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Abstract. Many HTML pages are generated by software programs by querying 
some underlying databases and then filling in a template with the data. In these 
situations the metainformation about the data structure is lost, so automated 
software programs cannot process these data in such powerful manners as 
information from databases. We propose a set of novel techniques for detecting 
structured records in a web page and extracting the data values that constitute 
them. Our method needs only an input page. It starts by identifying the data 
region of interest in the page. Then it is partitioned into records by using a 
clustering method that groups similar subtrees in the DOM tree of the page. 
Finally, the attributes of the data records are extracted by using a method based 
on multiple string alignment. We have tested our techniques with a high number 
of real web sources, obtaining high precision and recall values. 

1   Introduction 

In today’s Web, there are many sites providing access to structured data contained in 
an underlying database. Typically, these sources, known as “semi-structured” web 
sources, provide some kind of HTML form that allows issuing queries against the 
database, and they return the query results embedded in HTML pages conforming to a 
certain fixed template. For instance, Fig. 1 shows a page containing a list of data 
records, representing the information about books in an Internet shop. 

Allowing software programs to access these structured data is useful for a variety 
of purposes. For instance, it allows data integration applications to access web 
information in a manner similar to a database. It also allows information gathering 
applications to store the retrieved information maintaining its structure and, therefore, 
allowing more sophisticated processing. 

Several approaches have been reported in the literature for building and 
maintaining “wrappers” for semi-structured web sources ([2][9][11][12][13]; [7] pro-
vides a brief survey). Although wrappers have been successfully used for many web 
data extraction and automation tasks, this approach has the inherent limitation that the 
target data sources must be known in advance. This is not possible in all cases. 
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Consider, for instance, the case of “focused crawling” applications [3], which 
automatically crawl the web looking for topic-specific information.  

Several automatic methods for web data extraction have been also proposed in the 
literature [1][4][5][14], but they present several limitations. First, [1][5] require 
multiple pages generated using the same template as input. This can be inconvenient 
because a sufficient number of pages need to be collected. Second, the proposed 
methods make some assumptions about the pages containing structured data which do 
not always hold. For instance, [14] assumes the visual space between two data records 
in a page is always greater than any gap inside a data record (we will provide more 
detail about these issues in the related work section).  

In this paper, we present a new method to automatically detecting a list of 
structured records in a web page and extract the data values that constitute them. Our 
method requires only one page containing a list of data records as input. In addition, it 
can deal with pages that do not verify the assumptions required by other previous 
approaches. We have also validated our method in a high number of real websites, 
obtaining very good effectiveness. 

The rest of the paper is organized as follows. Section 2 describes some basic 
observations and properties our approach relies on. Sections 3-5 describe the 
proposed techniques and constitute the core of the paper. Section 3 describes the 
method to detect the data region in the page containing the target list of records. 
Section 4 explains how we segment the data region into data records. Section 5 
describes how we extract the values of each individual attribute from the data records. 
Section 6 describes our experiments with real web pages. Section 7 discusses related 
work.  

 

Fig. 1. Example HTML page containing a list of data records 
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2   Basic Observations and Properties 

We are interested in detecting and extracting lists of structured data records embedded 
in HTML pages. We assume the pages containing such lists are generated according to 
the page creation model described in [1]. This model formally captures the basic 
observations that the data records in a list are shown contiguously in the page and are 
formatted in a consistent manner: that is, the occurrences of each attribute in several 
records are formatted in the same way and they always occur in the same relative 
position with respect to the remaining attributes. For instance, Fig. 2 shows an excerpt 
of the HTML code of the page in Fig. 1. As it can be seen, it verifies the aforementioned 
observations.  

HTML pages can also be represented as DOM trees as shown in Fig. 3. The 
representation as a DOM tree of the pages verifying the above observations has the 
following properties:  

− Property 1: Each record in the DOM tree is disposed in a set of consecutive sibling 
subtrees. Additionally, although it cannot be derived strictly from the above 
observations, it is heuristically found that a data record comprises a certain number 
of complete subtrees. For instance, in Fig. 3 the first two subtrees form the first 
record, and the following three subtrees form the second record.  

− Property 2: The occurrences of each attribute in several records have the same path 
from the root in the DOM tree. For instance, in Fig. 3 it can be seen how all the 
instances of the attribute title have the same path in the DOM tree, and the same 
applies to the remaining attributes. 

