
T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 466–478, 2007.
© IFIP International Federation for Information Processing 2007

Finding and Extracting Data Records from Web Pages*

Manuel Álvarez, Alberto Pan**, Juan Raposo, Fernando Bellas, and Fidel Cacheda

Department of Information and Communications Technologies
University of A Coruña, Campus de Elviña s/n. 15071. A Coruña, Spain

{mad,apan,jrs,fbellas,fidel}@udc.es

Abstract. Many HTML pages are generated by software programs by querying
some underlying databases and then filling in a template with the data. In these
situations the metainformation about the data structure is lost, so automated
software programs cannot process these data in such powerful manners as
information from databases. We propose a set of novel techniques for detecting
structured records in a web page and extracting the data values that constitute
them. Our method needs only an input page. It starts by identifying the data
region of interest in the page. Then it is partitioned into records by using a
clustering method that groups similar subtrees in the DOM tree of the page.
Finally, the attributes of the data records are extracted by using a method based
on multiple string alignment. We have tested our techniques with a high number
of real web sources, obtaining high precision and recall values.

1 Introduction

In today’s Web, there are many sites providing access to structured data contained in
an underlying database. Typically, these sources, known as “semi-structured” web
sources, provide some kind of HTML form that allows issuing queries against the
database, and they return the query results embedded in HTML pages conforming to a
certain fixed template. For instance, Fig. 1 shows a page containing a list of data
records, representing the information about books in an Internet shop.

Allowing software programs to access these structured data is useful for a variety
of purposes. For instance, it allows data integration applications to access web
information in a manner similar to a database. It also allows information gathering
applications to store the retrieved information maintaining its structure and, therefore,
allowing more sophisticated processing.

Several approaches have been reported in the literature for building and
maintaining “wrappers” for semi-structured web sources ([2][9][11][12][13]; [7] pro-
vides a brief survey). Although wrappers have been successfully used for many web
data extraction and automation tasks, this approach has the inherent limitation that the
target data sources must be known in advance. This is not possible in all cases.

* This research was partially supported by the Spanish Ministry of Education and Science

under project TSI2005-07730.
** Alberto Pan’s work was partially supported by the “Ramón y Cajal” programme of the

Spanish Ministry of Education and Science.

 Finding and Extracting Data Records from Web Pages 467

Consider, for instance, the case of “focused crawling” applications [3], which
automatically crawl the web looking for topic-specific information.

Several automatic methods for web data extraction have been also proposed in the
literature [1][4][5][14], but they present several limitations. First, [1][5] require
multiple pages generated using the same template as input. This can be inconvenient
because a sufficient number of pages need to be collected. Second, the proposed
methods make some assumptions about the pages containing structured data which do
not always hold. For instance, [14] assumes the visual space between two data records
in a page is always greater than any gap inside a data record (we will provide more
detail about these issues in the related work section).

In this paper, we present a new method to automatically detecting a list of
structured records in a web page and extract the data values that constitute them. Our
method requires only one page containing a list of data records as input. In addition, it
can deal with pages that do not verify the assumptions required by other previous
approaches. We have also validated our method in a high number of real websites,
obtaining very good effectiveness.

The rest of the paper is organized as follows. Section 2 describes some basic
observations and properties our approach relies on. Sections 3-5 describe the
proposed techniques and constitute the core of the paper. Section 3 describes the
method to detect the data region in the page containing the target list of records.
Section 4 explains how we segment the data region into data records. Section 5
describes how we extract the values of each individual attribute from the data records.
Section 6 describes our experiments with real web pages. Section 7 discusses related
work.

