
T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 271–282, 2007. 
© IFIP International Federation for Information Processing 2007 

Modelling Protocols for Multiagent Interaction by F-logic 

Hong Feng Lai 

Department of Business Management, National United University  
1, LeinDa road, Miaoli city, 360, Taiwan 
walden.lai@msa.hinet.net 

Abstract. This paper proposes a method to represent agent Unified Modelling 
Language (AUML) in logic form using F-logic that provides deductive capability 
and uniform knowledge integration base. The AUML is used to differentiate 
relevant interaction more precisely at the analysis phase of developing a 
multiagent system. However, the AUML lacks for foundation and logic 
semantics. Thus we aim at constructing sufficient formality to facilitate formal 
analysis and to explore the behaviour and message route of the AUML. The 
AUML is transformed into F-logic language first by transformation rules. 
Secondly, a logic interpretation of this agent structure is presented. The 
transformation processes and results are illustrated using an example of 
E-commerce system. Finally, the significance of this approach is discussed and 
summarized.  

Keywords: AUML, F-logic, message route, multiagent system, interaction 
protocols.  

1   Introduction 

As heterogeneous mobile devices continue to grow, how to integrate various types of 
information and knowledge is one of the most important issues in information 
technology. Since web technology has great potential to develop a collaborative 
environment, several strategies about information integration have been explored, e.g. 
centralized and open distributed strategies. However, centralized strategy has been 
shown not to be scalable. The open distributed strategy is growing and becoming 
difficult to manage. Beyond these methods, agent-based system with mobility is 
becoming a noticeable approach [1]. An agent is a computational process that 
implements the autonomous (actions without inputs), and communicating functionality 
of an application [2]. The agent-based system provides a convenient method to mobile 
users. Applying agent-based technologies, the services across web could be designed to 
be reactive, proactive, autonomous, and social. 

In multiagent systems (MAS), agent interaction is ruled by interaction protocols. 
The agent Unified Modelling Language (AUML) is an extension of the UML, which 
proposes the standards for expressing the interactions of MAS. The interaction protocol 
(IP) diagram of AUML can help the designers to differentiate roles and messages 
between related agents more detailed. However, the IP diagrams do not guarantee the 
compliance of autonomous and heterogeneous agents to requirements [3]. 



272 H.F. Lai 

A logical specification describes system requirements formally. Through formal 
semantics, it supports deductive capabilities that make specifications executable [4]. 
Mathematical foundations have been studied in several previous papers [5-8]. For 
instance, first-order logic is exploited to establish a deductive foundation for entity 
relationship model [5]. In [6], applying the Larch based logic [9] to represent the logical 
semantics of OMT. In [7], a scheme for integrating object-oriented and logic 
programming paradigms is proposed. In [8], dynamic master logic diagrams are used to 
represent time-dependent behavior and knowledge of a dynamic system. 

Since the AUML lacks for foundation and logic semantics [10], in this study we aim 
at constructing sufficient formality to allow formal analysis and to verify the properties 
of the AUML. To embed deductive capability in the AUML, we transform the AUML 
into a logical specification language, F-logic, which is proposed by Kifer et al. [11].  

How to transform the AUML into formal specifications is investigated in this study. 
The transformation framework between the AUML and F-logic is displayed in Fig. 1. 
The deductive AUML consists of three components: message space (a set of messages 
in F-logic form), role space (a set of roles in F-logic form), and the deductive rules for 
determining the message routes between message and role objects.  

  

Fig. 1. The AUML/F-logic transformation framework 

The structure of the paper is as follows. Section 2 gives an overview of F-logic. . 
Section 3 describes interaction protocol using AUML. The transformation rules and 
results between AUML and F-logic are presented in Section 4. Section 5 illustrates the 
related work. Section 6 concludes the paper.  

2   F-Logic 

In this section, we make a short summary of F-logic including its vocabulary and 
syntax. A comprehensive discussion of F-logic can be found in [11]. 



 Modelling Protocols for Multiagent Interaction by F-Logic 273 

F-logic is a language with well-defined semantics that extends predicate logic and 
provides a sound and complete resolution-based proof procedure. This language is 
powerful in expressing object-oriented features. F-logic enhances the modeling 
capability of first order logic by syntactic enrichment, while it preserves its 
model-theoretic semantics by means of semantic structure. Elements are described by 
identification terms (id-terms), which consist of variables, functions, or constants, 
similar to terms in first order logic language. 