3   Finding the Dominant List of Records in a Page 

In this section, we describe how we locate the data region of the page containing the 
main list of records in the page.  

From the property 1 of the previous section, we know finding the data region is 
equivalent to finding the common parent node of the sibling subtrees forming the data 
records. The subtree having as root that node will be the target data region. For 
instance, in our example of Fig. 3 the parent node we should discover is n1.  

<html><body>
<div> ... </div>
<div> ... </div>
<div> 
<table> ... </table>
<table>
<tr><td><table>
<tr><td>

<span><a>Head First Java. 2nd Edition</a></span>
<br>by <span>Kathy Sierra and Bert Bates</span>
<br><span>Paperback</span> - Feb 9. 2005</td>

<td><img></td></tr></table></td></tr>
<tr><td>Buy new: <span>29.67€</span> 

Price used: <span>20.00€</span></td></tr>

<tr><td><table>
<tr><td>

<span><a>Java Persistence with Hibernate</a></span>
<br>by <span>Christian Bauer and Gavin King</span>
<br><span>Paperback</span> - Nov 24. 2006</td>

<td><img></td></tr></table></td></tr>
<tr><td>Buy new: <span>37.79€</span></td></tr>
<tr><td>Other editions: <span>e-Books & Docs</span>

</td></tr>
...

</table>
...

</div>
</body></html>

 

Fig. 2. HTML source code for page in Fig. 1 
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Our method for finding the region containing the dominant list of records in a page 
p consists of the following steps:  

1. Let us consider N, the set composed by all the nodes in the DOM tree of p. To 

each node ni Є N, we will assign a score called si. Initially, 0..1 =∀ = iNi s . 

2. Compute T, the set of all the text nodes in N. 
3. Divide T into subsets p1, p2,…,pm, in a way such that all the text nodes with the 

same path from the root in the DOM tree are contained in the same pi. To compute 
the paths from the root, we ignore tag attributes. 

4. For each pair of text nodes belonging to the same group, compute nj as their 
deepest common ancestor in the DOM tree, and add 1 to  sj (the score of nj). 

5. Let nmax be the node having a higher score. Choose the DOM subtree having nmax 
as root of the desired data region. 

Now, we provide the justification for this algorithm. First, by definition, the target 
data region contains a list of records and each data record is composed of a series of 
attributes. By property 2, we know all the occurrences of the same attribute have the 
same path from the root. Therefore, the subtree containing the dominant list in the 
page will typically contain more texts with the same path from the root than other 
regions. In addition, given two text nodes with the same path in the DOM tree, the 
following situations may occur: 

1. By property 1, if the text nodes are occurrences of texts in different records (e.g. 
two values of the same attribute in different records), then their deepest common 
ancestor in the DOM tree will be the root node of the data region containing all the 
records. Therefore, when considering that pair in step 4, the score of the correct 
node is increased. For instance, in Fig. 3 the deepest common ancestor of d1 and d3 
is n1, the root of the subtree containing the whole data region. 

2. If the text nodes are occurrences from different attributes in the same record, then 
in some cases, their deepest common ancestor could be a deeper node than the one 
we are searching for and the score of an incorrect node would be increased. For 
instance, in the Fig. 3 the deepest common ancestor of d1 and d2 is n2.  

 

By property 2, we can infer that there will usually be more occurrences of the case 1 
and, therefore, the algorithm will output the right node. Now, we explain the reason 
for this. Let us consider the pair of text nodes (t11,t12) corresponding with the 
occurrences of two attributes in a record. (t11, t12) is a pair in the case 2. But, by 
property 2, for each record ri in which both attributes appear, we will have pairs (t11, 
ti1), (t11, ti2), (t12, ti1), (t12, ti2), which are in case 1. Therefore, in the absence of 
optional fields, it can be easily proved that there will be more pairs in the case 1. 
When optional fields exist, it is still very probable.  

This method tends to find the list in the page with the largest number of records 
and the largest number of attributes in each record. When the pages we want to 
extract data from have been obtained by executing a query on a web form, we are 
typically interested in extracting the data records that constitute the answer to the 
query, even if it is not the larger list (this may happen if the query has few results). If 
the executed query is known, this information can be used to refine the above method. 
The idea is very simple: in the step 2 of the algorithm, instead of using all the text  
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Fig. 3. DOM tree for HTML page in Fig. 1 

nodes in the DOM tree, we will use only those text nodes containing text values used 
in the query with operators whose semantic be equals or contains. For instance, let us 
assume the page in Fig. 3 was obtained by issuing a query we could write as (title 
contains ‘java’) AND (format equals ‘paperback’). Then, the only text nodes 
considered in step 2 would be the ones marked with an ‘*’ in Fig. 3.  