Fig. 1. Example HTML page containing a list of data records

468 M. Álvarez et al.

2 Basic Observations and Properties

We are interested in detecting and extracting lists of structured data records embedded
in HTML pages. We assume the pages containing such lists are generated according to
the page creation model described in [1]. This model formally captures the basic
observations that the data records in a list are shown contiguously in the page and are
formatted in a consistent manner: that is, the occurrences of each attribute in several
records are formatted in the same way and they always occur in the same relative
position with respect to the remaining attributes. For instance, Fig. 2 shows an excerpt
of the HTML code of the page in Fig. 1. As it can be seen, it verifies the aforementioned
observations.

HTML pages can also be represented as DOM trees as shown in Fig. 3. The
representation as a DOM tree of the pages verifying the above observations has the
following properties:

− Property 1: Each record in the DOM tree is disposed in a set of consecutive sibling
subtrees. Additionally, although it cannot be derived strictly from the above
observations, it is heuristically found that a data record comprises a certain number
of complete subtrees. For instance, in Fig. 3 the first two subtrees form the first
record, and the following three subtrees form the second record.

− Property 2: The occurrences of each attribute in several records have the same path
from the root in the DOM tree. For instance, in Fig. 3 it can be seen how all the
instances of the attribute title have the same path in the DOM tree, and the same
applies to the remaining attributes.

3 Finding the Dominant List of Records in a Page

In this section, we describe how we locate the data region of the page containing the
main list of records in the page.

From the property 1 of the previous section, we know finding the data region is
equivalent to finding the common parent node of the sibling subtrees forming the data
records. The subtree having as root that node will be the target data region. For
instance, in our example of Fig. 3 the parent node we should discover is n1.

<html><body>
<div> ... </div>
<div> ... </div>
<div>
<table> ... </table>
<table>
<tr><td><table>
<tr><td>

<a>Head First Java. 2nd Edition

by Kathy Sierra and Bert Bates

Paperback - Feb 9. 2005</td>

<td></td></tr></table></td></tr>
<tr><td>Buy new: 29.67€

Price used: 20.00€</td></tr>

<tr><td><table>
<tr><td>

<a>Java Persistence with Hibernate

by Christian Bauer and Gavin King

Paperback - Nov 24. 2006</td>

<td></td></tr></table></td></tr>
<tr><td>Buy new: 37.79€</td></tr>
<tr><td>Other editions: e-Books & Docs

</td></tr>
...

</table>
...

</div>
</body></html>

Fig. 2. HTML source code for page in Fig. 1

 Finding and Extracting Data Records from Web Pages 469

Our method for finding the region containing the dominant list of records in a page
p consists of the following steps:

1. Let us consider N, the set composed by all the nodes in the DOM tree of p. To

each node ni Є N, we will assign a score called si. Initially, 0..1 =∀ = iNi s .

2. Compute T, the set of all the text nodes in N.
3. Divide T into subsets p1, p2,…,pm, in a way such that all the text nodes with the

same path from the root in the DOM tree are contained in the same pi. To compute
the paths from the root, we ignore tag attributes.

4. For each pair of text nodes belonging to the same group, compute nj as their
deepest common ancestor in the DOM tree, and add 1 to sj (the score of nj).

5. Let nmax be the node having a higher score. Choose the DOM subtree having nmax
as root of the desired data region.

Now, we provide the justification for this algorithm. First, by definition, the target
data region contains a list of records and each data record is composed of a series of
attributes. By property 2, we know all the occurrences of the same attribute have the
same path from the root. Therefore, the subtree containing the dominant list in the
page will typically contain more texts with the same path from the root than other
regions. In addition, given two text nodes with the same path in the DOM tree, the
following situations may occur:

1. By property 1, if the text nodes are occurrences of texts in different records (e.g.
two values of the same attribute in different records), then their deepest common
ancestor in the DOM tree will be the root node of the data region containing all the
records. Therefore, when considering that pair in step 4, the score of the correct
node is increased. For instance, in Fig. 3 the deepest common ancestor of d1 and d3
is n1, the root of the subtree containing the whole data region.

