
T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 234–246, 2007.
© IFIP International Federation for Information Processing 2007

Toward to Utilize the Heterogeneous Multiple Processors
of the Chip Multiprocessor Architecture

Slo-Li Chu

Department of Information and Computer Engineering,
Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.

slchu@cycu.edu.tw

Abstract. Continuous improvements in semiconductor fabrication density are
supporting new classes of Chip Multiprocessor (CMP) architectures that
combine extensive processing logic/processor with high-density memory in a
single chip. One of the architecture, called Processor-in-Memory (PIM) can
support high-performance computing by combining various processors in a
single system. Therefore, a new strategy is developed to identify their
capabilities and dispatch the most appropriate jobs to them in order to exploit
them fully. This paper presents a novel scheduling mechanism, called Swing
Scheduling to fully utilize all of the heterogeneous processors in the PIM
architecture. Integrated with our Octans system, this mechanism can decompose
the original program into blocks and can produce a feasible execution schedule
for the host and memory processors, even for other CMP architectures. The
experimental results for real benchmarks are also proposed.

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Swing
Scheduling, Octans.

1 Introduction

In current high-performance computer architectures, the processors run many times
faster than the computer's main memory. This performance gap is often referred to as
the Memory Wall [25]. This gap can be reduced using the System-on-a-Chip or Chip
Multiprocessor [13] strategies, which integrates the processors and memory on a
single chip. The rapid growth in silicon fabrication density has made this strategy
possible. Accordingly, many researchers have addressed integrating computing
logic/processing units and high density DRAM on a single die [5][7][8][9]
[10][12][13]. Such architectures are also called Processor-in-Memory (PIM), or
Intelligent RAM (IRAM).

Integrating DRAM and computing logic on a single integrated circuit (IC) die
generates PIM architecture with several desirable characteristics. First, the physical
size and weight of the overall design can be reduced. As more functions are integrated
on each chip, fewer chips are required for a complete design. Second, very wide on-
chip buses between the CPU and memory can be used, since DRAM is located with
computing logic on a single die. Third, eliminating off-chip drivers reduces the power
consumption and latency [12].

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 235

This class of architectures constitutes a hierarchical hybrid multiprocessor
environment by the host (main) processor and the memory processors. The host
processor is more powerful but has a deep cache hierarchy and higher latency when
accessing memory. In contrast, memory processors are normally less powerful but
have a lower latency in memory access. The main problems addressed here concern
the method for dispatching suitable tasks to these different processors according to
their characteristics to reduce execution times, and the method for partitioning the
original program to execute simultaneously on these heterogeneous processor
combinations.

Previous studies of programming for PIM architectures [4][6] have concentrated on
spawning as many processors as possible to increase speedup, rather than on the
capability difference between the host and memory processors. However, such an
approach does not exploit the real advantages of PIM architectures. This study
integrates our Octans system that integrates statement splitting, weight evaluation and
a scheduling mechanism. The original scheduling [2] mechanism is improved to
generate a superior execution schedule to fully utilize all heterogeneous processors in
the PIM architecture, using our new Swing Scheduling mechanism. A weight
evaluation mechanism is established to obtain a more precise estimate of execution
time, called weight. The Octans system can automatically analyze the source
program, generate a Weighted Partition Dependence Graph (WPG), determine the
weight of each block, and then dispatch the most suitable blocks for execution on the
host and memory processors.

The rest of this paper is organized as follows: Section 2 introduces PIM
architectures. Section 3 describes our Octans system and the Swing Scheduling
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in
Section 5.

2 The Processor-in-Memory Architecture

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It
contains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip
integrates one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques
presented in this paper is suitable for the configuration of one P.Host and multiple
P.Mems, and can be extended to support multiple P.Hosts.

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a
six-issue superscalar processor that allows out-of-order execution and runs at
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in
P.Mem. P.Mem has lower memory access latency than P.Host since the former is
integrated with DRAM. Thus, computation-bound codes are more suitable for running
on the P.Host, while memory-bound codes are preferably running on the P.Mem to
increase efficiency.

