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Abstract. Embedded systems increasingly encompass both dependabil-
ity and responsiveness requirements. While sophisticated techniques ex-
ist, on a discrete basis, for both dependability/fault-tolerance (FT) and
real-time (RT), the composite considerations for FT+RT are still
evolving. Obviously the different objectives needed for FT and RT make
composite optimization hard. In this paper, the proposed Multi Vari-
able Optimization (MVO) process develops integrated FT+RT consid-
erations. We introduce dependability as an initial optimization criteria
by confining error propagation probability, i.e., limiting the interactions.
Subsequently, quantification of interactions together with RT optimiza-
tion by minimizing scheduling length is developed. A simulated annealing
approach is utilized to find optimized solutions. We provide experimental
results for our approach, showing significant design improvements over
contemporary analytical initial feasibility solutions.

1 Introduction and Paper Objectives

Embedded real-time systems with implications on system dependability1 are
being employed in diverse applications such as flight, drive and process control.
More and more functionality is being integrated into such systems, invariably
leading to a heterogeneous environment consisting of applications of different
criticality (both safety critical (SC) and non-SC), each with associated respon-
siveness requirements. Each application introduces system level constraints such
as software (SW) complexity, cost, space, weight, power and multiple other re-
alization constraints making the overall system composition a complex resource
optimization task.

Thus, efficient system design strategies are needed to integrate these diverse
applications across limited hardware (HW) resources while considering the in-
terplay of fault-tolerance (FT) and real-time (RT) objectives. Mapping of mixed
criticality/responsiveness applications onto shared resources is a crucial step for

� This work has been partly supported by the EU IST FP6 DECOS.
1 The terms Dependability and FT will be used synonymously in the paper.
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such a system design strategy. A mapping is defined as: (i) assignment of jobs2 to
suitable HW nodes such that platform resource constraints and dependability re-
quirements are met (resource allocation) and (ii) ordering job executions in time
(scheduling). This design step faces new challenges under resource constraints
and needs careful attention such that FT and RT requirements are not com-
promised. Moreover, design optimization involves simultaneous consideration of
several incompatible and often conflicting objectives.

Recently, bi-criteria objectives have attracted attention by researchers, e.g.,
in [1],[2,3]. The first two papers consider the trade-off between system relia-
bility and scheduling length, while the third considers minimization of energy
consumption using checkpointing to recover from faults. The complexity of the
design endeavor becomes apparent when considering the huge design space of
possible solutions on one hand, and the many competing design objectives on
the other [4]. Overall, better design methodologies are needed to handle such
complex problems.

We propose a generic optimization framework considering different design
variables3 both from Dependability/FT and RT perspectives. The approach is
called Multi Variable Optimization (MVO), which takes into account the sat-
isfaction of various constraints as well as optimization of multiple competing
variables. Since dependability is a primary design objective for safety-critical sys-
tems, the proposed framework puts emphasis on FT through replication of highly
critical jobs. Dependability is then enhanced by providing error-containment
mechanisms. If an error is present in a job, it is possible for this error to prop-
agate to other jobs and cause multiple failures4. In ultra-dependable systems
even a very small correlation of failures of the replicated units can have a sig-
nificant impact on the overall dependability [5]. Thus, highly interacting jobs
are assigned onto the same node, to prevent the spread of errors across HW
nodes, i.e., enhance dependability by error confinement [6]. We also minimize
the scheduling length while satisfying job precedence and deadline constraints
and minimize the utilization of the network.

The contributions of our work are: (i) development of a generic framework
which systematically guides the optimized system level design, (ii) quantification
of application interactions and techniques to constrain the propagation of errors,
(iii) combining interactions with scheduling length and bandwidth utilization
that enables us to solve the MVO problem and (iv) application of an existing
optimization algorithm within the approach, enabling a quantitative evaluation.
For a representative target study, our evaluation shows significant design im-
provements for the considered variables. From a RT perspective, minimizing the
scheduling length also gives the basis for maximizing the CPU utilization.