2. If the text nodes are occurrences from different attributes in the same record, then
in some cases, their deepest common ancestor could be a deeper node than the one
we are searching for and the score of an incorrect node would be increased. For
instance, in the Fig. 3 the deepest common ancestor of d1 and d2 is n2.

By property 2, we can infer that there will usually be more occurrences of the case 1
and, therefore, the algorithm will output the right node. Now, we explain the reason
for this. Let us consider the pair of text nodes (t11,t12) corresponding with the
occurrences of two attributes in a record. (t11, t12) is a pair in the case 2. But, by
property 2, for each record ri in which both attributes appear, we will have pairs (t11,
ti1), (t11, ti2), (t12, ti1), (t12, ti2), which are in case 1. Therefore, in the absence of
optional fields, it can be easily proved that there will be more pairs in the case 1.
When optional fields exist, it is still very probable.

This method tends to find the list in the page with the largest number of records
and the largest number of attributes in each record. When the pages we want to
extract data from have been obtained by executing a query on a web form, we are
typically interested in extracting the data records that constitute the answer to the
query, even if it is not the larger list (this may happen if the query has few results). If
the executed query is known, this information can be used to refine the above method.
The idea is very simple: in the step 2 of the algorithm, instead of using all the text

470 M. Álvarez et al.

TABLE

TR TR TR TR TR TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN SPAN

n1

r0

r2 r3

TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN

TR

TD

SPAN

r1

DIV

BODY

HTML

…

……

… …

TITLE: Head First Java. 2nd Edition
AUTHOR: Kathy Sierra and Bert Bates
FORMAT: Paperback
PUBDATE: Feb 9. 2005
PRICE: 29.67
PRICEUSED: 20.00

TITLE: Java Persistence with Hibernate
AUTHOR: Christian Bauer and Gavin King
FORMAT: Paperback
PUBDATE: Nov 24. 2006
PRICE: 37.79
OTHEREDITIONS: e-Books & Docs

… … … … …

Head First Java.
2nd Edition

Kathy Sierra
and Bert Bates

Paperback

Feb 9. 2005

29.67€€ 20.00€€ 37.79€€ e-Books
& Docs

Java Persistence
with Hibernate

Christian Bauer
and Gavin King

Paperback

Nov 24. 2006

t0 t1

#text

#text #text #text #text

t2 t3 t4 t5 t6 t7 t8 t9

d1

d2

n2

d3

**

**

**

**

#text

Fig. 3. DOM tree for HTML page in Fig. 1

nodes in the DOM tree, we will use only those text nodes containing text values used
in the query with operators whose semantic be equals or contains. For instance, let us
assume the page in Fig. 3 was obtained by issuing a query we could write as (title
contains ‘java’) AND (format equals ‘paperback’). Then, the only text nodes
considered in step 2 would be the ones marked with an ‘*’ in Fig. 3.

4 Dividing the List into Records

Now we proceed to describe our techniques for segmenting the data region in
fragments, each one containing at most one data record.

Our method can be divided into the following steps:

− Generate a set of candidate record lists. Each candidate record list will propose a
particular division of the data region into records.

− Choose the best candidate record list. The method we use is based on computing an
auto-similarity measure between the records in the candidate record lists. We
choose the record division lending to records with the higher similarity.

Sections 4.2 and 4.3 describe in detail each one of the two steps. Both tasks need a
way to estimate the similarity between two sequences of consecutive sibling subtrees
in the DOM tree of a page. The method we use for this is described in section 4.1.