4   Dividing the List into Records 

Now we proceed to describe our techniques for segmenting the data region in 
fragments, each one containing at most one data record. 

Our method can be divided into the following steps: 

− Generate a set of candidate record lists. Each candidate record list will propose a 
particular division of the data region into records. 

− Choose the best candidate record list. The method we use is based on computing an 
auto-similarity measure between the records in the candidate record lists. We 
choose the record division lending to records with the higher similarity. 

Sections 4.2 and 4.3 describe in detail each one of the two steps. Both tasks need a 
way to estimate the similarity between two sequences of consecutive sibling subtrees 
in the DOM tree of a page. The method we use for this is described in section 4.1.  

4.1   Edit-Distance Similarity Measure 

To compute “similarity” measures we use techniques based in string edit-distance 
algorithms. More precisely, to compute the edit-distance similarity between two 
sequences of consecutive sibling subtrees named ri and rj in the DOM tree of a page, 
we perform the following steps:  
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Fig. 4. Strings obtained for the records r0 and r1 in Fig. 3 

1. We represent ri and rj as strings (we will term them si and sj). It is done as follows:  
a. We substitute every text node by a special tag called text. 
b. We traverse each subtree in depth first order and, for each node, we 

generate a character in the string. A different character will be assigned to 
each tag having a different path from the root in the DOM tree. Fig. 4 
shows the strings s0 and s1 obtained for the records r0 and r1 in Fig. 3. 

2. We compute the edit-distance similarity between ri and rj , denoted as es (ri, rj), as 
the string edit distance between si and sj (ed(ri,rj)) calculated using a variant of the 
Levenshtein algorithm [8], which does not allow substitution operations (only 
insertions and deletions are permitted). To obtain a similarity score between 0 and 
1, we normalize the result using the equation (1). In our example from Fig. 4, the 
similarity between r0 and r1 is 1- (2 / (26+28)) = 0.96. 

 ( ) ( ) ( ) ( )jijiji slenslenssedrres +−= /,1,   (1) 

4.2   Generating the Candidate Record Lists 

In this section, we describe how we generate a set of candidate record lists inside the 
data region previously chosen. Each candidate record list will propose a particular 
division of the data region into records. 

By property 1, every record is composed of one or several consecutive sibling sub-
trees, which are direct descendants of the root node of the data region. We could 
leverage on this property to generate a candidate record list for each possible division 
of the subtrees verifying it. Nevertheless, the number of possible combinations would 
be too high: if the number of subtrees is n, the possible number of divisions verifying 
property 1 is 2n-1(notice that different records in the same list may be composed of a 
different number of subtrees, as for instance r0 and r1 in Fig. 3). In some sources, n 
can be low, but in others it may reach values in the hundreds (e.g. a source showing 
25 data records, with an average of 4 subtrees for each record). Therefore, this 
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exhaustive approach is not feasible. The remaining of this section explains how we 
overcome these difficulties.  

Our method has two stages: clustering the subtrees according to their similarity and 
using the groups to generate the candidate record divisions. 

Grouping the subtrees. For grouping the subtrees according to their similarity, we 
use a clustering-based process we describe in the following lines: 

1. Let us consider the set {t1,…,tn} of all the subtrees which are direct children of the 
node chosen as root of the data region. Each ti can be represented as a string using 
the method described in section 4.1. We will term these strings as s1,…,sn. 

2. Compute the similarity matrix. This is a nxn matrix where the (i,j) position 
(denoted mij) is obtained as es(ti, tj), the edit-distance similarity between ti and tj.  

3. We define the column similarity between ti and tj, denoted cs(ti,tj), as the inverse 
of the average absolute error between the columns corresponding to ti and tj in the 
similarity matrix (2). Therefore, to consider two subtrees as similar, the column 
similarity measure requires their columns in the similarity matrix to be very 
similar. This means two subtrees must have roughly the same edit-distance 
similarity with respect to the rest of subtrees in the set to be considered as similar. 
We have found column similarity to be more robust for estimating similarity 
between ti and tj in the clustering process than directly using es(ti, tj). 

