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Abstract. We demonstrate a consensus utility accrual scheduling al-
gorithm for distributable threads with run-time uncertainties in execu-
tion time, arrival models, and node crash failures. The DUA-CLA al-
gorithm’s message complexity (O(fn)), lower time complexity bound
(O(D+fd+nk)), and failure-free execution time (O(D+nk)) are estab-
lished, where D is the worst-case communication delay, d is the failure
detection bound, n is the number of nodes, and f is the number of
failures. The “lazy-abort” property is shown — abortion of currently-
infeasible tasks is deferred until timely task completion is impossible.
DUA-CLA also exhibits “schedule-safety” — threads proposed as feasible
for execution by a node which fails during the decision process will not
cause an otherwise-feasible thread to be excluded. These properties mark
improvements over earlier strategies in common- and worst-case perfor-
mance. Quantitative results obtained from our Distributed Real-Time
Java implementation validate properties of the algorithm.

1 Introduction

1.1 Dynamic Distributed Real-Time Systems

Distributed real-time systems such as those found in industrial automation,
net-centric warfare (NCW), and military surveillance must support for timely,
end-to-end activities. Timeliness includes application-specific acceptability of
end-to-end time constraint satisfaction, and of the predictability of that satis-
faction. These activities may include computational, sensor, and actuator steps
which levy a causal ordering of operations, contingent on interactions with phys-
ical systems. Such end-to-end tasks may be represented in a concrete distributed
system as: chains of (a) nested remote method invocations; (b) publish, receive
steps in a publish-subscribe framework; (c) event occurrence and event handlers.

Dynamic Systems. The class of distributed real-time systems under
consideration here, typified by NCW applications [1], is characterized by dynam-
ically uncertain execution properties due to transient and persistent local over-
loads, uncertain task arrival patterns and rates, uncertain communication delays,
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node failures, and variable resource demands. However, while local activities in
these systems may have timeliness requirements with sub-second magnitudes,
end-to-end tasks commonly have considerably larger magnitudes of milliseconds
to multiple minutes. Despite larger timeliness magnitudes, these activities are
mission-critical and require the strongest assurances possible under the circum-
stances.

End-to-End Context. In order to make resource allocation decisions in keep-
ing with end-to-end activity requirements, some representation of these param-
eters and the current state of the end-to-end activity must be provided. The
distributable thread abstraction provides such an extensible model for reason-
ing about end-to-end activity behavior. Distributable threads (hereafter, sim-
ply threads) appeared first in the Alpha OS [2] and were adopted in Mach
3.0 [3] and Mk7.3 [4]. Recently, this abstraction has served as the basis for
RT-CORBA 2.0 [5] and Sun’s emerging Distributed Real-Time Specification for
Java (DRTSJ) [6], where threads form the primary programming abstraction
for concurrent, distributed activities.

Time Constraints for Overloaded Systems. In underloaded systems it
is sufficient to provide an assessment of the urgency of an activity, typically
in the form of a deadline. For these scenarios, known-optimal algorithms (e.g.,
EDF [7]) exist to meet all deadlines (given some restrictions.) When a system
is overloaded, resource managers must decide which subset of activities to com-
plete, and with what degree of timeliness.

This requires the system to be aware of the relative importances activities.
We consider the time/utility function (TUF) timeliness model [8], in which the
utility of completing an activity is given as a function of its completion time.
This paper is confined to downward step-shaped TUFs, wherein an activity’s
utility is a constant Ui when the task is completed before a deadline t; no utility
is gained for tasks after their deadline.

Utility Accrual Scheduling. When time constraints are expressed as TUFs,
resource allocation decisions may be expressed in terms of utility accrual (UA)
criteria. A common UA criteria is maximize summed utility, in which resource
allocation decisions are made such that the total summed utility accrued is max-
imized. Several such UA scheduling and sequencing heuristics have been inves-
tigated (e.g., [9,10]). Such algorithms for activities described by downward-step
TUFs equate to EDF during underload conditions, achieving optimum schedules.
During overloads, these algorithms favor higher-utility activities over those with
lower-utility. Resulting “best-effort” adaptive behavior exhibits graceful degra-
dation as load increases, shedding low utility work irrespective of its urgency.