The PIM chip is designed to replace regular DRAMs in current computer systems,
and must therefore conform to a memory standard that involves additional power and
ground signals to support on-chip processing. One such standard is Rambus [5], so the

236 S.–L. Chu

 Table 1. Parameters of the PIM architecture

Host
Processor

Core

L1 Cache

P.Host

Rambus
(Memory Bus)

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

P.Mem

PIM Chip

Memory
Processor

Core

L1 Cache

DRAM
Cells

L2 Cache

Inter-Chip
Interconnection

Network

P.Host P.Mem Bus & Memory
Working Freq:
800 MHz

Working Freq:
400 MHz

Bus Freq:
100 MHz

Dynamic issue
Width: 6 Static issue Width: 2

P.Host Mem RT:
262. 5 ns

Integer unit num: 6 Integer unit num: 2
P.Mem Mem RT:
50. 5 ns

Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B

FLC_Type: WT FLC_Type: WT
Mem_Data_Transfer:
16

FLC_Size: 32 KB FLC_Size: 16 KB
Mem_Row_Width:
4K

FLC_Line: 64 B FLC_Line: 32 B
SLC_Type: WB SLC: N/A
SLC_Size: 256 KB
SLC_Line: 64 B
Replace policy:
LRU
Branch penalty: 4 Branch penalty: 2
P.Host_Mem_Delay:
88

P.Mem_Mem_Delay:
17

Fig. 1. Organization of the PIM architecture

 * FLC stands for the first level cache, SLC for the second level
cache, BR for branch, RT for round-trip latency from the
processor to the memory, and RB for row buffer.

PIM chip is designed with a Rambus-compatible interface. The private
interconnection network of the PIM chips is also provided.

3 The Octans System

Most current parallelizing compilers focus on the transformation of loops to execute
all or some iterations concurrently, in a so-called iteration-based approach. This
approach is suited to homogeneous and tightly coupled multi-processor systems.
However, it has an obvious disadvantage for heterogeneous multi-processor platforms
because iterations have similar behavior but the capabilities of heterogeneous
processors are diverse. Therefore, a different approach is adopted here, using the
statements in a loop as a basic analysis unit, called statement-based approach, to
develop the Octans system.

Octans is an automatic parallelizing compiler, that partitions and schedules an
original program to exploit the specialties of the host and the memory processor. At
first, the source program is split into blocks of statements according to dependence
relations. Then, the Weighted Partition Dependence Graph (WPG) is generated, and
the weight of each block is evaluated. Finally, the blocks are dispatched to either the
host or the memory processors, according to which processor is more suitable for
executing the block. The major difference between Octans and other parallelizing
systems is that it uses a statement rather than an iteration as the basic unit of analysis.
This approach can fully exploit the characteristics of statements in a program and
dispatch the most suitable tasks to the host and the memory processors. Fig. 2
illustrates the organization of the Octans system.

3.1 Statement Splitting and WPG Construction

Statement Splitting splits the dependence graph of the given program by the extended
node partition mechanism as introduced in [2]. It divides the original program into

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 237

Subroutine

for P. Mem
Code Generator

Schedule Determination

Weight Evaluation

Weight

Table

Statement Splitting

Subroutine

for P. Host

Source

Program

Fig. 2. The sequence of compiling stages in Octans

several small loops within the minimal statements. The detailed mechanisms can be
found in literature [2]. Then WPG Construction constructs the Weighted Partition
Dependence Graph (WPG), to be used in the subsequent stages of Weight Evaluation,
Wavefront Generation and Schedule Determination.

3.2 Weight Evaluation

Two approaches to evaluating weight can be taken. One is to predict the execution
time of programs by profiling the dominant parts. The other considers the operations
in a statement and estimates the program execution time by looking up an operation
weight table. The former method called code profiling may be more accurate, but the
predicted result cannot be reused; the latter called code analysis can determine
statements for suitable processors but the estimated program execution time is not
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed
to combine the benefits of both approaches. It integrates these two approaches
together by analyzing code and searching weight table first to estimate the weight of a
block. If the block contains unknown operations, the patch (profiling) mechanism is
then activated to evaluate the weights of unknown operations. The obtained operation
weights are added into the weight table for next look-up. For a detailed description of
this scheme, please refer to [2].