4.1 Edit-Distance Similarity Measure

To compute “similarity” measures we use techniques based in string edit-distance
algorithms. More precisely, to compute the edit-distance similarity between two
sequences of consecutive sibling subtrees named ri and rj in the DOM tree of a page,
we perform the following steps:

 Finding and Extracting Data Records from Web Pages 471

TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN SPAN

#text

#text

#text

#text

#text

t1 TR0

TD0

TEXT0 SPAN0

TEXT1

TEXT0 SPAN0

TEXT1

TR0

TD0

TABLE0

TR1

TD1

IMG0

TD1

#text

#text

#text #text

SPAN1

A1

TEXT4

BR0 TEXT2 SPAN1

TEXT3

BR0 SPAN1

TEXT3

TEXT2

t0

s0 t0: TR0 TD0 TABLE0 TR1 TD1 SPAN1 A1 TEXT4 BR0 TEXT2 SPAN1 TEXT3 BR0 SPAN1 TEXT3 TEXT2 TD1 IMG0
t1: TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

s1 t2: TR0 TD0 TABLE0 TR1 TD1 SPAN1 A1 TEXT4 BR0 TEXT2 SPAN1 TEXT3 BR0 SPAN1 TEXT3 TEXT2 TD1 IMG0
t3: TR0 TD0 TEXT0 SPAN0 TEXT1
t4: TR0 TD0 TEXT0 SPAN0 TEXT1

r0

len(s0) = 26 len(s1) = 28 ed(r0, r1) = ed(s0, s1) = 2

Fig. 4. Strings obtained for the records r0 and r1 in Fig. 3

1. We represent ri and rj as strings (we will term them si and sj). It is done as follows:
a. We substitute every text node by a special tag called text.
b. We traverse each subtree in depth first order and, for each node, we

generate a character in the string. A different character will be assigned to
each tag having a different path from the root in the DOM tree. Fig. 4
shows the strings s0 and s1 obtained for the records r0 and r1 in Fig. 3.

2. We compute the edit-distance similarity between ri and rj , denoted as es (ri, rj), as
the string edit distance between si and sj (ed(ri,rj)) calculated using a variant of the
Levenshtein algorithm [8], which does not allow substitution operations (only
insertions and deletions are permitted). To obtain a similarity score between 0 and
1, we normalize the result using the equation (1). In our example from Fig. 4, the
similarity between r0 and r1 is 1- (2 / (26+28)) = 0.96.

 () () () ()jijiji slenslenssedrres +−= /,1, (1)

4.2 Generating the Candidate Record Lists

In this section, we describe how we generate a set of candidate record lists inside the
data region previously chosen. Each candidate record list will propose a particular
division of the data region into records.

By property 1, every record is composed of one or several consecutive sibling sub-
trees, which are direct descendants of the root node of the data region. We could
leverage on this property to generate a candidate record list for each possible division
of the subtrees verifying it. Nevertheless, the number of possible combinations would
be too high: if the number of subtrees is n, the possible number of divisions verifying
property 1 is 2n-1(notice that different records in the same list may be composed of a
different number of subtrees, as for instance r0 and r1 in Fig. 3). In some sources, n
can be low, but in others it may reach values in the hundreds (e.g. a source showing
25 data records, with an average of 4 subtrees for each record). Therefore, this

472 M. Álvarez et al.

exhaustive approach is not feasible. The remaining of this section explains how we
overcome these difficulties.

Our method has two stages: clustering the subtrees according to their similarity and
using the groups to generate the candidate record divisions.

Grouping the subtrees. For grouping the subtrees according to their similarity, we
use a clustering-based process we describe in the following lines:

1. Let us consider the set {t1,…,tn} of all the subtrees which are direct children of the
node chosen as root of the data region. Each ti can be represented as a string using
the method described in section 4.1. We will term these strings as s1,…,sn.

2. Compute the similarity matrix. This is a nxn matrix where the (i,j) position
(denoted mij) is obtained as es(ti, tj), the edit-distance similarity between ti and tj.

3. We define the column similarity between ti and tj, denoted cs(ti,tj), as the inverse
of the average absolute error between the columns corresponding to ti and tj in the
similarity matrix (2). Therefore, to consider two subtrees as similar, the column
similarity measure requires their columns in the similarity matrix to be very
similar. This means two subtrees must have roughly the same edit-distance
similarity with respect to the rest of subtrees in the set to be considered as similar.
We have found column similarity to be more robust for estimating similarity
between ti and tj in the clustering process than directly using es(ti, tj).