1.2 Contributions and Related Work

The central contributions of this paper are: (a) the Distributed Utility Accrual
- Consensus-based Lazy Abort (DUA-CLA) scheduling algorithm; (b) bounds on
DUA-CLA’s timeliness, message efficiency, and optimality behavior in a variety



Consensus-Driven Distributable Thread Scheduling 249

of conditions; (c) implementation of DUA-CLA in the DRTSJ middleware; and
(d) experimental results illustrating the validity of the theoretical results.

This paper presents significant progress on work published by the authors
in [11], expanding the theoretical performance envelope in two ways: First, the
“lazy-abort” property is introduced (Theorem 6), relaxing conservative task-
abortion behavior present in earlier work, while maintaining asymptotic execu-
tion times and performance assurances. Second, DUA-CLA is shown (see Theorem
7) to be “schedule-safe” in the presence of failures during distributed reschedul-
ing. This property mitigates pessimism in feasibility assessments due to failures
which results in unnecessary task rejection during partial failure.

The DUA-CLA algorithm represents a unique approach to distributable thread
scheduling in two respects. First, it unifies scheduling with a fault-tolerance strat-
egy. Previous work on distributable thread scheduling [12, 13] addresses only
the scheduling problem, with fault tolerance dealt with by separate thread in-
tegrity protocols [12,13,14]. While this provides admirable separation of concerns,
scheduling and integrity operations become tightly intertwined in distributed
systems where failures are prevalent.

Second, DUA-CLA takes a collaborative approach to the scheduling problem,
rather than requiring nodes independently to schedule tasks without knowledge
of other nodes’ states. Global scheduling approaches wherein a single, centralized
scheduler makes all scheduling decisions have been proposed and implemented.
DUA-CLA takes a via media, improving independent node scheduler decision-
making with partial knowledge of global system state.

Little work has been done on collaborative distributed scheduling for real-
time systems. The RT-CORBA 2.0 specification [5] envisions such an approach,
enumerating it as the third of its four “cases” for distributed scheduling. Poledna,
et. al. consider a consensus-based sequencing approach for operations on replicas
to ensure consistency [15]. In a similar vein, Gammar and Kammoun present a
consensus algorithm for ensuring database properties such as serializability and
consistency in real-time transactional systems [16]. None of these directly address
the question of end-to-end causal activity scheduling.

2 The DUA-CLA Algorithm

2.1 Models

Distributable Thread Abstraction. Threads execute in local and remote
objects by location-independent invocations and returns. A thread begins its
execution by invoking an object operation. The object and the operation are
specified when the thread is created. The portion of a thread executing an object
operation is called a thread segment. Thus, a thread can be viewed as being
composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is
called its head. The head of a thread is the only segment that is active. A thread
can also be viewed as a sequence of sections, where a section consists of all
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contiguous thread segments on a node. Further details of the thread model can be
found in [6,5,13]. Execution time estimates (possibly inaccurate) of the sections
of a thread areknown when the thread arrives.The application is thus comprised
of a set of threads, denoted T = {T1, T2, T3, . . .}, with sections [Si

1, S
i
2, . . . , S

i
k].

Timeliness Model. We specify the time constraint of each thread using a TUF.
A thread Ti’s unit downward step TUF is denoted as Ui (t), which has a initial
time Ii, which is the earliest time for which the TUF is defined, a termination
time Xi, which, for a downward step TUF, is its discontinuity point, and a
constant utility Ut. Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

System and Failure Models. Our system and failure models follow that
of [17]. We consider a system model where a set of processing nodes are de-
noted by the totally-ordered set Π = {1, 2, . . . , n}. We consider a single hop
network model (e.g., a LAN), with nodes interconnected through a hub or a
switch. The system is assumed to be (partially) synchronous in that there exists
an upper bound D on the message delivery latency. A reliable message transmis-
sion protocol is assumed; thus messages are not lost or duplicated. Node clocks
are assumed to be perfectly synchronized, for simplicity in presentation, though
DUA-CLA can be extended to clocks that are nearly synchronized with bounded
drift rates. As many as fmax nodes may crash arbitrarily. The actual number of
node crashes is denoted as f ≤ fmax. Nodes that do not crash are called correct.