3.3 The Swing Scheduling Mechanism

Here we propose the Swing Scheduling mechanism to achieve a good schedule for
utilizing all of the memory processors in PIM architecture. At first, the redundancy
and synchronization between processors are critical factors that affect the
performance of job scheduling for multiprocessor platforms. A critical path
mechanism is used to minimize the frequency of synchronization. Then the WPG is
then partitioned into several Sections according to the nodes on the critical path and
the dependence relations between these nodes. In a Section, the blocks are partitioned
into several Inner Wavefronts in the following stages. Finally, the execution schedule

238 S.–L. Chu

for all P.Host and P.Mems is obtained. If the number of occupied memory processors
exceeds the maximum number of processors in the PIM configuration, then the
execution schedule will be modified accordingly. Algorithm 1 presents the main steps
of this scheduling mechanism.

Algorithm 1. (Swing Scheduling)

[Input]

WPG=(P,E): original weighted partition dependence graph after weight is determined.
[Output]

An critical path execution order schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}.
CPSi ={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi
={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2.
[Intermediate]
W: a working set of nodes ready to be visited.
EO_temp: a working set for execution order scheduling.
iwf_temp: a working set for Inner Wavefront scheduling.
max_EO: the maximum number of execution order.
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks.
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks.
min_succ_RO(bi):the minimum execution order for all bi’s successor blocks.
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks.
PHW(bi): the weight of bi for P.Host.
PMW(bi): the weight of bi for P.Mem.
Ranku(bi): the trace up value of bi used for finding CP
Rankd(bi): the trace down value of bi used for finding CP

[Method]
Step 1:Call "Initialization()" to initialize the algorithm and determine the weights of each

block.
Step 2:Call "Rankd_Exec_Order_Det()" to determine the Rankd and Execution order of

each block.
Step 3:Call "Ranku_Det()" to determine the Ranku of each block.
Step 4:Call "Critical_Path_Det()" to determine the blocks which is belong to the Critical

Path.
Step 5:Call "Critical_Path_Block_Sch()" to find out the Section and schedule the Critical

Path Block in each Section to the a suitable processor.
Step 6:Call "Inner_Wavefront_Sch()" to partition the blocks which is belong to the same

Section into several Inner Wavefront and schedule the blocks in the same Inner
Wavefront to the suitable processors.

Step 7:Call "Generate_Schedule()" to generate the execution schedule, CPS.
Step 8:If the occupied processor number is larger than the maximum processor number,

call "Modify_schedule()" to modify the original execution schedule to fit the
processor number, else Stop the algorithm.

The algorithm includes eight major steps. In Step 1, the algorithm calls

"Initialization()" to initiate the necessary variables and determine the P.Host and
P.Mem weights of each blocks determined by the weight evaluation mechanism.

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 239

Swing algorithm adopts the critical path method to partition WPG into Sections.
Therefore, the critical path and the blocks on the critical path must be determined.
Then the attributes, randu and rankd, of block bi in WPG are defined by the following
equations.

))((max)()(
)(

ju
bsuccb

iiu brankbPMWbrank
ij ∈

+=

)}()({max)(
)(

jjd
bpredb

id bPMWbrankbrank
ij

+=
∈

Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi,
respectively. The critical path is defined as the following equation.

A block bi is on the critical path, if and only if ranku(bi) + rankd(bi) = ranku(bs),
where bs is the start block of the WPG, and bi is called the critical path block.

According to the above definitions, the critical path and the critical path block can
be determined from Step 2 to Step 4. Step 2 calls "Rankd_Exec_Order_Det()"
to determine rankd and the execution order of each block. Step 3 calls "Ranku_Det()"
to determine ranku of each block. Then, the algorithm calls "Critical_Path_Det()" to
determine which blocks are critical path blocks in Step 4.

Subroutine: Critical_Path_Det()

CP = (rankd(bs)),where bs is the start block of WPG
CP_num_sec=0
for i=1 to max_EO do

store all of bi whose Oi =i in EO_temp
for each block bi ∈ EO_temp do

if (rankd(bi)+ranku(bi))=CP then
CP_num_sec=CP_num_sec+1
CP_O(CP_num_sec)= O(bi)
CP_temp(CP_num_sec)= bi

end for
end for

Subroutine: Ranku_Det()