The paper is organized as follows. Section 2 discusses the related work. System
models and problem statement are introduced in Section 3. Section 4 presents

2 Applications are further decomposed into smaller executable units called jobs.
3 A single variable refers to optimization of a single objective.
4 The failure of a module (can be an application, a job or a node) due to the failure

of another module is called a cascading failure.
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the generic MVO framework and Section 5 provides the quantification of the
variables. For the evaluation of the approach, we employ simulated annealing
described in Section 6. The experimental evaluation and results are given in
Section 7. Section 8 concludes the paper.

2 Related Work

Usually, FT is applied to an existing scheduling principle such as rate-monotonic
or static off-line either by using task replication [7] or task re-execution [8],[9].
Satisfying RT constraints, in [10], the authors minimize the total completion and
communication times. Maximization of the probability of meeting job deadlines
is considered in [11]. A scheduling approach for distributed static systems is
presented in [12], where the authors minimize the jitter for periodic tasks using
simulated annealing. Satisfaction of multiple constraints (timing, dependability)
and optimization of a single variable (bandwidth utilization) is presented in [13].
All these approaches either consider dependability as constraint or optimize a
selected operational variable from a RT perspective.

Though optimizing one variable is straightforward, optimization of multiple
variables is considerably more difficult. Several mapping techniques exist but
few are concerned with optimizing dependability/FT and RT issues together.
In [14], the authors propose that the combination of active replication and re-
execution can provide an optimized design from the scheduling length point of
view. In [15], the authors discuss multiple objectives such as minimizing commu-
nication, load balancing and minimizing the maximum lateness. [6] specifically
addresses dependability (focuses on minimizing interaction) and presents heuris-
tics for conducting the mapping. However, the focus is to aid integration between
design stage SW objects. Overall, in design optimization, there is a dearth of
work that addresses dependability as an optimization criterion. Commonly, de-
pendability is considered directly as a constraint to be satisfied. Instead, we
consider dependability and RT, both as constraints and as optimization criteria.

3 System Model and Problem Statement

Our system design framework is based on the following models: the SW and
HW models, constraints model and the fault model. The SW model describes
the functional and extra-functional (dependability, responsiveness, etc.) require-
ments of jobs and the HW model is the physical execution platform for those
jobs. The fault model depicts the types of faults and their causes, whereas con-
straints restrict the possible solutions. The rest of this section details various
important aspects and characteristics of the different models.

SW Model: The SW model consists of applications of varied criticality. Appli-
cations are further decomposed into a set of jobs (j1, j2, ..., jn). A job represents
the smallest executable SW fragment, with basic communication capabilities for
exchanging information with other jobs. We consider a job to have specific prop-
erties as required inputs to the mapping process, namely: (i) job name - each job
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has a unique name; (ii) timing requirements (earliest start time-EST , compu-
tation time-CT , deadline-D); (iii) volume of data for inter job communication
in terms of bytes; and (iv) dependability/FT requirements - the degree of repli-
cation dci necessary for the ith job to provide the required level of FT. dci is
specified by the system user.

HW Model: We assume a network topology allowing every HW node to com-
municate with all other nodes (n1, n2, ..., nk). A HW node is a self-contained
computational element (single- or multiprocessor) connected to the network (e.g.,
using a bus topology) through a communication controller. We assume that the
computing basis of all node processors is similar. HW nodes may also contain
additional resources, e.g., sensors, actuators etc. The communication controller
controls the exchange of messages with other nodes.

Constraints Model: Constraints define the conditions that limit the possible
mappings from a dependability, RT or resource perspective. A set of constraints
need to be satisfied for a mapping to be valid [16]. We consider the following
constraints: (i) binding constraints - jobs that need to be allocated onto specific
nodes due to the need of certain resources (e.g., sensors or actuators), (ii) FT
constraints - separation of replicas to different nodes, (iii) schedulability - main-
taining RT constraints and (iv) computing constraints - such as the amount of
memory available for jobs.