Each node is assumed to be equipped with a perfect failure detector [18] that
provides a list of nodes deemed to have crashed. If a node q belongs to such a list
of node p, then node p is said to suspect node q. The failure detection time [19]
d ≤ D is bounded. Similar to [17], for simplicity in presentation, we assume that
D is a multiple of d. Failure detectors are assumed to be (a) accurate—i.e., a
node suspects node q only if q has previously crashed; and (b) timely—i.e., if
node q crashes at time t, then correct nodes permanently suspect q within t+ d.

2.2 Rationale and Design

Our primary scheduling objective is to maximize total utility accrued by all the
threads Further, the algorithm must provide assurances on the satisfaction of
thread termination times in the presence of (up to fmax) crash failures. Moreover,
the algorithm must exhibit the UA best-effort property described in Section 1.

Definition 1 (Current and Future Head Nodes). The current head node
of a thread Ti is the node where Ti is currently executing (i.e., where Ti’s head
is currently located). The future head nodes of a thread Ti are those nodes where
Ti will make remote invocations in the future.

The crash of a node p affects other nodes in the system in three possible ways:
(a) p may be the current head node of one or more threads; (b) p may be the
future head node of one or more threads; and (c) p may be the current and
future head node of one or more threads.

If p is only the current head node of one or more threads, then all its future
head nodes are immediately affected when p crashes, since they can now release
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allocated processor time. This implies that when a node p crashes, a system-
wide decision must be made regarding which subset of threads are eligible for
execution in the system—referred to as an execution-eligible thread set. This de-
cision must be made in the presence of failures since nodes may crash while that
decision is being made. We formulate this problem as a consensus problem [20]
with the following properties: (a) If a correct node decides an eligible thread
set T , then some correct node proposed T ;1 (b) Nodes (correct or not) do not
decide different execution-eligible sets (uniform agreement); (c) Every correct
node eventually decides (i.e., termination).

How can a node propose a set of threads which are eligible for execution? The
task model is dynamic and future scheduling events cannot be considered at a
scheduling event.2 Thus, the execution-eligible thread set must be constructed
exploiting the current system knowledge. Since the primary scheduling objec-
tive is to maximize the total thread accrued utility, a reasonable heuristic for
determining the execution-eligible thread set is a “greedy” strategy: Favor “high
return” threads over low return ones, and complete as many of them as possible
before thread termination times.

The potential utility that can be accrued by executing a thread section on a
node defines a measure of that section’s “return on investment.” We measure
this using a metric called the Potential Utility Density (or PUD). On a node, a
thread section’s PUD measures the utility that can be accrued per unit time by
immediately executing the section on the node.

Thus, each node iteratively examines thread sections in its local ready queue
for potential inclusion in a feasible (local) schedule in order of decreasing section
PUDs. For each section, the algorithm examines whether that section can be
completed early enough, allowing successive sections of the thread to also be
completed early enough, to allow the entire thread to meet its termination time.
We call this property the feasibility of a section. Infeasible sections are not
included in the working schedule. This approach requires a decomposition of
the thread’s deadline, which is computed at arrival time using the following
conservative approach: The section termination times of a thread Ti with k
sections are given by:

Si
j .tt =

{
Ti.tt j = k

Si
j+1.tt − Si

j+1.ex − D 1 ≤ j ≤ k − 1
(1)

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt denotes Ti’s termination
time, and Si

j .ex denotes the estimated execution time of section Si
j .

Thus, the local schedule constructed by a node p is an ordered list of a subset
of sections in p’s ready queue that can be feasibly completed, and will likely re-
sult in high local accrued utility (due to the greedy nature of the PUD heuristic).
The set of threads, say Tp, of these sections included in p’s schedule is proposed

1 This property is stronger than the conventional Uniform Validity property, and
therefore requires additional constraints.

2 A “scheduling event” is any event that invokes the scheduling algorithm.
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by p as those that are eligible for system-wide execution, from p’s standpoint.
However, not all threads in Tp may be eligible for system-wide execution, because
the current and/or future head nodes of some of those threads may crash. Con-
sequently, the set of threads that are eligible for system-wide execution is that
subset of threads with no absent sections from their respective current and/or
future head node schedules.

2.3 Algorithm Description

The DUA-CLA algorithm that we present is derived from Aguilera et. al ’s time-
optimal, early-deciding, uniform consensus algorithm [17]. A pseudo-code de-
scription of DUA-CLA on each node i is shown in Algorithm 1.