4. Now, we apply bottom-up clustering [3] to group the subtrees. The basic idea
behind this kind of clustering is to start with one cluster for each element and
successively combine them into groups within which inter-element similarity is
high, collapsing down to as many groups as desired.

() ∑ =
−−=

nk jkikji nmmttcs
..1

/1, (2) () () ()∑ Φ∈
−ΦΦ=Φ

ji tt ji ttcss
,

,1/2
(3)

Fig. 5 shows the pseudo-code for the bottom-up clustering algorithm. Inter-element
similarity of a set Φ is estimated using the auto-similarity measure (s(Φ)), and it is
computed as specified in (3).

1. Let each subtree t be in a singleton group {t}

2. Let G be the set of groups

3. Let Ωg be the group-similarity threshold and

Ωe be the element-similarity threshold

4. While |G| > 1 do

4.1 choose , a pair of groups which maximize the auto-similarity measure (see equation 3).

The set must verify:

a)

b)

4.2 if no pair verifies the above conditions, then stop

4.3 remove and from G

4.4 let

4.5 insert into G

5. End while

() ejicsji Ω>Δ∪Γ∈Δ∪Γ∈∀ ,,,

G∈ΔΓ, ()Δ∪Γs

() gs Ω>Δ∪Γ
Δ∪Γ

Δ∪Γ=Φ
Φ

Γ Δ

Fig. 5. Pseudo-code for bottom-up clustering

 Finding and Extracting Data Records from Web Pages 473

We use column similarity as the similarity measure between ti and tj. To allow a new
group to be formed, it must verify two thresholds:

− The global auto-similarity of the group must reach the auto-similarity threshold
Ωg. In our current implementation, we set this threshold to 0.9.

− The column similarity between every pair of elements from the group must reach
the pairwise-similarity threshold Ωe. This threshold is used to avoid creating
groups that, although showing high overall auto-similarity, contain some dissimilar
elements. In our current implementation, we set this threshold to 0.9.

Generating the candidate record divisions. For generating the candidate record
divisions, we assign an identifier to each of the generated clusters. Then, we build a
sequence by listing in order the subtrees in the data region, representing each subtree
with the identifier of the cluster it belongs to. For instance, in our example of Fig. 3,
the algorithm generates three clusters, leading to the string c0c1c0c2c2c0c1c2c0c1.

The data region may contain, either at the beginning or at the end, some subtrees
that are not part of the data. For instance, these subtrees may contain information
about the number of results or web forms to navigate to other result intervals. These
subtrees will typically be alone in a cluster, since there are not other similar subtrees
in the data region. Therefore, we pre-process the string from the beginning and from
the end, removing tokens until we find the first cluster identifier that appears more
than once in the sequence. In some cases, this pre-processing is not enough and some
additional subtrees will still be included in the sequence. Nevertheless, they will
typically be removed from the output as a side-effect of the final stage (see section 5).

Once the pre-processing step is finished, we proceed to generate the candidate
record divisions. By property 1, we know each record is formed by a list of
consecutive subtrees (i.e. characters in the string). From our page model, we know
records are encoded consistently. Therefore, the string will tend to be formed by a
repetitive sequence of cluster identifiers, each sequence corresponding to a data
record. The sequences for two records may be slightly different. Nevertheless, we will
assume they always either start or end with a subtree belonging to the same cluster
(i.e. all the data records always either start or end in the same way). This is based on
the following heuristic observations:

− In many sources, records are visually delimited in an unambiguous manner to
improve clarity. This delimiter is present before or after every record.

− When there is not an explicit delimiter between data records, the first data fields
appearing in a record are usually key fields appearing in every record.

Based on the former observations, we will generate the following candidate lists:

− For each cluster ci, i=1..k, we will generate two candidate divisions: one assuming
every record starts with ci and another assuming every record ends with ci. For
instance, Fig. 6 shows the candidate divisions obtained for the example of Fig. 3.

