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Abstract. Reconfigurable architecture provides a high performance computing
paradigm. We can implement the compute-intensive functions into reconfigurable
devices to optimize the application performance. In current reconfigurable hard-
ware designs, the function-level reconfigurable hardware has high reusability and
low maintenance cost. However, the sharing mechanism and the function invo-
cation interface are still unknown. In this paper, we propose a function-level
multitasking interface design to support reconfigurable component sharing in a
multitasking embedded operating system. The reconfigurable hardware functions
are managed and scheduled by the operating system. Applications can use any
needed hardware function via invocation APIs. To study the performance impacts,
we implemented a prototype on Altera SOPC development board. We modified
μC/OS-II RTOS and evaluated the prototype with prime number search programs
and loop programs. The experimental results show the management overhead is
acceptable.

Keywords: Reconfigurable computing, multitasking, hardware function, FPGA-
based computer, μC/OS.

1 Introduction

Reconfigurable computing provides a high performance computing paradigm [3,4,9].
In the current development, a general reconfigurable computer comprises one or sev-
eral traditional microprocessors, and reconfigurable hardware devices. With hardware/
software co-design, the reconfigurable computer may execute the compute-intensive
tasks on the specific programmable devices. As the reconfigurable hardware can accel-
erate the task execution, system performance can be highly improved (e.g., [1,4,5]).

Adopting reconfigurable hardware has two most prominent benefits. First, overall
system productivity can be highly promoted because traditional software-coded func-
tions are accelerated with the reconfigurable computing hardware. Tasks can be thus
parallelized with multiple computing engines. Second, the acceleration engine can be
flexibly customized due to the reconfigurability. Therefore, the reconfigurable computer
can adapt to different computation requirements with high performance.

From the aspect of accelerating granularity, the reconfigurable computing engines
can be classified into three categories. The category of the finest accelerating granularity
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consists of instruction-level processing engines, such as the 2D-VLIW approach [7].
The reconfigurable device operates as a co-processor to execute the task instruction-
by-instruction. The instruction-level processing engine approach thus benefits system
performance with the expanded instruction set. This approach, however, may incur huge
amount of data synchronization overhead between the reconfigurable devices and the
general-purpose processors.

The acceleration granularity employed in the second category focuses on the task
level [2,11]. In this task-level acceleration approach, tasks can be either software-coded
or implemented as hardware units. Therefore, a software task unit can even have its own
correspondent reconfigurable hardware version. While task execution is initiated, the
system dynamically decides whether a hardware unit or a software unit is invoked. Since
the granularity is at task level, the synchronization overhead between programmable de-
vices and general-purpose processors is highly reduced. Nevertheless, the reusability of
hardware task units is very low due to the functional specificity of each unit. Besides,
the hardware space efficiency is low because the programmable device needs to main-
tain all hardware task units in its limited space. The management of hardware task units
incurs extra overhead.

The function-level acceleration schemes fall into the third category [6,10]. The
function-level processing engine maintains a consistent hardware interface as the pro-
gramming interface of software functions. Application developer can follow the pro-
gramming conventions to use the hardware functions. Due to the high modularity at the
function level, hardware function units favor high reusability and low maintenance cost.
Although the function-level acceleration approach can fully exploit the high-performance
and flexibility of reconfigurable computing architecture, two main issues need to be fur-
ther discussed: the sharing mechanism of function units and the multitasking interface
design. To the best of our survey, previous studies on function-level processing engines
mainly focus on performance optimization of specific functions, and rarely discuss the
sharing and multitasking issues [6,10]. Current embedded systems, however, are mostly
multitasking systems in which multiple tasks cooperate. To further improve system per-
formance with consideration of the limited space of FPGA, a multitasking interface de-
sign providing hardware unit sharing is very crucial.

To support reconfigurable component sharing in a multitasking environment, the en-
hancements can be practiced in three possible layers: applications, operating system
kernel, or reconfigurable hardware. For the following two reasons, we argue that OS
kernel support is more superior to other two enhancements. First, if applications take
the responsibility to maintain hardware function multitasking and sharing, they need to
manage the control registers of hardware functions and maintain function invocations
from other applications. Consequently, a task execution may be interfered with other
task executions. Application design becomes more complicated and error-prone. Sec-
ond, if the multitasking mechanism is implemented in reconfigurable hardware, it will
occupy a large amount hardware space due to many bookkeeping data structures. Since
the space resource is very precious in reconfigurable hardware, this approach incurs
high cost/performance ratio in reconfigurable hardware utilization. Implementation of
the multitasking mechanism in the OS layer can avoid both the error-prone development
problem and the low hardware utilization problem. Although the OS layer enhancement
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cannot be benefitted from hardware acceleration, its overhead of software-coded execu-
tion is comparatively small in the whole system. Accordingly, we propose a function-
level multitasking interface design implemented in the OS layer to take advantage of
high performance of reconfigurable hardware.

