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Abstract. Continuous improvements in semiconductor fabrication density are 
supporting new classes of Chip Multiprocessor (CMP) architectures that 
combine extensive processing logic/processor with high-density memory in a 
single chip. One of the architecture, called Processor-in-Memory (PIM) can 
support high-performance computing by combining various processors in a 
single system. Therefore, a new strategy is developed to identify their 
capabilities and dispatch the most appropriate jobs to them in order to exploit 
them fully. This paper presents a novel scheduling mechanism, called Swing 
Scheduling to fully utilize all of the heterogeneous processors in the PIM 
architecture. Integrated with our Octans system, this mechanism can decompose 
the original program into blocks and can produce a feasible execution schedule 
for the host and memory processors, even for other CMP architectures. The 
experimental results for real benchmarks are also proposed. 

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Swing 
Scheduling, Octans. 

1   Introduction 

In current high-performance computer architectures, the processors run many times 
faster than the computer's main memory. This performance gap is often referred to as 
the Memory Wall [25]. This gap can be reduced using the System-on-a-Chip or Chip 
Multiprocessor [13] strategies, which integrates the processors and memory on a 
single chip. The rapid growth in silicon fabrication density has made this strategy 
possible. Accordingly, many researchers have addressed integrating computing 
logic/processing units and high density DRAM on a single die [5][7][8][9] 
[10][12][13]. Such architectures are also called Processor-in-Memory (PIM), or 
Intelligent RAM (IRAM). 

Integrating DRAM and computing logic on a single integrated circuit (IC) die 
generates PIM architecture with several desirable characteristics. First, the physical 
size and weight of the overall design can be reduced. As more functions are integrated 
on each chip, fewer chips are required for a complete design. Second, very wide on-
chip buses between the CPU and memory can be used, since DRAM is located with 
computing logic on a single die. Third, eliminating off-chip drivers reduces the power 
consumption and latency [12]. 
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This class of architectures constitutes a hierarchical hybrid multiprocessor 
environment by the host (main) processor and the memory processors. The host 
processor is more powerful but has a deep cache hierarchy and higher latency when 
accessing memory. In contrast, memory processors are normally less powerful but 
have a lower latency in memory access. The main problems addressed here concern 
the method for dispatching suitable tasks to these different processors according to 
their characteristics to reduce execution times, and the method for partitioning the 
original program to execute simultaneously on these heterogeneous processor 
combinations. 

Previous studies of programming for PIM architectures [4][6] have concentrated on 
spawning as many processors as possible to increase speedup, rather than on the 
capability difference between the host and memory processors. However, such an 
approach does not exploit the real advantages of PIM architectures. This study 
integrates our Octans system that integrates statement splitting, weight evaluation and 
a scheduling mechanism. The original scheduling [2] mechanism is improved to 
generate a superior execution schedule to fully utilize all heterogeneous processors in 
the PIM architecture, using our new Swing Scheduling mechanism. A weight 
evaluation mechanism is established to obtain a more precise estimate of execution 
time, called weight. The Octans system can automatically analyze the source 
program, generate a Weighted Partition Dependence Graph (WPG), determine the 
weight of each block, and then dispatch the most suitable blocks for execution on the 
host and memory processors. 

The rest of this paper is organized as follows: Section 2 introduces PIM 
architectures. Section 3 describes our Octans system and the Swing Scheduling 
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in 
Section 5. 

2   The Processor-in-Memory Architecture 

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It 
contains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip 
integrates one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques 
presented in this paper is suitable for the configuration of one P.Host and multiple 
P.Mems, and can be extended to support multiple P.Hosts. 

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a 
six-issue superscalar processor that allows out-of-order execution and runs at 
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability 
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in 
P.Mem. P.Mem has lower memory access latency than P.Host since the former is 
integrated with DRAM. Thus, computation-bound codes are more suitable for running 
on the P.Host, while memory-bound codes are preferably running on the P.Mem to 
increase efficiency. 

The PIM chip is designed to replace regular DRAMs in current computer systems, 
and must therefore conform to a memory standard that involves additional power and 
ground signals to support on-chip processing. One such standard is Rambus [5], so the 
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 Table 1. Parameters of the PIM architecture  
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Fig. 1. Organization of the PIM architecture 

  * FLC stands for the first level cache, SLC for the second level    
cache, BR for branch, RT for round-trip latency from the 
processor to the memory, and RB for row buffer. 

PIM chip is designed with a Rambus-compatible interface. The private 
interconnection network of the PIM chips is also provided. 