− In addition, we will add a candidate record division considering each record is
formed by exactly one subtree.

This reduces the number of candidate divisions from 2n-1, where n is the number of
subtrees, to 1+2k, where k is the number of generated clusters, turning feasible to
evaluate each candidate list to choose the best one.

474 M. Álvarez et al.

0.9489

0.7207

0.5766

0.7477

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

starting with c0

ending with c1

ending with c0

starting with c2

0.4805

0.4595

0.5105

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

starting with c1

one record for each subtree

ending with c2

Fig. 6. Candidate record divisions obtained for example page from Fig. 3

4.3 Choosing the Best Candidate Record List

To choose the correct candidate record list, we rely on the observation that the records
in a list tend to be similar to each other. Therefore, we will choose the candidate list
showing the highest auto-similarity.

Given a candidate list composed of the records <r1, …, rn>, we compute its auto-
similarity as the weighted average of the edit-distance similarities between each pair
of records of the list. The contribution of each pair to the average is weighted by the
length of the compared registers. See equation 4.

() () ()() () ()∑∑ ≠==≠==
++

jinjni jijinjni jiji rlenrlenrlenrlenrres
,..1,..1,..1,..1

/, (4)

For instance, in Fig. 6, the first candidate record division is chosen.

5 Extracting the Attributes of the Data Records

In this section, we describe our techniques for extracting the values of the attributes of
the data records identified in the previous section.

The basic idea consists in transforming each record from the list into a string using
the method described in section 4.1, and then using string alignment techniques to
identify the attributes in each record. An alignment between two strings matches the
characters in one string with the characters in the other one, in such a way that the
edit-distance between the two strings is minimized. There may be more than one
optimal alignment between two strings. In that case, we choose any of them.

For instance, Fig. 7a shows an excerpt of the alignment between the strings
representing the records in our example. Each aligned text token roughly corresponds
with an attribute of the record. Notice that to obtain the actual value for an attribute
we may need to remove common prefixes/suffixes found in every occurrence of an
attribute. For instance, in our example, to obtain the value of the price attribute we
would detect and remove the common suffix “€€ ”. In addition, those aligned text nodes
having the same value in all the records (e.g. “Buy new:”, “Price used:”) will be
considered “labels” instead of attribute values and will not appear in the output.

To achieve our goals, it is not enough to align two records: we need to align all of
them. Nevertheless, optimal multiple string alignment algorithms have a complexity
of O(nk). Therefore, we need to use an approximation algorithm. Several methods
have been proposed for this task [10][6]. We use a variation of the center star
approximation algorithm [6], which is also similar to a variation used in [14]
(although they use tree alignment). The algorithm works as follows:

 Finding and Extracting Data Records from Web Pages 475

r0 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

r1 … TR0 TD0 TEXT0 SPAN0 TEXT1 TR0 TD0 TEXT0 SPAN0 TEXT1

r2 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1 TR0 TD0 TEXT0 SPAN0 TEXT1

r3 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

PRICE PRICEUSED OTHEREDITIONS

“Buy new:” “Price used:” “Other editions:”
a b c b c

a b d c e

current master, m =

new record, s =

optimal alignment
a b – c b c
a b d c b -

a b d c b cnew master, m =

a) b)

Fig. 7. (a) Alignment between records of Fig. 1 (b) example of alignment with the master

1. The longest string is chosen as the “master string”, m.
2. Initially, S, the set of “still not aligned strings” contains all the strings but m.
3. For every s Є S, align s with m. If there is only one optimal alignment between s

and m and the alignment matches any null position in m with a character from s,
then the character is added to m replacing the null position (an example is shown
in Fig. 7b). Then, s is removed from S.