This paper presents the multitasking interface design in an embedded operating sys-
tem with reconfigurable hardware. The proposed approach has three main design fea-
tures. First, multiple tasks can coherently share the reconfigurable accelerator hardware
with the OS support of the multitasking mechanism. Second, the invocation interface
of the hardware units is consistent with the software library to ease application devel-
opment. Third, if there are numerous tasks waiting for the same shared reconfigurable
hardware, OS can dynamically direct the function invocation to the software-coded li-
brary. With these features, the system keeps the flexibility to process the application
function calls with high performance.

The design of multitasking support for reconfigurable hardware is not straightfor-
ward because hardware unit sharing is very different with software library sharing. Two
main issues need to be considered: parameter passing flow and data consistency. To
maintain data consistency, a management module in OS is designed to deal with mul-
tiple invocations, and the OS has a specific job queue to schedule these invocations. In
addition, each hardware function unit has its own invocation API in OS to pass param-
eters. Programmers can replace the compute-intensive function calls in the applications
with the corresponding hardware function invocations. When the hardware function
unit completes the job, the results are returned via an interrupt service routine. These
two issues complicate the design of the multitasking interface.

We have implemented the proposed multitasking interface in an embedded OS
μC/OS-II [12] to study the performance impacts. The prototype is based on an Al-
tera SOPC (system-on-programmable-chip) development board [13]. Several hardware
functions have been implemented in FPGA to verify the functionality of the multitask-
ing interface. We also conducted preliminary experiments to evaluate the prototype.
Although the current benchmark set is primitive, the experimental results show that
the management overhead is acceptable and the application performance can be highly
improved.

The rest of the paper is organized as follows. Section 2 reviews previous reconfig-
urable computer studies of different acceleration granularity. Section 3 elaborates the
proposed function-level multitasking hardware interface. Section 4 presents the Altera
SOPC prototype implementation, and the evaluation results in the experiments. Sec-
tion 5 concludes the paper.

2 Related Work

The hardware accelerators on FPGA chips are also known as processing engines. From
the aspect of accelerating granularity, the processing engines can be classified into three
categories, the instruction-level, the task-level, and the function-level. The instruction-
level processing engines are usually implemented as co-processors. For example, San-
tos, Azevedo, and Araujo presented an instruction-level reconfigurable architecture
called the 2D-VLIW [7]. In the 2D-VLIW project, the processing engines are
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controlled by 2D-VLIW instructions which are composed of multiple single operations.
The processing engine needs one 2D-VLIW instruction for each execution cycle. Since
processing engines are commanded according to 2D-VLIW instructions, the application
developer needs to understand the details of the processing engine and to write the 2D-
VLIW instructions in the application. Although the processing engine in the 2D-VLIW
can be beneficial to applications, the reconfigurable computer needs to synchronize the
processing engines and the general purpose processor frequently.

The task-level acceleration approach presents the second category. For example, An-
drews et al. proposed the hthreads task-level reconfigurable architecture [2]. The hthreads
is a multithreaded RTOS, which supports the software and the hardware threads it its
thread model. Each hardware thread obtains an exclusive processing engine kept in the
FPGA chip. The hthreads scheduler is responsible for managing the software threads and
the hardware threads. Since data of hardware threads are private, the data synchronization
can be largely reduced. However, the hardware thread maintenance are cumbersome. Be-
sides, since the hardware thread is customized, the hardware thread can hardly be reused.
Accordingly, the utilization of hardware threads is seriously degraded. Another exam-
ple is the SHUM-μC/OS project proposed by Zhou et al. [11]. Zhou et al. modified the
μC/OS-II RTOS and defined their hardware thread model. They implemented a hardware
thread control block in the μC/OS-II to keep the data structures of hardware threads. The
hardware threads in SHUM-μC/OS are also very difficult to be reused by other applica-
tions.

The function-level processing engines are implemented according to the basic al-
gorithmic function blocks of applications. The function-level reconfigurable architec-
ture provides a reusable, elegant, and high maintainability programming paradigm. For
example, Rullmann, Siegel, and Merker proposed an application partitioner [6]. The ap-
plication partitioner extracts compute-intensive algorithmic blocks. Then the compute-
intensive algorithmic blocks are implemented as FPGA processing engines. Thus, the
system performance can be improved. However, the processing engines are managed by
specific applications and cannot be directly used by other applications. Another exam-
ple is the ReConfigME function-level reconfigurable architecture proposed by Wigley,
Kearney, and Jasiunas [10]. Since the processing engine still managed by specific ap-
plications, they are very difficult to be reused by other applications. Shibamura et al.
also proposed a function-level reconfigurable platform called EXPRESS-1 in 2004 [8].
The major difference between EXPRESS-1 and our system is that EXPRESS-1 fo-
cused on the design of the reconfiguration procedure and our system focused on the
hardware/software interface design.