Fault Model: We consider both SW and HW faults, therefore a fault can
occur in any job, HW node or communication link. The consequence of a fault
is an error which can propagate from a source module to a target module via
a corrupted message or via a shared resource. In the case of communication
links, only transient faults are considered. A single fault, either a transient or
a crash [17] impacting a shared resource, is likely to affect several or all of the
jobs or replicas running on that node.

Problem Statement: The set of all possible mappings for a given set of jobs
and nodes is called the problem space (X), shown in Figure 1. A mapping is
either feasible or infeasible. A feasible mapping is a solution which satisfies all
constraints. If some constraint is not satisfied, the mapping is infeasible. A point
x in the problem space X represents a mapping of jobs onto nodes. The neigh-
borhood space N(x) ⊆ X of a point x is the set of all points that are reachable by
performing a move operation (e.g., relocating a job to a different node). We em-
ploy a transformation operator (Γ ) to perform move operations (see Section 6.3
for details). The value of a point is a measure of the suitability of the mapping
represented by that point. The function f(x) is used to measure the value of a
point of the problem space. For an optimization problem, which minimizes the
value of variables (v), good mappings have low values. Hence, the task is to find
a mapping x∗ ∈ X with the lowest function value for multiple variables, i.e.,
f(x∗) ≤ f(x) ∀x ∈ X . x∗ is the best mapping from a global search space (X).

In this work, a feasible mapping is provided as an input to the algorithm
and feasibility is maintained throughout the quest by an external function call,
therefore the problem space remains in the feasible region X

′ ∈ X (set of all
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admissible solutions), which reduces the search space considerably. We strive for
finding the mapping x∗ ∈ X

′
, where f(x∗) ≤ f(x) ∀x ∈ X

′
. We use an MVO

function (MV O(v)) to represent the mapping (see Section 6.1 for details).

4 The MVO Approach

The proposed MVO framework systematically guides the FT+RT driven map-
ping towards an optimized solution. In this section we discuss this generic design
framework on the basis of the models presented in the previous section. The
system design optimization flow and the corresponding steps are depicted in
Figure 2 and in Algorithm 1 respectively. The design process starts with charac-
terizing the SW and HW model. The properties of the model are extracted from
the system requirements and specification document. In Step 2 (Algorithm 1),
constraints are modeled, which need to be satisfied during the mapping. Design
variables are defined in Step 3, which are employed in the mapping optimization
phase shown in Figure 2. Variables are used for capturing the design criteria
and they strongly depend on the objectives of the system design and on the
considered system model [18].

Mapping algorithms need heuristics to achieve good performance. Of partic-
ular importance are job ordering and node ordering that decide which job to
assign next and what node to assign that job onto [16]. Job and node ordering
are described in Step 4. A crucial issue that arises at this design stage is the
mapping of jobs onto suitable nodes. An initial mapping is created in Step 5
where allocation and scheduling is performed off-line in the early design phase.
The result of this step is a feasible mapping. However, this mapping is likely to be
very inefficient from a system design perspective. The purpose of the rest of the
steps is to find a better mapping by using the proposed optimization framework.
A candidate mapping from the set of possible solutions is generated in Step 6.
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Algorithm 1. Generic framework for system level design optimization
1: derive the system model
2: extract design constraints
3: define design variables
4: ordering of jobs and nodes
5: generate an initial current mapping - apply heuristics
6: generate candidate mapping - exploring neighborhoods
7: a) compare candidate mapping with the current mapping

b) go back to Step 6 until stoping criteria is met
8: define minimum requirements to select the mapping (the aspiration values)
9: assess the mapping and return the good mapping (a near-optimal one)

In order to select better designs, the candidate mapping is compared with the
current mapping in Step 7. If a better mapping is found, the current mapping
is updated. This step is iterative so that the comparison can be made with all
the possible solutions. A detailed description of Step 6 and Step 7 is also given
in Section 6.2. In Step 9, the mapping is assessed to ensure that it satisfies the
minimum system requirements defined in Step 8. Essentially, we are interested
in finding a near-optimal mapping meeting FT+RT design objectives.