Algorithm 1. DUA-CLA: Code for each node i

input: σi
r ; output: σi; // σi

r: unordered ready queue of node i’s sections; σi:1
schedule

Initialization: Σi = ∅; ωi = ∅; maxi = 0;2
σi = ConstructLocalSchedule(σi

r);3
send(σi, i) to all;4
upon receive (σj , j) until 2D do // After time 2D, consensus begins5

Σi = Σi ∪ σj ;6
ωi = DetermineSystemWideFeasibleThreadSet(Σi);7
upon receive (ωj , j) do8

if j > maxi then maxi = j; ωi = ωj;9
at time (i − 1)d do10

if suspect j for any j : 1 ≤ j ≤ i − 1 then11
ωi = UpdateFeasibleThreadSet(Σi);12
send(ωi, i) to all;13

at time (j − 1)d + D for every j : 1 ≤ j ≤ n do14
if trust j then decide ωi;15

UpdateSectionSet(ωi, σi
r);16

σi = ConstructLocalSchedule(σi
r);17

return σi;18

The algorithm is invoked at a node i at the scheduling events including 1)
creation of a thread at node i and 2) inclusion of a node k into node i’s suspect
list by i’s failure detector.

When invoked, a node i first constructs a local schedule (ConstructLocal-
Schedule()), sending this schedule (σi, i) to all nodes. Recipients respond im-
mediately by constructing local section schedules and sending them to all nodes.
When node i receives a schedule (σj , j), it includes that schedule into a schedule
set Σi. Thus, after 2D time units, all nodes have a schedule set containing all
schedules received.

A node i then determines its consensus decision, computed from Σi as the
subset of threads with no sections absent from node schedules in Σi. Node i uses
a variable ωi to maintain its consensus decision.

The algorithm divides time in rounds of duration d, where the ith round
corresponds to the time interval [(i − 1)d, id). At the beginning of round i,
node i checks whether it suspects any of the nodes with smaller node ID. If so,
it computes a new ωi using UpdateFeasibleThreadSet() (see Algorithm 2),
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sending (ωi, i) to all nodes. Note that the messages sent in a round could be
received in a higher round since D > d.

Algorithm 2. UpdateFeasibleThreadSet
input: ωi; output: ω′

i; // ω′
i: feasible section set with sections on failed1:

nodes removed

initialize: ω′
i = ωi2:

for each section St
j ∈ ωi do3:

if suspect j then ω′
i = ω′

i\St
j;4:

return σ′
i;5:

Each node i maintains a variable maxi that contains the largest node ID from
which it has received a consensus proposal. When a node i receives a proposed
execution-eligible thread set (ωj , j) that is sent from another node j with an ID
that is larger than maxi (i.e., j > maxi), node i updates its consensus decision
to thread set ωj and maxi to j. At times (j − 1)d + D for j = 1, . . . , n, node i is
guaranteed to have received potential consensus proposals from node j. At these
times, i checks whether j has crashed; if not, i arrives at its consensus decision
on the thread set ωi.

Node i then updates its ready queue σi
r by removing those sections whose

threads are absent in the consensus decision ωi. The updated ready queue is used
to construct a new local schedule σi, the head section of which is subsequently
dispatched for execution.

2.4 Constructing Section Schedules

We now describe the algorithm ConstructLocalSchedule() and its auxiliary
functions. Since this algorithm is not a distributed algorithm per se, we drop
the suffix i from notations σi

r (input unordered list) and σi (output schedule),
and refer to them as σr and σ, respectively. Sections are referred to as Si, for
i = 1, 2, . . .

Algorithm 3 describes the local section scheduling algorithm. When invoked
at time tcur, the algorithm first checks the feasibility of the sections. First, if
the earliest conceivable execution (the current time) of segment will still miss
the termination time, the algorithm aborts the section. If the earliest predicted
completion time of a section is later than its termination time, it is removed
from this round’s consideration. The sections considered for insertion into σ
in order of decreasing PUD, which is maintained in order of non-decreasing
section termination times. After inserting a section Si, the schedule σ is tested for
feasibility.3 If σ becomes infeasible, Si is removed. After examining all sections,
the ordered list σ is returned.