The syntax of F-logic language, ℒ, consists of alphabetic symbols and the syntactic 
rules required to construct the well-formed formulas. The alphabetic symbols of 
F-logic language can be expressed in terms of its constituent parts: 

a set of function symbols (object constructors), ℂ; 
a set υ of variables;  
a set ℘ of predicate symbols;  

auxiliary symbols, such as: (, ), [, ], ⇒ , →, =>>     , ↠, etc.;  
and usual logical connectives and quantifiers, such as: ⋀ (and), ⋁ (or), ← 

(implication), ¬ (not), ∀ (universal), and ∃ (existential). 

An id-term consists of constructor f (a member of ℂ) and object variable (a member 
of υ), similar to terms in first-order logic. For instance, f (X, g (a, Y)) is an id-term, 
where f and g are object constructors, ‘a’ is a constant, and X and Y are object variables. 
A ground F-term is a term not containing variables (variable-free). A ground F-term is 
denoted by a symbol that begins with a lower-case, while a symbol that begins with a 
capital letter denotes an id-term that may be non-ground. 

An F-logic term (F-term) is defined as one of the following statements, which denote 
objects, classes, methods and predicates: 

(1) An is_a assertion F-term A:b means that object A is a member of class b, or a::b 
denotes class a  is a sub-class of class b. The is_a assertion enables attribute inheritance 
and subset relationship. 

(2) A complex F-term is expressed as O[semicolon-separated list of method 
expressions], where O signifies an object or a class, and an method M expression can be 
either a scalar data expression: M@A1,…,Ai→R, where A1,…,Ai, R is an id-term, or a 

set-valued data expression (k≥0): M@A1,…,Ai ↠<<S1,…,Sk>>, and scalar signature 
expression M@AT1,…,ATi ⇒ (RT1,…,RTk) or set-valued signature expression 
M@AT1,…,ATi=>>(RT1,…,RTk) , where, A1,…, Ai, AT1,…,ATi are arguments of 
method M, R,S1,…,Sk denotes the output of the method M, (RT1,…,RTk) represents the 
types of the result of the method M. While a method does not need arguments, “@” will 
be omitted. 

The implementation and application of F-logic can be found in several studies. 
FLORID [12] is a deductive engine for F-logic. In [13] FLORID with path expression 
is used to extract, restructure and manage the semi-structured web data. In [14, 15], 
they propose an operational knowledge specification language KARL, which contains 
two sublanguage Logic-KARL (F-logic) and Procedure-KARL. For specifying 
knowledge at conceptual and operational level, the domain layer and inference layer are 
expressed in Logical-KARL, while the task layer is represented by Procedure-KARL. 



274 H.F. Lai 

Thus, the KARL specification of intermediate representation can bridge the gab 
between an informal and an implementation of knowledge-based systems. In [16], a 
practical deductive object-oriented database system FLORA is provided, which 
integrates F-logic, Hilog and Transition logic, using complier optimization techniques 
to achieve its performance.  

In this study we apply FLORID to express interaction protocols of multiagent 
system (MAS), i.e. to infer the roles and messages based on the deductive engine of 
FLORID. 

3   The AUML 

In this section, we make a brief introduction of AUML. A comprehensive discussion of 
AUML can be found in [10, 11]. 

3.1   Introduction to the AUML 

The agent UML (AUML) is an extension of the UML, which proposes the standards for 
expressing the interactions of MAS. AUML applies graphical specification technique 
to describe interaction between agents. These approaches are partly based on the agent 
communication language (ACL) of the Foundation for Intelligent Physical Agents 
(FIPA) [2] using a subset of its communicative act library (CAL) of FIPA as messages.  

3.2   Notations the Agent UML 

An IP diagram indicates interactions between agents and roles along a timeline. Agents 
are assigned to roles. A role is a specification of the action that an object should fill. An 
object can switch roles at different times. Roles can be inserted or removed during the 
lifetime of agents. 

Messages between agent roles are shown as arrows (Fig. 2) signifying an 
asynchronous communication. A diamond expresses a querying_if point that can result 
in zero or more communications. The line branch (no diamonds) indicates that all 
messages are sent concurrently. The empty diamond indicates that zero or more 
messages may be sent. A crossed diamond shows that exactly one message may be sent.  