4. Now, we apply bottom-up clustering [3] to group the subtrees. The basic idea 
behind this kind of clustering is to start with one cluster for each element and 
successively combine them into groups within which inter-element similarity is 
high, collapsing down to as many groups as desired.  

( ) ∑ =
−−=

nk jkikji nmmttcs
..1

/1,  (2) ( ) ( ) ( )∑ Φ∈
−ΦΦ=Φ

ji tt ji ttcss
,

,1/2  
(3) 

Fig. 5 shows the pseudo-code for the bottom-up clustering algorithm. Inter-element 
similarity of a set Φ is estimated using the auto-similarity measure (s(Φ)), and it is 
computed as specified in (3).  

1.  Let each subtree t be in a singleton group {t}

2.  Let G be the set of groups

3.  Let Ωg be the group-similarity threshold and

Ωe be the element-similarity threshold

4.  While |G| > 1 do

4.1  choose , a pair of groups which maximize the auto-similarity measure (see equation 3). 

The set must verify:

a)

b) 

4.2  if no pair verifies the above conditions, then stop

4.3  remove and from G

4.4  let

4.5  insert into G

5.  End while

( ) ejicsji Ω>Δ∪Γ∈Δ∪Γ∈∀ ,,,

G∈ΔΓ, ( )Δ∪Γs

( ) gs Ω>Δ∪Γ
Δ∪Γ

Δ∪Γ=Φ
Φ

Γ Δ

 

Fig. 5. Pseudo-code for bottom-up clustering 
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We use column similarity as the similarity measure between ti and tj. To allow a new 
group to be formed, it must verify two thresholds: 

− The global auto-similarity of the group must reach the auto-similarity threshold 
Ωg. In our current implementation, we set this threshold to 0.9. 

− The column similarity between every pair of elements from the group must reach 
the pairwise-similarity threshold Ωe. This threshold is used to avoid creating 
groups that, although showing high overall auto-similarity, contain some dissimilar 
elements. In our current implementation, we set this threshold to 0.9.  

Generating the candidate record divisions. For generating the candidate record 
divisions, we assign an identifier to each of the generated clusters. Then, we build a 
sequence by listing in order the subtrees in the data region, representing each subtree 
with the identifier of the cluster it belongs to. For instance, in our example of Fig. 3, 
the algorithm generates three clusters, leading to the string c0c1c0c2c2c0c1c2c0c1. 

The data region may contain, either at the beginning or at the end, some subtrees 
that are not part of the data. For instance, these subtrees may contain information 
about the number of results or web forms to navigate to other result intervals. These 
subtrees will typically be alone in a cluster, since there are not other similar subtrees 
in the data region. Therefore, we pre-process the string from the beginning and from 
the end, removing tokens until we find the first cluster identifier that appears more 
than once in the sequence. In some cases, this pre-processing is not enough and some 
additional subtrees will still be included in the sequence. Nevertheless, they will 
typically be removed from the output as a side-effect of the final stage (see section 5).  

Once the pre-processing step is finished, we proceed to generate the candidate 
record divisions. By property 1, we know each record is formed by a list of 
consecutive subtrees (i.e. characters in the string). From our page model, we know 
records are encoded consistently. Therefore, the string will tend to be formed by a 
repetitive sequence of cluster identifiers, each sequence corresponding to a data 
record. The sequences for two records may be slightly different. Nevertheless, we will 
assume they always either start or end with a subtree belonging to the same cluster 
(i.e. all the data records always either start or end in the same way). This is based on 
the following heuristic observations: 

− In many sources, records are visually delimited in an unambiguous manner to 
improve clarity. This delimiter is present before or after every record.  

− When there is not an explicit delimiter between data records, the first data fields 
appearing in a record are usually key fields appearing in every record. 

Based on the former observations, we will generate the following candidate lists: 

− For each cluster ci, i=1..k, we will generate two candidate divisions: one assuming 
every record starts with ci and another assuming every record ends with ci. For 
instance, Fig. 6 shows the candidate divisions obtained for the example of Fig. 3.  

− In addition, we will add a candidate record division considering each record is 
formed by exactly one subtree. 

This reduces the number of candidate divisions from 2n-1, where n is the number of 
subtrees, to 1+2k, where k is the number of generated clusters, turning feasible to 
evaluate each candidate list to choose the best one.  
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Fig. 6. Candidate record divisions obtained for example page from Fig. 3 

4.3   Choosing the Best Candidate Record List 

To choose the correct candidate record list, we rely on the observation that the records 
in a list tend to be similar to each other. Therefore, we will choose the candidate list 
showing the highest auto-similarity. 