Algorithm 3 includes those sections likely to result in high total utility (due to
the greedy nature of the PUD heuristic). Further, since the invariant of schedule
3 A schedule σ is feasible if the predicted completion time of each section Si ∈ σ

does not exceed Si’s termination time. For explicit pseudo-code for a linear-time
implementation, see Algorithm 3 in [11].
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Algorithm 3. ConstructLocalSchedule()
input: σr ; output: σ;1:
Initialization: t := tcur, σ := ∅;2:
for each section Si ∈ σr do3:

if current time + Si.ex > Si.tt then4:
abort(Si)

if Si
j−1.tt + D + Si

j .ex > Si
j.tt then5:

σr = σr\Si;6:
else

Si.PUD = Ui (t + Si.ex) /Si.ex;7:

σtmp :=sortByPUD(σr);8:
for each section Si ∈ σtmp from head to tail do9:

if Si.PUD > 0 then10:
Insert(Si, σ, Si.tt);11:
if Feasible(σ)=false then12:

Remove(Si, σ, Si.tt);13:

else break;14:

return σ;15:

feasibility is preserved throughout the examination of sections, the output sched-
ule is always a feasible schedule. During underloads, schedule σ will always be
feasible in (Algorithm 3), the algorithm will never reject a section, and will pro-
duce a schedule which is the same as that produced by EDF (where deadlines are
equal to section termination times). This schedule will meet all section termina-
tion times during underloads. During overloads, one or more low-PUD sections
will not be included. These rejected sections are less likely to contribute a total
utility larger than that contributed by accepted sections. The asymptotic com-
plexity of Algorithm 3 is dominated by the nested loop with calls Feasible(),
resulting in a cost of O(k2).

3 Algorithm Properties

We now establish DUA-CLA’s timeliness and execution time properties in both
absence and presence of failures. We first describe DUA-CLA’s timeliness property
under crash-free runs. The proof of this and some future results are elided for
space, but may be found in the full version of the paper.4 [17]

Theorem 1. If all nodes are underloaded and no nodes crash (i.e., fmax = 0),
DUA-CLA meets all thread termination times, yielding optimum total utility.

Theorem 2. DUA-CLA achieves (uniform) consensus (i.e., uniform validity,
uniform agreement, termination) on the system-wide execution-eligible thread
set in the presence of up to fmax failures.

Theorem 3. DUA-CLA’s time complexity is O(D + fd+nk) and message com-
plexity is O(fn).
4 Full paper available at: http://www.real-time.ece.vt.edu/euc07.pdf

http://www.real-time.ece.vt.edu/euc07.pdf
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Theorem 4. If n−f nodes (i.e., correct nodes) are underloaded, then DUA-CLA
meets the termination times of all threads in its execution-eligible thread set.

To establish the algorithm’s best-effort property (Section 1), we define NBI:

Definition 2. Consider a distributable thread scheduling algorithm A. Let a
thread Ti be created at a node at a time t with the following properties: (a) Ti

and all threads in A’s execution-eligible thread set at time t are not feasible
(system-wide) at t, but Ti is feasible just by itself; and (b) Ti has the highest
PUD among all threads in A’s execution-eligible thread set at time t. Now, A’s
non-best-effort time interval, denoted NBIA, is defined as the duration of time
that Ti will have to wait after t, before it is included in A’s execution-eligible
thread set. Thus, Ti is assumed to be feasible at t + NBIA.

We now describe the NBI of DUA-CLA and other distributable thread scheduling
UA algorithms including DASA [9], LBESA [10], and AUA [12] under crash-free
runs.

Theorem 5. Under crash-free runs (i.e., fmax = 0), the worst-case NBI of
DUA-CLA is 3D + δ, DASA’s and LBESA’s is δ, and that of AUA is +∞.

In order to further characterize the algorithm’s best-effort behavior in the pres-
ence of failures, we introduce definitions for Lazy-Abort behavior and Schedule
Safety:

Definition 3. A collaborative distributable thread scheduling algorithm is said
to Lazy-Abort if it delays abortion of a segment until it would be infeasible if it
were the only thread in the system.

Theorem 6. DUA-CLA demonstrates Lazy-Abort behavior. Sections are only
aborted in ConstructLocalSchedule() (Algorithm 3), and then only when the
segment would exceed its deadline if it were executed immediately. If this is the
case, the Lazy-Abort condition is met. Consequently, transient perceived over-
loads which resolve through node failures or pessimistic execution time evalua-
tions do not cause overly-aggressive abortion of future threads.