3 Functional-Level Multitasking Interface Design

The idea of the function-level multitasking interface is to support reconfigurable com-
ponent sharing in a multitasking reconfigurable computer. Since the processing engines
of previous function-level reconfigurable architecture are managed by respective appli-
cations, the hardware functions are difficult to be reused by other applications. With the
OS supported function-level multitasking interfaces, all applications can request to use
public hardware functions.
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Fig. 1. Control flow of the hardware function invocation
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Fig. 2. Control flow when the hardware function job queue is full

Our proposed function-level multitasking architecture modifies four components in
a traditional reconfigurable computer: (1) Operating system: We move the management
responsibility of hardware functions to the operating systems. We develop a multitask-
ing hardware function manager in the OS. The manager includes a function linker and a
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Fig. 3. Hardware function structure

scheduler. Besides, we develop a job queue for each hardware function. We provide
a multitasking invocation API for each hardware function. (2) Task: The compute-
intensive functions can be replaced with the multitasking invocation API. The interface
of function parameters and the return results is consistent with the software library to
ease application development. (3) Processing engine: In the beginning, each hardware
function has to register in the OS. The OS creates the job queue, the function-level mul-
titasking interface, and the interrupt service routine (ISR) for each hardware function.
When the hardware function is executing, the hardware function selects new job from
the job queue in the OS. When the hardware function finishes a job, it issues an IRQ
to the general purpose processor. (4) Software-coded function: Our architecture keeps
the software-coded functions. OS can dynamically direct the function invocation to the
software-coded library.

Figure 1 shows the control flow of the proposed function-level multitasking architec-
ture. Suppose the hardware function has already been registered. Since the SW Func()
is a compute-intensive function, we implement the hardware version function in FPGA
chip. At the same time, we replace the original function call with the hardware function
invocation interface called OS HW Func(). The control flow is as follows. First, the OS
executes the application. Meanwhile, the application is executed by the general purpose
processor. Second, the application invokes the hardware function. After the application
calls the interface, the OS forces the application enter the waiting queue. Third, After
the application passes the parameters to the OS, if the job queue still has free spaces,
the function linker forwards the parameters to the hardware function scheduler. Fourth,
the hardware function scheduler checks the status of the requested hardware function.
If the hardware function is available to be executed, the hardware function scheduler
passes the parameters into the hardware function. If the hardware function is busy, the
hardware function scheduler saves the hardware function request into the job queue.
Fifth, after the hardware function completes one job, the hardware function issues an
IRQ. The general purpose processor then jumps to the hardware function ISR to grab
computation results of the hardware function. Besides, the ISR configures the hardware
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function to select next job from the job queue. Sixth, the ISR passes the results to the
application. The OS then forces the application enter the ready queue.

Figure 2 presents the control flow when OS dynamically direct the function invoca-
tion to the software-coded library. The difference is the third step. When the OS receives
the hardware function request, OS jumps to the function pointer of the software-coded
function. The parameters are also passed to the software-coded function. Fourth, af-
ter the software-coded function finishes the computation, it returns the results to the
application. In this case, all operations are executed by the general purpose processor.

Figure 3 shows the hardware function structure used in our architecture. The hard-
ware function is implemented in hardware description language like VHDL or Verilog.
In the figure, we denote the hardware function as the processing engine. Each process-
ing engine contains at least four registers, the control register, the status register, the
argument register, and the result register. The size of each register is varied according
to the application demands. The OS enables and disables each processing engine via the
control register. Since the OS has to manage the processing engine, it monitor the con-
dition of processing engine through the status register. The argument register records
the parameters of function request. The result register keeps the computation results of
the processing engine. Since the parameters and the results may be a pointer variable
or a data structure, the processing engine can directly connect to the memory bus. If
the parameter is a pointer variable, the processing engine directly access the memory
address to capture the variable value. If the processing engine has to access the global
variable, it also directly access the memory address of the global variable. When the
processing engine completes one job, it issues an interrupt to the general purpose pro-
cessor. The general purpose processor then executes the ISR to retrieve the computation
results. Sometimes, the processing engine needs to call an external function. To solve
this issue, the processing engine keeps a private memory space. The memory space
contains the function call instructions. When the processing engine wants to call the
external function, it first issues an IRQ. The general purpose processor then jump to the
ISR. Meanwhile, since the status register shows that the processing engine wants to call
an external function, the ISR then creates a new task and jumps to the address of the
private memory of the processing engine. After the called function returns the result,
rest instructions in the private memory resumes the execution of the processing engine.