W=P-{be},where be is the end block of the WPG
RO(be)=1
done = False

while done = False AND W≠φ do
done=True
for each bi ∈W do

if min_succ_RO(bi)=0 then
done=False

else
))((max)()(

)(
ju

bsuccb
iiu brankbPMWbrank

ij∈
+=

ROi= max_succ_RO(bi)+1
W=W-{ bi }

end if
end for

end while

240 S.–L. Chu

Subroutine: Critical_Path_Det()
CP = (rankd(bs)),where bs is the start block of WPG
CP_num_sec=0
for i=1 to max_EO do
store all of bi whose Oi=i in EO_temp
for each block bi ∈ EO_temp do

if (rankd(bi)+ranku(bi))=CP then
CP_num_sec=CP_num_sec+1
CP_O(CP_num_sec)= O(bi)
CP_temp(CP_num_sec)= bi

end for
end for

Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages

stated above. In this WPG, the shadow blocks are on the critical path. When the
critical path is determined in Step 5, "Critical_Path_Block_Sch()" is called to
partition all blocks in the WPG into several Sections. Fig. 4 illustrates the result of the
given WPG, which is partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3,
b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16,
b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The
execution order of Sections is governed by their dependence relations. After the
critical path block is identified, the remaining blocks are partitioned into several Inner
Wavefronts according to the order of execution and the dependence relations. In Fig.
4, Section 2 of the WPG is used to explain how blocks are scheduled in a Section.
Since b2 is the block on critical path in Section 2, "Critical_Path_Block_Sch()" is
firstly used to schedule b2 to reduce the waiting and synchronization frequencies. The
remaining blocks are partitioned into three wavefronts according to the Oi of each
block, by calling "Inner_Wavefront_Sch()" in Step 6. Finally, iw1={b3, b4, b5, b6},
iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined.

Subroutine: Critical_Path_Block_Sch()

i=1, k=0
while k ≤CP_num_sec do

k=CP_O(i)
if PHW(CP_temp(i))- PMW(CP_temp(i))< 0 then

CPk={PH(CP_temp(i))}
PH_Used=true
PM1_Used=false

else
CPk={PM1(CP_temp(i))}
PH_Used=false
PM1_Used=true

end if
i=i+1

end while

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 241

I=
{N,M}

S=
{s1}

W=
{1, 2}

O=1
ranku
=118

rankd
=0

b1

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2
ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2
ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2
ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2
ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2
ranku
=85

rankd
=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4
ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4
ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4
ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4
ranku
=55

rankd
=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4
ranku
=59

rankd
=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3
ranku
=77

rankd
=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3
ranku
=76

rankd
=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3
ranku
=70

rankd
=17

b9

I=
{N,M}

S=
{s15}

W=
{3,5}

O=5
ranku
=47

rankd
=71

b15

I=
{N,M}

S=
{s16}

W=
{18,13}

O=6
ranku
=38

rankd
=76

b16

I=
{N,M}

S=
{s17}

W=
{11,12}

O=6
ranku
=37

rankd
=76

b17

I=
{N,M}

S=
{s18}

W=
{19,14}

O=6
ranku
=41

rankd
=76

b18

I=
{N,M}

S=
{s19}

W=
{16,13}

O=6
ranku
=37

rankd
=76

b19

I=
{N,M}

S=
{s20}

W=
{17,12}

O=6
ranku
=36

rankd
=76

b20 I=
{N,M}

S=
{s21}

W=
{68,41}

O=6
ranku
=42

rankd
=76

b21

I=
{N,M}

S=
{s22}

W=
{7,11}

O=7
ranku
=25

rankd
=89

b22

I=
{N,M}

S=
{s23}

W=
{14,10}

O=7
ranku
=27

rankd
=90

b23

I=
{N,M}

S=
{s24}

W=
{13,8}

O=7
ranku
=24

rankd
=89

b24

I=
{N,M}

S=
{s25}

W=
{19,13}

O=8
ranku
=14

rankd
=102

b25

I=
{N,M}

S=
{s26}

W=
{14,16}

O=8
ranku
=17

rankd
=100

b26

I=
{N,M}

S=
{s27}

W=
{21,15}

O=8
ranku
=16

rankd
=97

b27

I=
{N,M}

S=
{s28}

W=
{23,15}

O=8
ranku
=16

rankd
=97

b28

I=
{N,M}

S=
{s29}

W=
{1,1}

O=9
ranku

=1
rankd
=117

b29

Fig. 3. WPG of a synthetic example

Section 2={b2,b3,b4,b5,b6,b7,b8,b9,,b10,b11,b12,b13}
Critical path ={b2}

iw1={b3,b4,b5,b6}

iw2={b7,b8,b9}

iw3={b10,b11,b12,b13,b14}

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2 ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2 ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2 ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2 ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2 ranku
=85

rankd
=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4 ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4 ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4 ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4 ranku
=55

rankd
=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4 ranku
=59

rankd
=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3 ranku
=77

rankd
=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3 ranku
=76

rankd
=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3 ranku
=70

rankd
=17

b9

Fig. 4. Scheduled WPG of Section 2

242 S.–L. Chu

CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5}
={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 , IWF5}}