Definition 4. A consensus-based distributable thread scheduling algorithm is
said to exhibit Schedule Safety if it never allows the presence of a remote segment
Sf in the global feasible set to render infeasible a local segment Sl if the node
hosting Sf is known to have failed during consensus.

Theorem 7. DUA-CLA demonstrates schedule-safety despite failures during the
distributed scheduling event. The algorithm evaluates feasibility of local segments
on node i based on the section set updated in the call to UpdateSectionSet()
in Algorithm 1. If any nodes j with 1 < j < i is suspected by i, then i removes
all segments on j from ωi. (Furthermore, at time D + fd, all nodes will receive
this reduced proposed section set.) Therefore, no locally feasible thread segments
will be rendered infeasible by erroneous inclusion of segments from j.
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4 Implementation Experience

A major objective this work was to bridge the gap between theoretical consid-
eration and the practicalities of implementation. In particular, we constructed
experiments to uncover time complexity constants implicit in Theorem 3. Single-
node task sets are compared to distributed sets in the presence of underloads
as well as overloads, in failure-free as well as the f = fmax case. We explore
algorithm overhead by comparing well-known single-node scheduling disciplines
to a degenerate case of our collaborative approach.

DUA-CLA was implemented on the DRTSJ reference implementation (DRTSJ-
RI), consisting of Apogee’s Aphelion-based DRTSJ-compliant JVM, executing
on Pentium-class machines with Ubuntu Edgy Linux (kernel 2.6.17 with real-
time extensions). Nodes were connected via 10Mbps Ethernet through a Linux-
based dynamic switch, configured with the netem network emulation module [21]
to introduce controlled communication delay. Failure detector traffic, experimen-
tal control traffic, and normal communication traffic were allocated to priority
bands configured to simulate communication delays consonant with the system
model described in Section 2.1, resulting in particular in the relationship D � d
between common communication latency and failure detection latency.

A heartbeat fast-failure detector was implemented as a small, pure RTSJ
application [22] with the highest execution eligibility on the node, and not pre-
emptible by the garbage collector. A heartbeat period of 1ms and evaluation
period of 3ms were chosen to match the magnitudes of task execution times.
Extensive measurements of latency d and application message delay D were
made across a range of CPU and network utilization, with no failure detection
latency greater than 2.98 milliseconds; therefore we use d = 2.98ms for the
following DUA-CLA experiments. Similarly, we measured a worst-case message
delay D ≈ 69.87ms. Both latencies are stable across a range of CPU utilization,
closely approximating a perfect fast failure detector.

With this detector, the DUA-CLA algorithm was implemented on top of the
DRTSJ Metascheduler, a pluggable scheduling framework enabling user-space
scheduling implementations in DRTSJ [6], and previously on QNX [23].

Our experiments took place in the testbed described above, with one DRTSJ-
compliant JVM instantiated on each node. Node clocks were synchronized using
NTP [24]. The dynamic switch was configured to insert normally-distributed
communication delay in application communication traffic. All application com-
munication was via UDP, with reliable messaging provided by the application.

Local Scheduler Performance. In order to establish a baseline for assessing
the performance of our scheduler implementation, we compared DUA-CLA to
a variety of other scheduling algorithms. In these experiments, each submitted
thread consisted of a single segment to be executed on the local node. Since
no remote segments appeared in the ready set, no remote scheduling event was
triggered and DUA-CLA is functionally equivalent to Clark’s DASA algorithm.

Figures 1(a) and 1(b) illustrate deadline satisfaction performance of some UA
and non-UA scheduling policies. We use Deadline Satisfaction Ratio (DSR), the
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(a) Deadline Satisfaction (Wide)
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(b) Deadline Satisfaction
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(c) Local Accrued Utility
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Fig. 1. Local Scheduler Performance: Deadline Satisfaction, AUR, and DML

ratio of jobs which satisfy their deadline to the total number of jobs released. In
the case of this non-distributed experiment, a job is exactly equivalent to a thread
segment. A collection of 5 periodic threads were created with relatively-prime
periods and random phase offsets. Mean execution time for each job release was
varied producing processor demands ranging from 0 to 200%.