The message route (sequence of message) in Fig. 2 begins with a customer (initiator) 
which issues a request (cfp_P_order) to a manufacturer (participants). The 
manufacturer can reply proposing a price for satisfying the request (propose_proposal), 
or refusing (refuse_P_order). The customer must accept (accept_proposal) or reject 
(reject_proposal) the received proposals. After having received the cfp_P_order, the 
manufacturer must response to the customer by a given deadline, and informs the 
customer of propose or refuse_P_order. Analogously, the customer must response to 
the manufacturer by a given deadline. As the manufacturer receives the message of 
accept_proposal, the manufacturer must check “if stock was sufficient” 
(query_if_S_sufficient) whether the inventory level is true to satisfy the requirement of 
the customer. 

 



 Modelling Protocols for Multiagent Interaction by F-Logic 275 

The AUML diagrams are useful to analyze interactions between agents. 
Additionally, the agent UML can be taken as object interaction diagrams from the 
dynamic model viewpoint. 

However, there are some limits in AUML [17]. These limits bring about extending 
or transforming the AUML to other model, e.g. cluttered AUML tends towards 
misinterpreting; unable to combine roles and cardinalities; indeterminable at decision 
points; hard to debug redundancy; unable to trace the history. 

4   Transformation Rules and Deductive Rules 

4.1   Introduction to the E-Commerce Example of a Multiagent System 

In the E-commerce system, the member agent customer and manufacturer in Fig. 2 
invoke buyer agent and seller agent respectively. Analogously, the member agent 
vendor and manufacturer in Fig. 2 invoke seller agent and buyer agent respectively. 
The manufacturer switches roles at different times, i.e. facing customer as a seller and 
facing vendor as a buyer. 

The message exchange in E-commerce can be modeled by mobile agent technology. 
A buyer agent could do purchasing for a customer, including making orders, 
negotiating, haggling, and potentially even paying.  

A buyer agent can pass the customer’s preferences to the host. If a potential match 
was met, the buyer agent could reply to the customer, or potentially finish the 
transaction delegated by the customer. 

A seller agent must check (query_if_S_sufficient) whether the inventory level is true 
to satisfy the requirement of the customer, and negotiate price with buyer agent.. 

From implementation viewpoint, mobile agents are programs dispatching from one 
computer and transporting to a remote computer. As messages passing to a remote 
computer, the programs present their authorization and get access to local services and 
data. The remote computer may act as a broker by putting agents together with common 
interests and goals, and supporting a platform at which agents can coordinate. 

4.2   Transformation Rules of the AUML/F-Logic 

To create the message route of AUML IP diagrams involves a process of model 
transformation. Model transformation is a mapping from a source model to a target 
model using a set of transformation rules [4]. There is a natural correspondence 
between the AUML and F-logic. Based on the composite elements and notations in the 
AUML, the transformation rules from the agent UML into F-logic specifications are 
listed below. 

The following two transformation rules express how to define AUML objects in 
F-logic form. 

Trans_rule1. Each member_agent can be expressed as frame fields, and each role can 
be defined by F-logic as follows. 
member_agent[has_role=>>role; name=>string; type=>string]. 
role[name=>string; type=>string; use=>string]. 
 



276 H.F. Lai 

 

Fig. 2. The interaction protocol in E-commerce 



 Modelling Protocols for Multiagent Interaction by F-Logic 277 

Trans_rule2. Each message can be described via its sender, receiver, name, and type. 
The types of message includes: resouce_agent_role, delegation_agent_role, 
wrapping_agent_role, coordination_agent_role, and discovery_agent_role. The 
message and message_route can be defined by F-logic as follows: 

message[sender=>role; receiver=>role; name=>string; type=>string]. 
message_route[sender=>role; receiver=>role; 
      add@(message)=>message_route; 
      add@(message_route)=>message_route]. 

The following two transformation rules express message and agent_role 
hierarchical relationships in F-logic form respectively. 

Trans_rule3. For each message and its subclass, the relationship can be represented by 
‘is_a assertion’. This property can be denoted as follows:  

refuse :: messgae.  
reject :: messgae.  
accept :: messgae.  
inform :: messgae.  
propose :: messgae.  
query :: messgae.  

Trans_rule4. For each agent_role and its subclass, the relationship can be represented 
by ‘is_a assertion’. This property can be denoted as follows:  

agent_role :: role. 
resouce_agent_role :: agent_role. 
delegation_agent_role :: agent_role. 
wrapping_agent_role :: agent_role. 
coordination_agent_role :: agent_role. 
discovery_agent_role :: agent_role. 

The resource_agent_role is used to manages local resources. The 
delegation_agent_role is used to invoke agent service. The wrapping_agent_role  is 
used to transfer the coordination. The report_agent_role is used to support summarizing 
and reporting service. The discovery_agent_role is used to discover available external 
services.  