4 Prototype Implementation and Experimental Results

We implemented a prototype on the Altera SOPC (system-on-programmable-chip) de-
velopment board [13] to study the performance impacts. The Altera SOPC development
board adopts an FPGA chip to be its core. We programmed the Altera Nios soft IP core
processor into the FPGA chip. We choose the μC/OS-II [12] to be our operating system.

To study the performance, we implemented the square root hardware function and
the loop hardware function. Both the two functions are compute-intensive. The hard-
ware engines are implemented in VHDL and are configured as memory-mapped I/O
devices. Each hardware engine needs to be registered in the OS. It also needs to register
its interrupt service routine (ISR). For each hardware function, the operating system
provides a multitasking interface. Figure 4 shows the implementation of the hardware
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if((in_use->np_piodata & 0x2)){   

ptcb = OSTCBPrioTbl[OSPrioCur];
OSTCBCur->OSTCBStat |= OS_STAT_HDF; 
OSTCBCur->OSTCBPendTO = FALSE;
hdsqrt_wait++;
OS_EventTaskWait(hdsqrt);
OS_Sched();

}
in_use->np_piodata |= 0x2;         

hdsqrt_owner = OSPrioCur; pointer = &hdsqrt_out->np_piodata;
*pointer = *parameter; pointer2 = &hdsqrt_in->np_piodata;

y        = OSTCBCur->OSTCBY;
OSRdyTbl[y]     &= ~OSTCBCur->OSTCBBitX;
if (OSRdyTbl[y] == 0) {

OSRdyGrp &= ~OSTCBCur->OSTCBBitY;            
}

launch->np_piodata |= 0x2;         

OS_Sched();

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 4. Implementation of the hardware function scheduler

function scheduler. Taking the square root hardware function as an example, line 1–9
presents the case when the hardware function is busy. We did not really implement a
new queue data structure in our prototype, on the contrasty, we adopted the ready ta-
ble structure in the μC/OS-II kernel. We used the table structure to record applications
which is requesting the hardware function. Line 1 checks if the hardware function is
busy. Line 3–6 increases the length of waiting queue of the square root hardware func-
tion. Line 7–8 sets the application into waiting state and forces the OS execute next
application. Line 10–23 presents the parameter passing procedure if the square root
hardware engine is available. Line 10 sets the status register of the hardware function.
Line 12–13 passes the parameters. Line 15–19 maintains the application state. Line 21
activates the hardware function. Finally, line 23 forces the OS execute next application.

To evaluate our prototype, we run two experiments. In the first experiment, we de-
veloped three tasks to search prime numbers. Each task uses the square root hardware
function to confirm the prime number. Hence, the square root hardware function is
shared by three tasks at the same time. Figure 5 shows the result. The x-axis presents
the amount of searched integers. The y-axis presents the processing time. The search
workload are shared by three tasks fairly. For example, if we want to find out all prime
numbers between 1 to 30000, the task 1 searches 1 to 10000, the task 2 searches 10001
to 20000, and the task 3 searches 20001 to 30000. We compared the processing time
of using square root hardware function with the processing time of pure software con-
dition. The processing time gains an obvious degradation in 15%. Accordingly, the
management overhead of hardware function is little and acceptable.

In the second experiment, we developed a loop program to study the operation over-
head of hardware functions. The loop program simply runs “for loop” instructions.
Figure 6 shows the result. The x-axis presents the variable n. In each test case, we ran
n3 times loop instructions. The y-axis presents the processing time. The processing
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time of hardware accelerated configuration is 3–4ms. Hence, the operation overhead of
hardware functions is very little and can be ignored.

5 Conclusions

Reconfigurable computing grabs the public attention recently because it provides a high
performance computing paradigm. In this paper, we propose a function-level multitask-
ing interface design in an embedded OS to exploit the high-performance benefit of re-
configurable hardware. The proposed mechanism has the following three distinguishing
features: (1) multiple tasks can coherently share the reconfigurable accelerator hardware
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without data inconsistency; (2) the invocation interface of the hardware units is consis-
tent with the API of the software library; (3) OS can dynamically decide whether it
resolves the invocation with the hardware unit or with the software library. A prototype
implemented with an Altera SOPC development board and μC/OS-II shows its promi-
nent performance improvement in our preliminary experiments. Although the bench-
mark is still primitive, the positive experimental results convince us of the feasibility in
the future development.

In our future plan, the reconfigurable mechanism will be integrated in our proto-
type. Besides, a more comprehensive benchmark will be implemented to get complete
performance characteristics. We also plan to port the proposed multitasking scheme to
other famous embedded operating systems, such as uClinux. Improvements on other OS
components then will be under investigation to fully take the high-performance benefit
of reconfigurable hardware.
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