Given a candidate list composed of the records <r1, …, rn>, we compute its auto-
similarity as the weighted average of the edit-distance similarities between each pair 
of records of the list. The contribution of each pair to the average is weighted by the 
length of the compared registers. See equation 4. 

( ) ( ) ( )( ) ( ) ( )∑∑ ≠==≠==
++

jinjni jijinjni jiji rlenrlenrlenrlenrres
,..1,..1,..1,..1

/,  (4) 

For instance, in Fig. 6, the first candidate record division is chosen. 

5   Extracting the Attributes of the Data Records 

In this section, we describe our techniques for extracting the values of the attributes of 
the data records identified in the previous section. 

The basic idea consists in transforming each record from the list into a string using 
the method described in section 4.1, and then using string alignment techniques to 
identify the attributes in each record. An alignment between two strings matches the 
characters in one string with the characters in the other one, in such a way that the 
edit-distance between the two strings is minimized. There may be more than one 
optimal alignment between two strings. In that case, we choose any of them. 

For instance, Fig. 7a shows an excerpt of the alignment between the strings 
representing the records in our example. Each aligned text token roughly corresponds 
with an attribute of the record. Notice that to obtain the actual value for an attribute 
we may need to remove common prefixes/suffixes found in every occurrence of an 
attribute. For instance, in our example, to obtain the value of the price attribute we 
would detect and remove the common suffix “€€ ”. In addition, those aligned text nodes 
having the same value in all the records (e.g. “Buy new:”, “Price used:”) will be 
considered “labels” instead of attribute values and will not appear in the output. 

To achieve our goals, it is not enough to align two records: we need to align all of 
them. Nevertheless, optimal multiple string alignment algorithms have a complexity 
of O(nk). Therefore, we need to use an approximation algorithm. Several methods 
have been proposed for this task [10][6]. We use a variation of the center star 
approximation algorithm [6], which is also similar to a variation used in [14] 
(although they use tree alignment). The algorithm works as follows: 
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r0 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

r1 … TR0 TD0 TEXT0 SPAN0 TEXT1                                                        TR0 TD0 TEXT0 SPAN0 TEXT1

r2 … TR0 TD0 TEXT0 SPAN0 TEXT1   TEXT0 SPAN0 TEXT1  TR0 TD0 TEXT0 SPAN0 TEXT1

r3 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

PRICE PRICEUSED OTHEREDITIONS

“Buy new:” “Price used:” “Other editions:”
a b c b c

a b d c e

current master, m =

new record, s =

optimal alignment
a b – c b c
a b d c b -

a b d c b cnew master, m =

a) b)

 

Fig. 7. (a) Alignment between records of Fig. 1 (b) example of alignment with the master 

1. The longest string is chosen as the “master string”, m. 
2. Initially, S, the set of “still not aligned strings” contains all the strings but m.  
3. For every s Є S, align s with m. If there is only one optimal alignment between s 

and m and  the alignment matches any null position in m with a character from s, 
then the character is added to m replacing the null position (an example is shown 
in Fig. 7b). Then, s is removed from S. 

4. Repeat step 3 until S is empty or the master string m does not change. 

6   Experience 

This section describes the empirical evaluation of our techniques. During the 
development phase, we used a set of 20 pages from 20 different web sources. The 
tests performed with these pages were used to adjust the algorithm and to choose 
suitable values for the used thresholds. 

For the experimental tests, we chose 200 new websites in different application 
domains (book and music shops, patent information, publicly financed R&D projects, 
movies information, etc). We performed one query in each website and collected the 
first page containing the list of results. Some queries returned only 2-3 results while 
others returned hundreds of results. The collection of pages is available online*. 

While collecting the pages for our experiments, we found three data sources where 
our page creation model is not correct. Our model assumes that all the attributes of a 
data record are shown contiguously in the page. In those sources, the assumption does 
not hold and, therefore, our system would fail. We did not consider those sources in 
our experiments. In the related work section, we will further discuss this issue. 

We measured the results at three stages of the process: after choosing the data 
region containing the dominant list of data records, after choosing the best candidate 
record division and after extracting the structured data contained in the page. Table 1 
shows the results obtained in the empirical evaluation.  