3   The Octans System 

Most current parallelizing compilers focus on the transformation of loops to execute 
all or some iterations concurrently, in a so-called iteration-based approach. This 
approach is suited to homogeneous and tightly coupled multi-processor systems. 
However, it has an obvious disadvantage for heterogeneous multi-processor platforms 
because iterations have similar behavior but the capabilities of heterogeneous 
processors are diverse. Therefore, a different approach is adopted here, using the 
statements in a loop as a basic analysis unit, called statement-based approach, to 
develop the Octans system. 

Octans is an automatic parallelizing compiler, that partitions and schedules an 
original program to exploit the specialties of the host and the memory processor. At 
first, the source program is split into blocks of statements according to dependence 
relations. Then, the Weighted Partition Dependence Graph (WPG) is generated, and 
the weight of each block is evaluated. Finally, the blocks are dispatched to either the 
host or the memory processors, according to which processor is more suitable for 
executing the block. The major difference between Octans and other parallelizing 
systems is that it uses a statement rather than an iteration as the basic unit of analysis. 
This approach can fully exploit the characteristics of statements in a program and 
dispatch the most suitable tasks to the host and the memory processors. Fig. 2 
illustrates the organization of the Octans system. 

3.1   Statement Splitting and WPG Construction 

Statement Splitting splits the dependence graph of the given program by the extended 
node partition mechanism as introduced in [2]. It divides the original program into 
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Fig. 2. The sequence of compiling stages in Octans 

several small loops within the minimal statements. The detailed mechanisms can be 
found in literature [2]. Then WPG Construction constructs the Weighted Partition 
Dependence Graph (WPG), to be used in the subsequent stages of Weight Evaluation, 
Wavefront Generation and Schedule Determination. 

3.2   Weight Evaluation 

Two approaches to evaluating weight can be taken. One is to predict the execution 
time of programs by profiling the dominant parts. The other considers the operations 
in a statement and estimates the program execution time by looking up an operation 
weight table. The former method called code profiling may be more accurate, but the 
predicted result cannot be reused; the latter called code analysis can determine 
statements for suitable processors but the estimated program execution time is not 
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed 
to combine the benefits of both approaches. It integrates these two approaches 
together by analyzing code and searching weight table first to estimate the weight of a 
block. If the block contains unknown operations, the patch (profiling) mechanism is 
then activated to evaluate the weights of unknown operations. The obtained operation 
weights are added into the weight table for next look-up. For a detailed description of 
this scheme, please refer to [2]. 

3.3   The Swing Scheduling Mechanism 

Here we propose the Swing Scheduling mechanism to achieve a good schedule for 
utilizing all of the memory processors in PIM architecture. At first, the redundancy 
and synchronization between processors are critical factors that affect the 
performance of job scheduling for multiprocessor platforms. A critical path 
mechanism is used to minimize the frequency of synchronization. Then the WPG is 
then partitioned into several Sections according to the nodes on the critical path and 
the dependence relations between these nodes. In a Section, the blocks are partitioned 
into several Inner Wavefronts in the following stages. Finally, the execution schedule 
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for all P.Host and P.Mems is obtained. If the number of occupied memory processors 
exceeds the maximum number of processors in the PIM configuration, then the 
execution schedule will be modified accordingly. Algorithm 1 presents the main steps 
of this scheduling mechanism. 

 
Algorithm 1. (Swing Scheduling)  

 
[Input] 

WPG=(P,E): original weighted partition dependence graph after weight is determined. 
[Output] 

An critical path execution order schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}. 
CPSi ={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi 
={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that 
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to 
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2. 
[Intermediate] 
W: a working set of nodes ready to be visited.  
EO_temp: a working set for execution order scheduling. 
iwf_temp: a working set for Inner Wavefront scheduling. 
max_EO: the maximum number of execution order. 
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks. 
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks. 
min_succ_RO(bi):the minimum execution order for all bi’s successor blocks. 
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks. 
PHW(bi): the weight of bi for P.Host. 
PMW(bi): the weight of bi for P.Mem. 
Ranku(bi): the trace up value of bi used for finding CP 
Rankd(bi): the trace down value of bi used for finding CP 

[Method] 
Step 1:Call "Initialization()" to initialize the algorithm and determine the weights of each 

block. 
Step 2:Call "Rankd_Exec_Order_Det()" to determine the Rankd and Execution order of 

each block. 
Step 3:Call "Ranku_Det()" to determine the Ranku of each block. 
Step 4:Call "Critical_Path_Det()" to determine the blocks which is belong to the Critical 

Path. 
Step 5:Call "Critical_Path_Block_Sch()" to find out the Section and schedule the Critical 

Path Block in each Section to the a suitable processor. 
Step 6:Call "Inner_Wavefront_Sch()" to partition the blocks which is belong to the same 

Section into several Inner Wavefront and schedule the blocks in the same Inner 
Wavefront to the suitable processors. 