4. Repeat step 3 until S is empty or the master string m does not change.

6 Experience

This section describes the empirical evaluation of our techniques. During the
development phase, we used a set of 20 pages from 20 different web sources. The
tests performed with these pages were used to adjust the algorithm and to choose
suitable values for the used thresholds.

For the experimental tests, we chose 200 new websites in different application
domains (book and music shops, patent information, publicly financed R&D projects,
movies information, etc). We performed one query in each website and collected the
first page containing the list of results. Some queries returned only 2-3 results while
others returned hundreds of results. The collection of pages is available online*.

While collecting the pages for our experiments, we found three data sources where
our page creation model is not correct. Our model assumes that all the attributes of a
data record are shown contiguously in the page. In those sources, the assumption does
not hold and, therefore, our system would fail. We did not consider those sources in
our experiments. In the related work section, we will further discuss this issue.

We measured the results at three stages of the process: after choosing the data
region containing the dominant list of data records, after choosing the best candidate
record division and after extracting the structured data contained in the page. Table 1
shows the results obtained in the empirical evaluation.

In the first stage, we use the information about the executed query, as explained at
the end of section 3. As it can be seen, the data region is correctly detected in all
pages but two. In those cases, the answer to the query returned few results and there
was a larger list on a sidebar of the page containing items related to the query.

In the second stage, we classify the results in two categories: correct when the
chosen record division is correct, and incorrect when the chosen record division
contains some incorrect records (not necessarily all). For instance, two different
records may be concatenated as one or one record may appear segmented into two.

* http://www.tic.udc.es/~mad/resources/projects/dataextraction/testcollection_0507.htm

476 M. Álvarez et al.

As it can be seen, the chosen record division is correct in the 93.50% of the cases.
It is important to notice that, even in incorrect divisions, there will usually be many
correct records. Therefore, stage 3 may still work fine for them. The main reason for
the failures at this stage is that, in a few sources, the auto-similarity measure
described in section 4.3 fails to detect the correct record division, although it is
between the candidates. This happens because, in these sources, some data records are
quite dissimilar to each other. For instance, in one case where we have two
consecutive data records that are much shorter than the remaining, and the system
chooses a candidate division that groups these two records into one.

In stage 3, we use the standard metrics recall and precision. These are the most
important metrics in what refers to web data extraction applications because they
measure the system performance at the end of the whole process. As it can be seen,
the obtained results are very high, reaching respectively to 98.55% and 97.39%. Most
of the failures come from the errors propagated from the previous stage.

7 Related Work

Wrapper generation techniques for web data extraction have been an active research
field for years. Many approaches have been proposed [2][9][11][12][13]. [7] provides
a brief survey.

All the wrapper generation approaches require some kind of human intervention to
create and configure the wrapper. When the sources are not known in advance, such
as in focused crawling applications, this approach is not feasible.

Several works have addressed the problem of performing web data extraction tasks
without requiring human input. IEPAD [4] uses the Patricia tree [6] and string
alignment techniques to search for repetitive patterns in the HTML tag string of a
page. The method used by IEPAD is very probable to generate incorrect patterns
along with the correct ones, so human post-processing of the output is required.

RoadRunner [5] receives as input multiple pages conforming to the same template
and uses them to induce a union-free regular expression (UFRE) which can be used to
extract the data from the pages conforming to the template. The basic idea consists in
performing an iterative process where the system takes the first page as initial UFRE
and then, for each subsequent page, tests if it can be generated using the current
template. If not, the template is modified to represent also the new page. The
proposed method cannot deal with disjunctions in the input schema and it requires
receiving as input multiple pages conforming to the same template.

Table 1. Results obtained in the empirical evaluation

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1

 Finding and Extracting Data Records from Web Pages 477

As well as RoadRunner, ExAlg receives as input multiple pages conforming to the
same template and uses them to induce the template and derive a set of data extraction
rules. ExAlg makes some assumptions about web pages which, according to the own
experiments of the authors, do not hold in a significant number of cases: for instance,
it is assumed that the template assign a relatively large number of tokens to each type
constructor. It is also assumed that a substantial subset of the data fields to be
extracted have a unique path from the root in the DOM tree of the pages. It also
requires receiving as input multiple pages.