CPS1 : /*Section 1*/
CP1={PH(b1)},
 IWF1={φ }

CPS2 : /*Section 2*/
CP2={PH(b2)},
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7), PM2(b8),

PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13), PM5(b14)}}
CPS3 : /*Section 3*/

CP3={PH(b15)},
IWF3={φ }

CPS4 : /*Section 4*/
CP4={PM1(b21)},
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19), PM4(b20)},

{PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26), PM2(b27), PM3(b28)}}
CPS5 : /*Section 5*/

CP5={b29}, IWF5={φ }

Fig. 5. Output of the Swing scheduling algorithm

In Step 7, the execution schedule is generated by "Generate_Schedule()", as
shown in Fig. 5. and Fig. 6 shows the graphical execution schedule. The shaded
blocks the Fig. 5 represent the execution latency. The blank blocks indicate that
the processor is waiting for other processors to synchronize. The bold and dotted
lines determine the point of synchronization of Section and Inner Wavefront
respectively.

time

1

.

.

.

10

.

.

.

20

.

.

.

30

.

.

.

40

.

.

.

50

.

.

.

60

.

.

.

70

.

.

.

80

.

.

.

90

.

.

.

PH PM1 PM2 PM3 PM4 PM5

b1

b2

b3 b4 b5
b6

b7 b8

b9

b10 b11
b12 b13

b14

b15

b21

b29

b17 b16 b18 b19 b20

b22
b23 b24

b25b26 b27 b28

Fig. 6. Graphical execution schedule of the given example

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 243

Sometimes, the execution schedule may occupy more processors than are present in
the architectural configuration. Therefore, Step 8 calls "Modify_schedule()" to modify
the execution schedule as necessary.

4 Experimental Results

The code generated by our Octans system is targeted on our PIM simulator that is
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC
[13]. Table 1 lists the major architectural parameters. In this experiment, the
configuration of one P.Host with many P.Mem processors is modeled to reflect the
benefits of the multiple memory processors.

This experiment utilizes multiple P.Mem processors in the PIM architecture to
improve performance. The evaluated applications include five benchmarks: cg is from
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from
Perfect Benchmark, and fft is from [45].

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the
application is executed in P.Host alone. This experiment concerns a general situation
of a uniprocessor system, and is used to compare speedup. "1-P.Mem” implies that
the application is transformed and scheduled by the simplified Swing Scheduling for
the one-P.Host and one-P.Mem configuration of the PIM architecture. “n-P.Mem”
implies that the application is transformed and scheduled by Swing Scheduling
mechanism for the one P.Host and multiple P.Mem configuration of the PIM
architecture.

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the
Swing Scheduling mechanism is employed because these programs contain many
memory references and few dependence relations. Therefore, the parallelism and
memory access performance can be improved by using more memory processors.
Applying the 1-P.Mem scheduling mechanism can also yield improvements. strsm
exhibits an extremely high parallelism but a rather few memory access, so the Swing
Scheduling mechanism is more suitably adopted than the 1-P.Mem scheduling
mechanism. TISI cannot generate speedup when the 1-P.Mem scheduling mechanism
is applied, since it is a typical CPU bounded program, and involves many
dependencies. The Swing Scheduling mechanism can be suitably used to increase
speedup. Finally, in fft, the program is somewhat computation-intensive and

Table 2. Execution cycles of five benchmarks

SpeedupBench-
mark Standard 1-P.Mem

Scheduling
n-P.Mem
Scheduling 1-P.Mem

Scheduling
n-P.Mem
Scheduling

n(Occupied
P.Mem)

swim 228289321 116669760 52168027 1.96 4.38 6
cg 91111840 51230772 32124287 1.78 2.84 4
strsm 703966766 489967053 187989176 1.44 3.74 5
TISI 133644087 173503404 91098174 0.77 1.47 2
fft 117998621 101841407 110399171 1.16 1.07 2

244 S.–L. Chu

Fig. 7. Execution times of five benchmarks obtained by Standard, 1-P.Mem and n-P.Mem
settings.

sequential, and therefore only a little speedup can be improved after the 1-P.Mem
scheduling mechanism is applied. However, an additional overhead is generated when
the Swing Scheduling mechanism is applied. Accordingly, 1-P.Mem and Swing
scheduling mechanisms are suitable for different situations. Choosing the 1-P.Mem or
Swing scheduling mechanism more heuristically in the scheduling stage of the Octans
system will improve performance.

