos (2005)

Khan, S., Shah, M.: Object based segmentation of video using color, motion and
spatial information. In: Proc. of IEEE CVPR, vol. 2, pp. 746-751. IEEE Computer
Society Press, Los Alamitos (2001)

Proesmans, M., Gool, L.V., Pauwels, E., Oosterlinck, A.: Determination of opti-
cal flow and its discontinuities using non-linear diffusion. In: Eklundh, J.-O. (ed.)
ECCV 1994. LNCS, vol. 2, pp. 295-304. Springer, Heidelberg (1994)

McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow.
Comp. Vis. and Image Underst. 84, 126-143 (2001)

Lloyd, S.: Least square quantization in PCM. IEEE Trans. on Inform. Theory 28,
129-137 (1982)

Oliveira, L.: Segmentacao fuzzy de imagens e videos. Master’s thesis, Universidade
Federal do Rio Grande do Norte, Natal, Brazil (2007)

	Mosaic Animations from Video Inputs
	Introduction
	Still Image Mosaics
	Animated Mosaics
	Video Segmentation
	Constrained Optical Flow
	Rendering
	Adding and Removing Tiles

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