The schedulers presented here include Rate Monotonic Analysis (RMA),
Earliest Deadline First, Modified Least-Laxity First (MLLF), Dependent
Activity Scheduling Algorithm (DASA), and DUA-CLA. Of these, only DASA and
DUA-CLA are utility accrual algorithms. Each algorithm was implemented in the
Metascheduler, and each was run with an identical task set for each utilization.

Figure 1(b) provides a detailed look at the “deadline-miss load” region from
Figure 1(a), the utilization range at which the scheduling policies begin miss-
ing activity deadlines. Theoretically, each of the schedulers shown (with the
exception of RMA) should obtain 100% DSR up to 100% load. However, due
to middleware overhead activities miss deadlines at lower CPU utilizations. Un-
derstanding this overhead as we consider more complex scheduling policies is
critical to engineering systems which appropriately trade off scheduling “intelli-
gence” against the additional overhead incurred by more complex policies.

Figure 1(c) captures scheduler performance measured against the UA metric
Accrued Utility Ratio (AUR). AUR is the ratio of the accrued utility (sum of
the Ui for all completed jobs) to the utility available. Since we have chosen
unit-downward step TUFs for these experiments, the AUR and DSR are similar
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metrics, with AUR appearing as a weighted form of the DSR, with weights Ui.
The reader will note that, while Figures 1(a) and 1(b) indicate that the non-UA
policies like RMA sometimes outperform DASA and DUA-CLA in the DSR metric
during overloads, Figure 1(c) shows us that this is because RMA is dropping the
“wrong” tasks, while the UA policies favor high-utility tasks. It is precisely this
behavior we wish to explore in the distributed case, in particular understanding
the additional overhead incurred.

Finally, Figure 1(d) characterizes scheduler overhead for each policy by mea-
suring Deadline Miss Load (DML). For each data point, a task execution time
(the plot’s x-axis) was fixed for every job during a single run. Periods of each pe-
riodic task were varied, measuring the resulting utilization and deadline satisfac-
tion. The DML (the y-axis) is that greatest utilization for which the scheduling
policy was able to meet all deadlines. The theoretical (zero-overhead) behavior
during underload for each policy is a DML of 1.0: these policies should never
miss a deadline until the CPU is saturated.

Distributed Scheduler Performance. Our final set of experiments sought
to establish the concrete behavior of the DUA-CLA algorithm for qualitative
comparison to local scheduling approaches, for validation of the theoretical re-
sults above, and to investigate execution timescales for which consensus thread
scheduling is appropriate. In each trial, each three-segment periodic thread orig-
inates on a common origin node with a short segment, makes an invocation onto
one of many server nodes to execute a second segment, then returns to the origin
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node to complete in a final segment. We fix the periods, and vary the execution
times to produce the utilizations in Figure 2.

In Figure 2(a), we compare the AUR of a collection of one-segment (local)
threads to a collection of three-segment threads. As can be seen from the plot, the
penalty incurred by collaboration is significant, but the scheduling policy con-
tinues to accrue utility through 1.8 fractional utilization. Furthermore, Theorem
1 is borne out by the underloaded portion of Figure 2(a), modulo scheduling
overhead. This overhead is explored in detail in the discussion of Figure 2(c).

The behavior of DUA-CLA in the presence of failures is shown in Figure 2(b),
wherein we fail fmax nodes. Again, the performance of the scheduler suffers, but
as shown in Theorem 4, our implementation meets the termination times for all
threads remaining on correct nodes.

Finally, we investigate overhead incurred by DUA-CLA across a selection of
mean task execution times. Figure 2(c) demonstrates the expected penalty paid
in terms of DML for conducting collaborative scheduling. It is clear that the DML
for tasks with execution times less than 3D suffers because this is the minimal
communication delay required to accept a thread’s segments for execution.

5 Conclusions and Future Work

The preliminary investigation of consensus-driven collaborative scheduling ap-
proach described in this work may be extended in a variety of ways. In particular,
algorithmic support for shared resources, deadlock detection and resolution, and
quantitative assurances during overload represent worthwhile theoretical ques-
tions. Furthermore, improved implementations investigating real-world behavior
under failures and with non-trivial abort handling are suggested by the results
presented here. An exhaustive look at the practical message complexity would
enable broad-based analysis of algorithm design and implementation trade-offs
between time complexity and overload schedule quality.
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