In the first stage, we use the information about the executed query, as explained at 
the end of section 3. As it can be seen, the data region is correctly detected in all 
pages but two. In those cases, the answer to the query returned few results and there 
was a larger list on a sidebar of the page containing items related to the query.  

In the second stage, we classify the results in two categories: correct when the 
chosen record division is correct, and incorrect when the chosen record division 
contains some incorrect records (not necessarily all). For instance, two different 
records may be concatenated as one or one record may appear segmented into two. 
                                                           
* http://www.tic.udc.es/~mad/resources/projects/dataextraction/testcollection_0507.htm 



476 M. Álvarez et al. 

As it can be seen, the chosen record division is correct in the 93.50% of the cases. 
It is important to notice that, even in incorrect divisions, there will usually be many 
correct records. Therefore, stage 3 may still work fine for them. The main reason for 
the failures at this stage is that, in a few sources, the auto-similarity measure 
described in section 4.3 fails to detect the correct record division, although it is 
between the candidates. This happens because, in these sources, some data records are 
quite dissimilar to each other. For instance, in one case where we have two 
consecutive data records that are much shorter than the remaining, and the system 
chooses a candidate division that groups these two records into one.  

In stage 3, we use the standard metrics recall and precision. These are the most 
important metrics in what refers to web data extraction applications because they 
measure the system performance at the end of the whole process. As it can be seen, 
the obtained results are very high, reaching respectively to 98.55% and 97.39%.  Most 
of the failures come from the errors propagated from the previous stage.  

7   Related Work 

Wrapper generation techniques for web data extraction have been an active research 
field for years. Many approaches have been proposed [2][9][11][12][13]. [7] provides 
a brief survey. 

All the wrapper generation approaches require some kind of human intervention to 
create and configure the wrapper. When the sources are not known in advance, such 
as in focused crawling applications, this approach is not feasible. 

Several works have addressed the problem of performing web data extraction tasks 
without requiring human input. IEPAD [4] uses the Patricia tree [6] and string 
alignment techniques to search for repetitive patterns in the HTML tag string of a 
page. The method used by IEPAD is very probable to generate incorrect patterns 
along with the correct ones, so human post-processing of the output is required.  

RoadRunner [5] receives as input multiple pages conforming to the same template 
and uses them to induce a union-free regular expression (UFRE) which can be used to 
extract the data from the pages conforming to the template. The basic idea consists in 
performing an iterative process where the system takes the first page as initial UFRE 
and then, for each subsequent page, tests if it can be generated using the current 
template. If not, the template is modified to represent also the new page. The 
proposed method cannot deal with disjunctions in the input schema and it requires 
receiving as input multiple pages conforming to the same template. 

Table 1. Results obtained in the empirical evaluation 

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1
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As well as RoadRunner, ExAlg receives as input multiple pages conforming to the 
same template and uses them to induce the template and derive a set of data extraction 
rules. ExAlg makes some assumptions about web pages which, according to the own 
experiments of the authors, do not hold in a significant number of cases: for instance, 
it is assumed that the template assign a relatively large number of tokens to each type 
constructor. It is also assumed that a substantial subset of the data fields to be 
extracted have a unique path from the root in the DOM tree of the pages. It also 
requires receiving as input multiple pages. 

[14] presents DEPTA, a method that uses the visual layout of information in the 
page and tree edit-distance techniques to detect lists of records in a page and to extract 
the structured data records that form it. As well as in our method, DEPTA requires as 
input one single page containing a list of structured data records. They also use the 
observation that, in the DOM tree of a page, each record in a list is composed of a set 
of consecutive sibling subtrees. Nevertheless, they make two additional assumptions: 
1) that exactly the same number of sub-trees must form all records, and 2) that the 
visual gap between two data records in a list is bigger than the gap between any two 
data values from the same record. Those assumptions do not hold in all web sources. 
For instance, neither of the two assumptions holds in our example page of Fig. 3. In 
addition, the method used by DEPTA to detect data regions is considerably more 
expensive than ours.  

A limitation of our approach arises in the pages where the attributes constituting a 
data record are not contiguous in the page. Those cases do not conform to our page 
creation model and, therefore, our current method is unable to deal with them. 
Although DEPTA assumes a page creation model similar to the one we use, after 
detecting a list of records, they try to identify these cases and transform them in 
“conventional” ones before continuing the process. These heuristics could be adapted 
to work with our approach. 
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