5 Quantification of Design Variables

In this section we quantify the set of variables. This includes how to estimate
variables, and how to formulate them in terms of function minimization. The
primary objective is to enhance dependability by design, where our focus is to
minimize interactions, i.e., to confine the propagation of errors between nodes.
The second and third considerations are the scheduling length and the bandwidth
utilization respectively that are important in terms of resource utilization and
consequently lead to designs with lower cost. In the subsequent sections, we
provide details of the variables used to quantify these objectives.

5.1 Interactions

Interaction is the probability of error propagation from a source to a target.
This variable refers to how well the errors are contained within a single node.
Low interaction values between nodes implies good error containment. Assigning
highly interacting jobs on the same node reduces the error propagation proba-
bility across nodes. Below we describe two potential ways in which interactions
between a source and a target could take place.

Case 1: Errors occur in the source and propagate to the target via message
passing or shared resources. If a job is affected by an error of the node it is
running on, it might propagate errors to jobs on other nodes with which it
communicates or shares a resource. Such interactions risk the failure of multiple
nodes and are undesirable.

Case 2: Messages sent over the network can be lost or erroneous due to trans-
mission errors. Erroneous messages can propagate to different nodes and may
cause unexpected behavior.
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Estimating interactions: The interactions as shown in Figure 3 consists of
three phases, namely: (1) an error occurring in a module or in a communication
link, (2) propagation of the error to another module and (3) the propagating
error causing a cascaded error in the target module. In order to measure in-
teractions, let’s assume Pe is the probability of error propagation from source
to target considering no corruption over the network and Pl is the probability
of message corruption over the network. The probability of error propagation
from a source (s) to a target (t) is denoted by Ps,t and defined as follows: Ps,t =
p{error propagation|no corruption over the network}·p{no corruption over the
network} = Pe · (1 − Pl), where, Pe = Ps · Pt. The probability that s outputs
an error and sends it to the input of t is Ps and Pt is the probability that an
error occur in t due to the error received from s. Ps indicates how often s allows
errors to propagate and Pt indicates how vulnerable t is to errors propagating
from s. Considering both Ps,t and Pl, the interaction is calculated as follows:
Is,t = Ps,t + Pl.
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Io
s,t is the overall interactions between the set of jobs assigned together on a

node and interacting jobs allocated on different nodes, which is expressed by the
following equation:

Io
s,t = 1 −

∏

ρ

(1 − Iρ
s,t) (1)

Where ρ is the number of interactions paths between two nodes. For example,
the overall interaction of node n1 to n2 as shown in Figure 4, will be Io

n1,n2
=

1− [(1−0.4) ·(1−0.3)] = 0.42. Interactions are assumed to be zero for jobs which
are assigned on the same node. However, it is not possible to assign all interacting
jobs onto a single node due to the constraints. Also replicas need to be placed
on different nodes which might have interactions with other jobs. Hence, there
will be jobs interacting across nodes. We strive to minimize these interactions as
much as possible for a mapping, such that dependability is enhanced by design.
Values for error occurrence probabilities can be obtained, for example, from field
data, by fault injection or from system specification [19]. The computation of
the system level interactions Î is expressed as follows, where k is the number of
nodes:

Î =
k∑

i,j=1

Io
i,j (2)
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5.2 Scheduling Length

This variable represents the total completion and communication time for a
set of jobs on a node. As we use replication as the FT scheme, this results
in more jobs needed to be scheduled and this naturally incurs a overhead on
scheduling. The goal is to minimize overall scheduling length (Ŝl) on a node
satisfying precedence and deadline constraints. Minimizing scheduling length is
important from the viewpoint of the uses of a set of processors, since it leads to
maximization of the processor utilization. In every scheduling, gap may remain
between two consecutive jobs executing on the same node due to precedence
relations and communication cost. We define this gap as in-between slack (IBS).
Slack can be used for future upgrading of jobs and also for energy savings.