Step 7:Call "Generate_Schedule()" to generate the execution schedule, CPS. 
Step 8:If the occupied processor number is larger than the maximum processor number, 

call "Modify_schedule()" to modify the original execution schedule to fit the 
processor number, else Stop the algorithm.  

 

 
The algorithm includes eight major steps. In Step 1, the algorithm calls 

"Initialization()" to initiate the necessary variables and determine the P.Host and 
P.Mem weights of each blocks determined by the weight evaluation mechanism.  
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Swing algorithm adopts the critical path method to partition WPG into Sections. 
Therefore, the critical path and the blocks on the critical path must be determined. 
Then the attributes, randu and rankd, of block bi in WPG are defined by the following 
equations. 
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Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi, 
respectively. The critical path is defined as the following equation. 

A block bi is on the critical path, if and only if ranku(bi) + rankd(bi) = ranku(bs), 
where bs is the start block of the WPG, and bi is called the critical path block. 

According to the above definitions, the critical path and the critical path block can 
be determined from Step 2 to Step 4. Step 2 calls "Rankd_Exec_Order_Det()"  
to determine rankd and the execution order of each block. Step 3 calls "Ranku_Det()" 
to determine ranku of each block. Then, the algorithm calls "Critical_Path_Det()" to 
determine which blocks are critical path blocks in Step 4.  

 
Subroutine: Critical_Path_Det() 

CP = (rankd(bs)),where bs is the start block of WPG 
CP_num_sec=0 
for i=1 to max_EO do 

store all of bi whose Oi =i in EO_temp 
for each block bi ∈ EO_temp do 

if (rankd(bi)+ranku(bi))=CP then 
CP_num_sec=CP_num_sec+1 
CP_O(CP_num_sec )= O(bi) 
CP_temp(CP_num_sec )= bi 

end for 
end for 

 
Subroutine: Ranku_Det() 

W=P-{be},where be is the end block of the WPG 
RO(be)=1 
done = False 

while done = False AND W≠φ do  
done=True   
for each bi ∈W do  

if min_succ_RO(bi)=0  then 
done=False 

else 
))((max)()(

)(
ju

bsuccb
iiu brankbPMWbrank

ij∈
+=  

ROi= max_succ_RO(bi)+1 
W=W-{ bi } 

end if 
end for 

end while 
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Subroutine: Critical_Path_Det() 
CP = (rankd(bs)),where bs is the start block of WPG 
CP_num_sec=0 
for i=1 to max_EO do 
store all of bi whose Oi=i in EO_temp 
for each block bi ∈ EO_temp do 

if  (rankd(bi)+ranku(bi))=CP then 
CP_num_sec=CP_num_sec+1 
CP_O(CP_num_sec )= O(bi) 
CP_temp(CP_num_sec )= bi 

end for 
end for 

 
Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages 

stated above. In this WPG, the shadow blocks are on the critical path. When the 
critical path is determined in Step 5, "Critical_Path_Block_Sch()" is called to 
partition all blocks in the WPG into several Sections. Fig. 4 illustrates the result of the 
given WPG, which is partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3, 
b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16, 
b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The 
execution order of Sections is governed by their dependence relations. After the 
critical path block is identified, the remaining blocks are partitioned into several Inner 
Wavefronts according to the order of execution and the dependence relations. In Fig. 
4, Section 2 of the WPG is used to explain how blocks are scheduled in a Section. 
Since b2 is the block on critical path in Section 2, "Critical_Path_Block_Sch()" is 
firstly used to schedule b2 to reduce the waiting and synchronization frequencies. The 
remaining blocks are partitioned into three wavefronts according to the Oi of each 
block, by calling "Inner_Wavefront_Sch()" in Step 6. Finally, iw1={b3, b4, b5, b6}, 
iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined. 

 
Subroutine: Critical_Path_Block_Sch() 

i=1, k=0 
while k ≤CP_num_sec do 

k=CP_O(i) 
if  PHW(CP_temp( i ))- PMW(CP_temp( i ))< 0 then 

CPk={PH(CP_temp(i))}  
PH_Used=true 
PM1_Used=false 

else  
CPk={PM1(CP_temp(i))}  
PH_Used=false 
PM1_Used=true  

end if 
i=i+1 

end while 
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Fig. 3. WPG of a synthetic example 
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Fig. 4. Scheduled WPG of Section 2 
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CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5} 
={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 , IWF5}} 

CPS1 :  /*Section 1*/ 
CP1={PH(b1)}, 
 IWF1={φ } 

CPS2 :  /*Section 2*/ 
CP2={PH(b2)},  
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7), PM2(b8), 

PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13), PM5(b14)}} 
CPS3 :  /*Section 3*/ 

CP3={PH(b15)},  
IWF3={φ } 

CPS4 :  /*Section 4*/ 
CP4={PM1(b21)},  
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19), PM4(b20)}, 

{PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26), PM2(b27), PM3(b28)}} 
CPS5 :  /*Section 5*/ 

CP5={b29}, IWF5={φ } 

Fig. 5. Output of the Swing scheduling algorithm 

In Step 7, the execution schedule is generated by "Generate_Schedule()", as 
shown in Fig. 5. and Fig. 6 shows the graphical execution schedule. The shaded 
blocks the Fig. 5 represent the execution latency. The blank blocks indicate that 
the processor is waiting for other processors to synchronize. The bold and dotted 
lines determine the point of synchronization of Section and Inner Wavefront 
respectively. 
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Fig. 6. Graphical execution schedule of the given example 
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Sometimes, the execution schedule may occupy more processors than are present in 
the architectural configuration. Therefore, Step 8 calls "Modify_schedule()" to modify 
the execution schedule as necessary.  

4   Experimental Results 

The code generated by our Octans system is targeted on our PIM simulator that is 
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC 
[13]. Table 1 lists the major architectural parameters. In this experiment, the 
configuration of one P.Host with many P.Mem processors is modeled to reflect the 
benefits of the multiple memory processors.  

This experiment utilizes multiple P.Mem processors in the PIM architecture to 
improve performance. The evaluated applications include five benchmarks: cg is from 
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from 
Perfect Benchmark, and fft is from [45]. 

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the 
application is executed in P.Host alone. This experiment concerns a general situation 
of a uniprocessor system, and is used to compare speedup. "1-P.Mem” implies that 
the application is transformed and scheduled by the simplified Swing Scheduling for 
the one-P.Host and one-P.Mem configuration of the PIM architecture. “n-P.Mem” 
implies that the application is transformed and scheduled by Swing Scheduling 
mechanism for the one P.Host and multiple P.Mem configuration of the PIM 
architecture.  

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the 
Swing Scheduling mechanism is employed because these programs contain many 
memory references and few dependence relations. Therefore, the parallelism and 
memory access performance can be improved by using more memory processors. 
Applying the 1-P.Mem scheduling mechanism can also yield improvements. strsm 
exhibits an extremely high parallelism but a rather few memory access, so the Swing 
Scheduling mechanism is more suitably adopted than the 1-P.Mem scheduling 
mechanism. TISI cannot generate speedup when the 1-P.Mem scheduling mechanism 
is applied, since it is a typical CPU bounded program, and involves many 
dependencies. The Swing Scheduling mechanism can be suitably used to increase 
speedup. Finally, in fft, the program is somewhat computation-intensive and 
 

Table 2. Execution cycles of five benchmarks 

SpeedupBench-
mark Standard 1-P.Mem

Scheduling
n-P.Mem
Scheduling 1-P.Mem

Scheduling
n-P.Mem
Scheduling

n(Occupied
P.Mem)

swim 228289321 116669760 52168027 1.96 4.38 6
cg 91111840 51230772 32124287 1.78 2.84 4
strsm 703966766 489967053 187989176 1.44 3.74 5
TISI 133644087 173503404 91098174 0.77 1.47 2
fft 117998621 101841407 110399171 1.16 1.07 2
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Fig. 7. Execution times of five benchmarks obtained by Standard, 1-P.Mem and n-P.Mem 
settings.  

 

sequential, and therefore only a little speedup can be improved after the 1-P.Mem 
scheduling mechanism is applied. However, an additional overhead is generated when 
the Swing Scheduling mechanism is applied. Accordingly, 1-P.Mem and Swing 
scheduling mechanisms are suitable for different situations. Choosing the 1-P.Mem or 
Swing scheduling mechanism more heuristically in the scheduling stage of the Octans 
system will improve performance. 

5   Conclusions 

This study proposes a new scheduling mechanism, called Swing Scheduling, with 
Octans system for a new class of high-performance chip multiprocessor architectures, 
Processor-in-Memory, which consists of a host processor and many memory 
processors. The Octans system partitions source code into blocks by statement 
splitting; estimates the weight (execution time) of each block, and then schedules each 
block to the most suitable processor for execution. Five real benchmarks, swim, TISI, 
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strsm, cg, and fft were experimentally considered to evaluate the effects of the Swing 
Scheduling. In the experiment, the performance was improved by a factor of up to 
4.38 while using up to six P.Mems and one P.Host. The authors believe that the 
techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM, 
and other high-performance chip multiprocessor architectures by slightly modifying 
the code generator of the Octans system. 
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