Trans_rule5. For each vertical bar in AUML corresponds to a agent_role in F-logoic 
as follows:  

agent.role : agent_roleType. 
The following three transformation rules express how to transform the 

asynchronous message → of AUML in F-logic form. 

Trans_rule6. For each message arrow of AUML can be expressed in F-logoic as 
follows. 

message_name:message[sender→agent1.role_i; receiver→agent2.role_j; type→ 
message_type ].  



278 H.F. Lai 

Trans_rule7. For each message with diamond arrow can be expressed in F-logoic as 
follows. 

xor_message_name:message[sender→agent1.role_i; receiver→agent2.role_j; 
type→ message_type ].  

Trans_rule8. For each message with line branch (no diamonds) and empty diamond of 
AUML can be expressed in F-logoic as follows. 
message_name:message[sender→agent1.role_i; receiver→agent2.role_j; type→ 

message_type ].  

4.3   The Deductive Rules of the AUML/F-Logic 

Based on the transformation rules, the AUML of the E-commerce example (see Fig. 2) 
can be transformed into F-logic form. The deductive AUML will be expressed in terms 
of agent role space (a set of agent roles in F-logic), message space (a set of messages in 
F-logic), structural assertions, and deductive rules. 

The deductive rules express the relation between roles, message, and message_route 
in AUML IP diagrams. 

Deductive_rule1. These rules express how to add messages to message_routes as 
follows. 

P.E:message_route[sender→X; receiver→Z] :- 
P:message_route[sender→X; receiver→Y], E:message[sender→Y; receiver→Z]. 

Deductive_rule2. This rule expresses how to concatenate message_routes to a new 
message_route as follows. 

P1[(P2.E)→P3] :- P1.P2[E→P3], E:message. 

Deductive_rule3. These rules express how to detect loop routes and eliminate loop 
routes in a message_route as follows. 

P:loop:- P:message_route[sender→P.receiver]. 
P.C = P :- P.(C:loop)[].  

4.4   The Query of the Logic-Based E-Commerce System 

After implementing the deductive AUML, the logic-based E-commerce system consist 
of a set of agent roles, a set of messages, a set of structural assertions, and some 
deductive rules about these elements. Various types of queries can be evaluated and 
answered by FLORID. For example, the query “?- M::message” state that “are there 
any sub-class of message”. 

% Answer to query : ?- M::messgae. 
M/refuse    
M/messgae    
M/reject    
M/accept    
M/inform    



 Modelling Protocols for Multiagent Interaction by F-Logic 279 

M/propose    
M/query    
M/cfp    

The query “?- R::agent_role” state that “are there any sub-class of agent_role”. The 
answers are as follows: 

% Answer to query : ?- R::agent_role. 
R/agent_role    
R/resouce_agent_role    
R/delegation_agent_role    
R/wrapping_agent_role    
R/report_agent_role    
R/discovery_agent_role    

The message route is the sequence of messages passing to and fro on the IP 
diagrams. These behaviour properties can be also described by reachability tree in Petri 
net; or by message sequence chart in MSC [18]. However, a logic-based IP can provide 
more information, e.g. finding the message route between any two agent roles. For 
example, the query stated as “?- P:message_route[sender -> ven1.r21; receiver -> 
ven1.r25]” means that what the message route is between agent role ven1.r21 and agent 
role ven1.r25. The answers are as follows: 

% Answer to query : ?- P:message_route[sender -> ven1.r21; receiver -> 
ven1.r25]. 

P/ven1.r21.xor_propose_quotation.(man1.r6.xor_accept_quotation).(ven1.r23.in
form_sreceiver_parts).(man1.r7.inform_received).(ven1.r24.inform_payment).(man
1.r9.inform_paid)    

P/ven1.r21.xor_refuse_order.(man1.r5.cfp_part_order).(ven1.r21.xor_propose_
quotation).(man1.r6.xor_accept_quotation).(ven1.r23.inform_sreceiver_parts).(man
1.r7.inform_received).(ven1.r24.inform_payment).(man1.r9.inform_paid)    

% 2 output(s) printed  

5   Related Work 

To express and coordinate the activities of multiagent systems, two types of approaches 
have been proposed: graphical and predicate approaches. The graphical approach using 
diagrammatic notation for intuitive understanding includes: agent UML approach [10], 
statechart approach [17], message sequence chart approach [18], Petri net approach 
[19, 20]. The textual approach using rules and declarations for consistency checking 
includes OMG IDL (Interface Description Language) [1] and logic-based approach [3, 
17, 21]. 