We have developed a schedulability analysis in our previous work [16] and we
employ that strategy in this work as well. The scheduling length for a candidate
mapping is calculated using the following equation:

Ŝl = ∀k max

⎡

⎣
n∑

i,j=1

(Mi,k · CTi,k + IBSi,j)

⎤

⎦ (3)

where, n is the number of jobs, CTi,k is the computation time of the ith job in
the kth node, IBSi,j = ESTj − LETi, where i is the job executed before j on
the same node, and Mi,k = 1, if ji is assigned to the kth node and 0 otherwise.
LETi is the latest ending time of job i.

5.3 Bandwidth Utilization

In an integrated system design, jobs of different criticality and from different ap-
plications may be assigned onto a single node and jobs from a single application
may be assigned onto different nodes. Therefore, good utilization of shared com-
munication links is necessary. Bandwidth utilization (B̂w) is the ratio between
the total bandwidth required by the system and the available bandwidth of the
network (BT ) defined as follows:

B̂w =
k∑

i,j=1

bi,j/BT (4)

where k is the number of nodes and bi,j is the total bandwidth requirements in
terms of message size between nodes i and j. Minimizing this variable may allow
for the use of a slower but cheaper data communications bus [15].

6 The Algorithm - Employing MVO

In the prior sections, we described the MVO framework and the quantification of
considered variables. Next, we apply an existing optimization algorithm within
our framework. For this purpose we have chosen simulated annealing (SA) [20].
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SA is an algorithm, which converges to the global minima while solving an MVO
problem (MVO-SA). SA is a long established effective metaheuristic with an ex-
plicit schema for avoiding local minima [12],[13],[20],[21]. Alternative approaches
such as Genetic algorithm, Tabu search [21] were also investigated as options.
However, the global minima possibility with SA makes it attractive. The overall
optimization process is shown in Algorithm 2, which differs from usual single
objective SA. We have adapted SA for multiple objectives, which returns the
best values of variables together with the best mapping found so far.

6.1 The MVO Function

MV O(v) is a function, which returns a natural number that corresponds to the
overall quality of a given mapping. We construct the MV O(v) function as a
weighted sum of the variables, which is a widely used method for this class of
problem [18],[22]. The value of the function is determined by using the values of
variables Î , Ŝl,, B̂w and the trade-off factors ψi, ψs and ψb.

MV O(v) = ψi · Î + ψs · Ŝl + ψb · B̂w (5)

The individual values of the variables are represented in a matrix form: M [v] ≡
M [Î , Ŝl, B̂w]. After performing a move, the function is denoted as MV O(v

′
) and

the matrix as M [v
′
].

6.2 Application of SA

The MVO-SA algorithm requires the following inputs: (i) the set of jobs and
nodes including their properties to create the initial mapping, (ii) variables, the
MV O(v) function and the trade-off factors, (iii) the Γ operator to change the
mapping and (iv) SA parameters - initial temperature, the cooling schedule and
the cooling factor for lowering the temperature. The output of the algorithm
represents the optimized mapping of jobs onto nodes.

After setting the initial heating temperature Th (Algorithm 2), the initial fea-
sible mapping is created. The feasibility of the mapping is maintained through-
out the search by an external function call, i.e., the best feasible mapping is
sought. The values of all variables are set in the MVO function (Equation 5) and
MV O(v) is computed in Step 4. In order to generate the candidate mapping,
neighborhoods are explored in Step 6. We apply the transformation operator
(Γ ) to explore neighborhoods. While applying this operator the feasibility of
the mapping is checked. In Step 9, the candidate mapping MV O(v′) is eval-
uated in order to compare it with the current best mapping. If the difference
δv = MV O(v′) − MV O(v) is less than zero (minimization) then we choose the
candidate mapping. If δv is greater or equal to zero, then the candidate mapping
is accepted with a certain probability, called the acceptance probability (ap). One
of the commonly used acceptance probability functions is ap = e−δv/Th [12],[13].