5 Conclusions

This study proposes a new scheduling mechanism, called Swing Scheduling, with
Octans system for a new class of high-performance chip multiprocessor architectures,
Processor-in-Memory, which consists of a host processor and many memory
processors. The Octans system partitions source code into blocks by statement
splitting; estimates the weight (execution time) of each block, and then schedules each
block to the most suitable processor for execution. Five real benchmarks, swim, TISI,

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 245

strsm, cg, and fft were experimentally considered to evaluate the effects of the Swing
Scheduling. In the experiment, the performance was improved by a factor of up to
4.38 while using up to six P.Mems and one P.Host. The authors believe that the
techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM,
and other high-performance chip multiprocessor architectures by slightly modifying
the code generator of the Octans system.

Acknowledgements

This work is supported in part by the National Science Council of Republic of China,
Taiwan under Grant NSC 96-2221-E-033 -019-

References

[1] Blume, W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,
Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Effective Automatic
Parallelization with Polaris. International Journal of Parallel Programming (May 1995)

[2] Chu, S.L.: PSS: a novel statement scheduling mechanism for a high-performance SoC
architecture. In: Proceedings of Tenth International Conference on Parallel and
Distributed Systems, pp. 690–697 (July 2004)

[3] Crisp, R.: Direct Rambus Technology: the New Main Memory Standard. In: Proceedings
of IEEE Micro, pp. 18–28 (November 1997)

[4] Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S., Bugnion, E., Lam, M.:
Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer
(December 1996)

[5] Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss, J., Granacki, J.,
Brockman, J., Srivastava, A., Athas, W., Freeh, V., Shin, J., Park, J.: Mapping Irregular
Applications to DIVA, a PIM-Based Data-Intensive Architecture. In: Proceedings of 1999
Conference on Supercomputing (January 1999)

[6] Judd, D., Yelick, K.: Exploiting On-Chip Memory Bandwidth in the VIRAM Compiler.
In: Proceedings of 2nd Workshop on Intelligent Memory Systems, Cambridge, MA
(November 12, 2000)

[7] Kang, Y., Huang, W., Yoo, S., Keen, D., Ge, Z., Lam, V., Pattnaik, P., and Torrellas, J.:
FlexRAM: Toward an Advanced Intelligent Memory System. In: Proceedings of
International Conference on Computer Design (ICCD), Austin, Texas (October 1999)

[8] Landis, D., Roth, L., Hulina, P., Coraor, L., Deno, S.: Evaluation of Computing in
Memory Architectures for Digital Image Processing Applications. In: Proceedings of
International Conference on Computer Design, pp. 146–151 (1999)

[9] Oskin, M., Chong, F.T., Sherwood, T.: Active Page: A Computation Model for Intelligent
Memory. Computer Architecture. In: Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 192–203 (1998)

[10] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Tomas,
R., Yelick, K.: A Case for Intelligent DRAM. IEEE Micro, pp. 33-44 (March/April 1997)

[11] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in
Fortran 77. Cambridge University Press, Cambridge (1992)

246 S.–L. Chu

[12] Snip, A. K., Elliott, D.G., Margala, M., Durdle, N.G.: Using Computational RAM for
Volume Rendering. In: Proceedings of 13th Annual IEEE International Conference on
ASIC/SOC, pp. 253 –257 (2000)

[13] Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. MICRO-36
(December 2003)

[14] Veenstra, J., Fowler, R.: MINT: A Front End for Efficient Simulation of Shared-Memory
Multiprocessors. In: Proceedings of MAS-COTS 1994, pp. 201–207 (January 1994)

[15] Wang, K.Y.: Precise Compile-Time Performance Prediction for Superscalar-Based
Computers. In: Proceedings of ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, pp. 73–84 (1994)

	Toward to Utilize the Heterogeneous Multiple Processors of the Chip Multiprocessor Architecture
	Introduction
	The Processor-in-Memory Architecture
	The Octans System
	Statement Splitting and WPG Construction
	Weight Evaluation

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