Statecharts is a visual specification language for specifying discrete event system. It 
extends finite state machines that was proposed by [22] and could be described as: 
Statecharts = finite state machine + depth + orthogonality + broadcast communication. 
Statecharts has many good properties that can be applied in object-oriented information 
system. However, there are still some restrictions in MAS application domain. Many 
extensions had been proposed for improving their descriptive ability. In [23] they apply 



280 H.F. Lai 

propositional dynamic logic (PDL) to extend the description capability of statecharts 
for presenting interaction protocol. 

The message sequence chart (MSC) diagrams are used to express basic protocols 
and scenarios in telecommunication systems [18]. An MSC diagram consists of a set of 
instances, which indicate that events may occur during the execution period. The types 
of events may be the creation and stopping of an instance, the trigger of a local service, 
the setting or resetting of a timer, the timeout, the sending or receiving of a message, 
etc. The main difference between MSC and MAS is that MSC using an axe represents a 
process of an instance, while MAS using isolated vertical bars signifies multi agent 
roles. 

Petri net [24] is the most frequently used tool for modeling systems. Petri nets  and 
Statecharts have equivalent representative capabilities because they are both 
state-based models [25]. Applying PN to AUML modelling, the message is taken as a 
place; the xor-message is expressed by a conflicting place; and the agent role is 
represented by a transition [20]. The limits of IP in PN include: hard to read, limits in 
model transformation, the problems of scalability and reusability [23]. 

The textual approaches using rules and declarations define the interaction of agents. 
From object-oriented viewpoint, the MAS could be taken as a set of interacting objects. 
To express the static and dynamical specifications of agents and roles in the 
agent-enhanced mobile virtual communities [1], they apply OMG IDL to differentiate 
agents and roles using interface specification sketch including require interfaces, 
provide interface, behaviour interface, and policy interface. This method resembles 
requirement decomposition while it lacks of deductive capability and can not check the 
consistency of specifications. 

To verify the compliance of agents’ behaviour to protocols, in [3] a logic-based 
formalism Social Integrity Constraints using Java-Prolog-CHR (Constraint Handling 
Rules) is proposed. An example of FIPA Contract-Net protocol is specified and 
verified by this approach. To guarantee the global properties of procedurally 
constructed MASs, in [21] a generalized linear temporal logic (GLTL) based agent 
system is constructed. The workflow properties (similar to the message route in this 
paer) are represented as temporal logic formulas and consequently can be verified by 
model checker. 

The above related work illustrates the various types of approaches for presenting 
interaction protocol. In our approach, AUML/F-logic can be taken as a schema 
transformation that transforms conceptual level to operational level. Also, it plays a 
role of mediator for integrating objects in heterogeneous systems [26]. 

6   Conclusion 

With the growing complexity of multiagent interaction in web-based applications, the 
requirement of tools and techniques for representing mobile agent is growing in the 
same way. This paper proposed a method to produce F-logic specifications for AUML 
that extends its expressive power, and provides syntax, semantics, and inference rules.  

This approach was illustrated using an example of electronic commerce systems, 
which expressed how the various features of F-logic could be applied in AUML. These 
logical specifications provided more reasoning power. Additionally, the formal 
specification language is easily adapted to the system requirements. 



 Modelling Protocols for Multiagent Interaction by F-Logic 281 

The future work will explore the logic specifications of dynamical model of 
electronic commerce systems, i.e. in a working environment such that new rules can be 
inserted into the system. The transformation should reflect the corresponding logic 
specifications and support the transformation rules. 

Acknowledgment. Financial support for this work was provided by the National 
Science Council Taiwan, under the contract NSC94-2416-H-239-003. 

References 

1. Loke, S.W., Rakotonirainy, A., Zaslavsky, A.: An enterprise viewpoint of wireless virtual 
communities and the associated uses of software agents. In: Rahman, S.M. (ed.) Internet 
Commerce and Software Agents: Cases, Technologies and Opportunities, pp. 265–287. Idea 
Group Publishing, Hersey, PA, USA (2001) 

2. FIPA.: FIPA Agent Management Specification. Foundation for Intelligent Physical 
Agents(2002), //www.fipa.org 

3. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specification and 
verification of agent interaction protocols in a logic-based system. In: Proceedings of the 
2004 ACM symposium on Applied computing, pp. 72–78 (2004) 

4. Mineau, G.W., Missaoui, R., Godinx, R.: Conceptual modeling for data and knowledge 
management. Data & Knowledge Engineering 33, 137–168 (2000) 