The technique used by SA to not get stuck at a local optima is to accept
some worse moves as the search progresses. For larger δv, i.e., when the candi-
date mapping is extremely undesirable, the probability of acceptance diminishes.
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Algorithm 2. MVO algorithm - SA based
1: initialization T; heating temperature Th

2: generate an initial mapping

3: create the matrix M [v] ≡ M [Î , Ŝl, B̂w] for this mapping
4: evaluate the initial mapping MV O(v)
5: repeat
6: explore neighborhood of the current mapping using Γ
7: generate candidate mapping

8: create matrix M [v′] ≡ M [Î′, Ŝ′
l, B̂′

w]
9: evaluate candidate mapping MV O(v′) for the new matrix

10: calculate δv = MV O(v′) − MV O(v)
11: if δv < 0 then
12: M [v] = M [v′] and MV O(v) = MV O(v′)
13: else
14: calculate acceptance probability ap = e−δv/Th and

generate r = random[0, 1]
15: if ap ≥ r then
16: M [v] = M [v′] and MV O(v) = MV O(v′)
17: else
18: restore the current mapping, i.e., keep M [v] and MV O(v).
19: end if
20: end if
21: reduce the temperature Th by using a cooling schedule Th−1 = cf · Th.
22: until some stopping criterion is met

23: return the best matrix M[v] and corresponding mapping MV O(v)

The initial temperature (T ) is set to a sufficiently high value to accept the first
few candidate mappings. However, the ap decreases as Th decreases. If an ac-
ceptance criteria is met, the candidate mapping is chosen, otherwise the current
mapping is restored and the process is continued. Th is reduced according to the
cooling scheduling Th−1 = cf · Th, which is the most commonly used in the lit-
erature [12],[22], where cf is the cooling factor. We perform several iterations at
the same Th (so called Metropolis Monte Carlo attempts [20]) to cover a larger
search space. The algorithm returns the best mapping found so far when the
temperature is reduced to a certain value.

6.3 The Transformation Operator Γ

As mentioned before, the operator Γ performs the changes/moves to the mapping
in order to generate a candidate mapping. Specifically, Γ generates the move to
perform the local search, i.e., to explore the neighborhood. Three commonly used
moves [22] are discussed below: (a) relocate a job to a different node, (b) swap
the nodes between two jobs and (c) interchange the allocated jobs between
two nodes. A move is accepted when it satisfies all the constraints defined in
Section 3. After a successful move, the candidate mapping is evaluated in Step 9
(Algorithm 2).

7 Evaluation of the MVO Framework

In this section we first present the experimental setting. Based on this we evaluate
the effectiveness of the MVO approach and discuss the results. Results show
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significant improvements in terms of interactions, scheduling length, bandwidth
utilization, CPU utilization and FT overhead.

7.1 Experimental Settings

For the evaluation of our approach, we use randomly generated mixed-criticality
sets of 40, 60 and 80 jobs denoted as J40, J60 and J80 respectively. All jobs,
along with their replicas, are to be assigned in an optimized way onto the avail-
able nodes. All job properties are uniformly distributed within the following
ranges: Replication factor ∈ {2, 3}, Interaction ∈ [.04, .52], EST ∈ [0, 50] ms,
CT ∈ [2, 17] ms, D ∈ [15, 200] ms, Memory size ∈ [4, 10] MB, Message size
∈ [30, 120] bytes. Sensors and actuators are attached to arbitrary nodes. The
message transmission delay time (size of the exchanged messages divided by
transmission speed of the link) between communicating jobs executing on differ-
ent nodes are subtracted from the deadlines. The HW model comprises 8 nodes,
which are connected to a communication link with a speed of 150kbps. The mem-
ory capacities of nodes were arbitrarily chosen as 100, 150 and 250 MB; nodes
n2 and n3 have sensors and n5 and n7 have actuators attached to them.