[14] presents DEPTA, a method that uses the visual layout of information in the
page and tree edit-distance techniques to detect lists of records in a page and to extract
the structured data records that form it. As well as in our method, DEPTA requires as
input one single page containing a list of structured data records. They also use the
observation that, in the DOM tree of a page, each record in a list is composed of a set
of consecutive sibling subtrees. Nevertheless, they make two additional assumptions:
1) that exactly the same number of sub-trees must form all records, and 2) that the
visual gap between two data records in a list is bigger than the gap between any two
data values from the same record. Those assumptions do not hold in all web sources.
For instance, neither of the two assumptions holds in our example page of Fig. 3. In
addition, the method used by DEPTA to detect data regions is considerably more
expensive than ours.

A limitation of our approach arises in the pages where the attributes constituting a
data record are not contiguous in the page. Those cases do not conform to our page
creation model and, therefore, our current method is unable to deal with them.
Although DEPTA assumes a page creation model similar to the one we use, after
detecting a list of records, they try to identify these cases and transform them in
“conventional” ones before continuing the process. These heuristics could be adapted
to work with our approach.

References

1. Arasu, A., Garcia-Molina, H.: Extracting Structured Data from Web Pages. In: Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (2003)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto.
In: Proc. of Very Large DataBases (VLDB) (2001)

3. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann Publishers, San Francisco (2003)

4. Chang, C., Lui, S.: IEPAD: Information extraction based on pattern discovery. In: Proc. of
2001 Int. World Wide Web Conf., pp. 681–688 (2001)

5. Crescenzi, V., Mecca, G., Merialdo, P.: ROADRUNNER: Towards automatic data
extraction from large web sites. In: Proc. of the 2001 Int. VLDB Conf., pp. 109–118
(2001)

6. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New Indices for Text: Pat trees and Pat
Arrays. Information Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs (1992)

7. Laender, A.H.F., Ribeiro-Neto, B.A., Soares da Silva, A., Teixeira, J.S.: A Brief Survey of
Web Data Extraction Tools. ACM SIGMOD Record 31(2), 84–93 (2002)

478 M. Álvarez et al.

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

9. Muslea, I., Minton, S., Knoblock, C.: Hierarchical Wrapper Induction for Semistructured
Information Sources. Autonomous Agents and Multi-Agent Systems, 93–114 (2001)

10. Notredame, C.: Recent Progresses in Multiple Sequence Alignment: A Survey. Technical
report, Information Genetique et (2002)

11. Pan, A., et al.: Semi-Automatic Wrapper Generation for Commercial Web Sources. In:
Proc. of IFIP WG8.1 Conf. on Engineering Inf. Systems in the Internet Context (EISIC)
(2002)

12. Raposo, J., Pan, A., Álvarez, M., Hidalgo, J.: Automatically Maintaining Wrappers for
Web Sources. Data & Knowledge Engineering 61(2), 331–358 (2007)

13. Zhai, Y., Liu, B.: Extracting Web Data Using Instance-Based Learning. In: Ngu, A.H.H.,
Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS,
vol. 3806, pp. 318–331. Springer, Heidelberg (2005)

14. Zhai, Y., Liu, B.: Structured Data Extraction from the Web Based on Partial Tree
Alignment. IEEE Trans. Knowl. Data Eng. 18(12), 1614–1628 (2006)

	Finding and Extracting Data Records from Web Pages
	Introduction
	Basic Observations and Properties
	Finding the Dominant List of Records in a Page
	Dividing the List into Records
	Edit-Distance Similarity Measure
	Generating the Candidate Record Lists
	Choosing the Best Candidate Record List

	Extracting the Attributes of the Data Records
	Experience
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