5. Battista, G.D., Lenzerini, M.: Deductive entity relationship modeling. IEEE Transactions on 
Knowledge and Data Engineering 5, 439–450 (1993) 

6. Bourdeau, R.H., Chen, B.H.C.: A formal semantics for object model diagrams. IEEE 
Transactions on Software Engineering 21, 799–821 (1995) 

7. Lee, J.H.M., Pun, P.K.C.: Frame logic integration: A multi paradigm design methodology 
and a programming language. Computer Languages 23, 25–42 (1997) 

8. Hu, Y.-S., Modarres, M.: Time-dependent system knowledge representation based on 
dynamic master logic diagrams. Control Engineering Practice 4, 89–98 (1996) 

9. Guttag, J.V., Horning, J.J.: Larch: Languages and tools for formal specification. Springer, 
Heidelberg (1993) 

10. Bauer, B., Muller, J.P., Odell, J.: Agent UML: A formalism for specifying multiagent 
interaction. In: Cuabcarubu, P., Wooldridge, M. (eds.) Agent-Oriented Software 
Engineering, pp. 91–103. Springer, Heidelberg (2001) 

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based 
languages. Journal of the Association for Computing Machinery 42, 741–843 (1995) 

12. FLORID Homepage (2006), http://dbis.informatik.uni-freiburg.de/ 
13. Ludäscher, B., Himmeröder, R., Lausen, G., W.M., Schlepphorst, C.: Managing 

semistructured data with florid: a deductive object-oriented perspective. Information 
systems 23, 589–613 (1998) 

14. Fensel, D.: Graphical and formal knowledge specification with KARL. In: Proceedings of 
the the International Conference on Expert Systems for Development, pp. 198–203 (1994) 

15. Fensel, D., Angele, J., Studer, R.: The Knowledge acquisition and representation language, 
KARL. IEEE Transactions on Knowledge and Data Engineering 10, 527–550 (1998) 

16. Yang, G., Kifer, M.: FLORA: Implementing an efficient DOOD system using a tabling logic 
engine. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, 
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 
1078–1093. Springer, Heidelberg (2000) 



282 H.F. Lai 

17. Paurobally, S., Chachkov, S., Jennings, N.R.: Developing agent interaction protocols using 
graphical and logical methodologies. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A. 
(eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 149–168. Springer, Heidelberg (2004) 

18. Rudolph, E., Grabowski, J., Graubmann, P.: Tutorial on message sequence charts (MSC). In: 
Proceedings of the FORTE/PSTV 1996 Conference (1996)  

19. Ling, S., Loke, S.W.: Advanced Petri Nets for modelling mobile agent enabled 
interorganizational workflows. In: Proceedings of the Ninth Annual IEEE International 
Conference and Workshop on the Engineering of Computer-Based Systems, pp. 245–252 
(2002) 

20. Ling, S., Loke, S.W.: Engineering Multiagent Systems Based on Interaction Protocols: A 
Compositional Petri Net Approach. In: Camp, O. (ed.) Enterprise Information Systems V, pp. 
279–285. Kluwer Academic, Netherlands (2004) 

21. Pokorny, L.R., Ramakrishnan, C.R.: Modeling and verification of distributed autonomous 
agents using logic programming. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.) 
DALT 2004. LNCS (LNAI), vol. 3476, pp. 148–165. Springer, Heidelberg (2005) 

22. Harel, D.: Statecharts: a visual formalism for complex systems. Science Computer 
Program 8, 231–274 (1987) 

23. Paurobally, S., Cunningham, R., Jennings, N.R.: Developing agent interaction protocols 
using graphical and logical methodologies. In: Workshop on Programming MAS, AAMAS 
(2003)  

24. Peterson, J.L.: Petri-Net Theory and Modeling of Systems. Prentice-Hall, Englewood Cliffs 
(1981) 

25. Bucci, G., Campanai, M., Nesi, P.: Tools for Specifying Real-Time Systems. Real-Time 
Systems 8, 117–172 (1995) 

26. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25, 
38–49 (1992) 


	Modelling Protocols for Multiagent Interaction by F-logic
	Introduction
	F-Logic
	The AUML
	Introduction to the AUML
	Notations the Agent UML

	Transformation Rules and Deductive Rules
	Introduction to the E-Commerce Example of a Multiagent System
	Transformation Rules of the AUML/F-Logic
	The Deductive Rules of the AUML/F-Logic

	Related Work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