As used in literature [20],[22] and after investigating different runs of our
algorithm with various configurations, we tune the SA parameters as follows:
the value of the initial temperature (T ) was set to 50000, the cooling factor was
set to 0.98, and the used trade-off factors were ψi = 1500, ψs = 20 and ψb = 500
respectively. In order to generate the candidate mapping we have performed two
types of moves (random reallocation and swapping - 50% each of Monte Carlo
iteration) at the same temperature to cover a larger search space. The third type
of move is not relevant in our case study. Experiments showed that applying both
types of moves together gives a better solution than only using a single type of
move.

7.2 Experimental Results

Performance Evaluation: We first observe the convergence of MVO-SA.
Figure 5 shows that after a certain number of iterations with decreasing tem-
perature the MVO function reaches a minimum. At higher temperatures, more
states have been visited by the operator Γ to cover the search space. Given the
proper selection of the parameters and the problem size, SA gives the global so-
lution by construction [20],[21]. Nevertheless, we performed several experiments
to evaluate if the MVO algorithm converges to a single point. Even though the
algorithm is started with different feasible mappings (Feas1, Feas2 as shown
in Figure 5), MVO-SA converges towards a solution every time. However, the
convergence points may differ negligibly, as shown in Figure 5 in case of J60. A
good performance test of a mapping algorithm is to take a solvable problem and
add resources [13], the algorithm should return a mapping no worse than the
result of the original problem. We added two more nodes to the configuration of
J40 and the resulted mapping displayed better performance. The convergence
is shown in Figure 5 marked as J40 (10 nodes). To show the effectiveness of
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starting the optimization with a feasible mapping, we also ran the algorithm
starting from an infeasible mapping. Though this can converge to an improved
solution, it is slower than starting from a feasible solution (time for the creation
of feasible mapping is included).

Quantitative Gain: We are interested in evaluating the quantitative gain com-
pared to a contemporary initial solution. As this gain depends on the value of
the initial mapping, we performed experiments using different initial feasible
mappings. Figure 6 depicts the mapping performance profile (MPF ) for J40,
J60 and J80 in terms of Î , Ŝl, B̂w and MV O(v). MPF is shown as relative
gain with respect to the initial mapping. We observe that the gain is higher
in case of Î, which ensures FT driven design. In our case studies, on aver-
age, our approach found 35% better solutions (composite FT+RT gain), which
leads to significantly better designs for dependable real-time embedded systems.
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CPU Utilization and FT Over-
head: Figure 7 shows the compu-
tation utilization by different node’s
processors for jobs set J40, J60 and
J80, which is about equally dis-
tributed among CPUs, i.e., a proper
load balancing is maintained by the
approach. It is calculated by UF =∑ n

i=1(Mi,k·CTi,k)
Ŝl

. We observe the FT
overhead both for initial and opti-
mized mapping in terms of scheduling
length. We varied the replication fac-
tor (Replication factor = # jobs after
replication/# jobs) from 1 to 3. On
average, the quantitative gain is 34.33%. Obviously, scheduling length has in-
creased due to increasing the replication factor. Therefore, a design trade-off



A Multi Variable Optimization Approach 529

between RT properties and the level of FT is necessary. The quantitative gain
shows that the overhead is reduced significantly by the optimized mapping, which
provides an FT design with reduced scheduling length.

8 Conclusions

We have presented a generic Multi Variable Optimization (MVO) framework for
designing embedded systems. The experimental results show the effectiveness of
the approach and a significant improvement of the FT+RT system design com-
pared to a straightforward solution where optimizations have not been applied.
Particularly, we emphasize the following preeminent benefits of our approach:
(i) FT is provided and then it is enhanced by restricting the possible nodes
from correlated faults, (ii) RT requirements are met and the scheduling length
is minimized, which increases the overall system performance and (iii) band-
width utilization is reduced, which allows the use of a slower but cheaper bus.
The generic framework also allows more variables to be considered, e.g., power.
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