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Abstract. To allow embedded operating systems to update their components 
on-the-fly, dynamic update mechanism is required for operating systems to be 
patched or added extra functionalities in without the need of rebooting the 
machines. However, embedded environments are usually resource-limited in 
terms of memory size, processing power, power consumption, and network 
bandwidth. Thus, dynamic update for embedded operating systems should be 
designed to make the best use of limited resources. In this paper, we have 
proposed a server-side pre-linking mechanism to make dynamic updates of 
embedded operating system efficiently. Applying this mechanism can reduce 
not only memory usage and CPU processing time for dynamic update, but also 
data transmission size for update components. Power consumption can be 
reduced as well. Performance evaluation shows that compared with the 
approach of Linux loadable kernel modules, the size of update components can 
be reduced about 14-35% and the overheads in embedded clients are minimal. 

Keywords: Embedded System, Operating System, Dynamic Update, Modules, 
LyraOS. 

1   Introduction 

Dynamic update allows operating systems to update their components on-the-fly 
without rebooting the whole systems or stopping any system services. This opens up a 
wide range of opportunities: fixing bugs, upgrading services, improving algorithms, 
adding extra functionalities, runtime optimization, etc. Although many operating 
systems have already supported different kinds of mechanisms to extend their kernels, 
they usually do not aim at resource-limited environments. For instance, Linux uses a 
technique called loadable kernel modules (LKMs) [1]. By using this technique, Linux 
can load modules, such as device drivers, file systems, or system call to extend the 
kernel at run time. However, LKMs may take lots of overheads in embedded 
environments. Since embedded systems are usually resource limited, in order to keep 
the added overheads minimal while providing dynamic update in an embedded 
operating system, we propose the server-side pre-linking mechanism which is a 
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client-server model similar to the server-side linking mechanism proposed in the 
operating system portal (OSP) framework [2]. Unlike the OSP framework, our server-
side pre-linking mechanism does not have to negotiate between client and server to 
know the starting address of components on client hosts. Besides, we can perform 
component linking on the server-side before components are requested by clients. 
Thus, we can also save the components processing time on server hosts. 

To demonstrate the feasibility of our proposed dynamic component update and 
component protection mechanisms, we have designed and implemented this 
mechanism in LyraOS [3] operating system. LyraOS is a research operating system 
designed for embedded systems, which uses component-oriented design in the system 
development. However, just like many embedded operating systems such as eCos [4] 
and MicroC/OS-II [5], LyraOS can be only statically configured at source-code level, 
so system cannot be updated or extended on-the-fly. Performance evaluation shows 
that the loader size under LyraOS is only about 1% and 7% as compared with the 
Linux loadable kernel module of the Linux 2.4 and the Linux 2.6. The component 
sizes under LyraOS are only about 14-35% of the Linux loadable kernel module. The 
component loading time also takes a few milliseconds. The component invocation 
time also adds only a few overheads caused by providing dynamic component 
exported interface and memory protection for un-trusted components. 

Although our proposed dynamic component update and component protection 
mechanisms are implemented in LyraOS operating system, we believe that these 
experiences can serve as the reference for other component-based embedded 
operating systems that require an efficient and safe mechanism to dynamically update 
their components. 

The rest of this paper is organized as follows. Section 2 introduces the LyraOS 
operating system. Section 3 introduces the related work. Section 4 details the design 
and implementation of our dynamic update mechanism. Section 5 shows our 
performance evaluation results and Section 6 concludes this paper. 

2   LyraOS 

LyraOS [3] is a component-based operating system which aims at serving as a 
research vehicle for operating systems and providing a set of well-designed and clear-
interface system software components that are ready for Internet PC, hand-held PC, 
embedded systems, etc. It was implemented mostly in C++ and few assembly codes. 
It is designed to abstract the hardware resources of computer systems such that low-
level machine dependent layer is clear cut from higher-level system semantics. Thus, 
it can be easily ported to different hardware architectures [6]. 

Figure 1 shows system architecture of LyraOS. Each system component is 
complete separate, self-contained, and highly modular. Components in LyraOS can be 
statically configured at source-code level. In addition to being light-weight system 
software, it is a time-sharing multi-threaded microkernel. Threads can be dynamically 
created and deleted, and thread priorities can be dynamically adjusted. 



148 B.–Y. Shen and M.–L. Chiang 

 

Fig. 1. LyraOS system architecture 

3   Related Work 

Linux Loadable Kernel Modules (LKMs) [1] are object files that contain codes to 
extend the running kernel. They are typically used to add support for new hardware, 
file systems, or for adding system calls. When the functionality provided by an LKM 
is no longer required, it can be unloaded. Linux uses this technology to extend its 
kernel at run time. However, Linux modules can be removed only when they are 
inactive. Another problem of LKMs is its space overheads. It needs additional kernel 
symbol table in client site and additional symbol table in loadable modules due to 
dynamic symbol linking. Dynamic symbol linking also takes lots of time during 
module loading. Our approach can eliminate these overheads. Besides, the LKMs 
require privilege permission to perform kernel modules loading. All of these modules 
are located in the kernel level and have the same permission as kernels. Thus, 
operating systems may crash because a vicious module is loaded in the kernel. 

In operating system portal (OSP) [2], all the dynamically loadable modules are 
located on the server host. A user-level process is responsible for loading, linking and 
transmitting these modules to the clients. A kernel-level module manager is installed 
on the client to make the client kernel extensible. The server-side linking mechanism 
proposed in OSP is similar to our server-side pre-linking mechanism. Unlike the OSP 
framework, our server-side pre-linking mechanism can perform component linking on 
the server-side previously before components are requested by clients. We do not 
have to know the starting address of components on each client host because 
components will be relocated by client’s relocation hardware. Thus, the components 
processing time on server hosts can also be saved since we do not need to link 
components for each request of clients. 

SOS [7] is a dynamic operating system for mote-class sensor nodes. It uses 
dynamically loadable software modules to create a system supporting dynamic 
addition, modification, and removal of network services. The SOS kernel provides a 
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set of system services that are accessible to the modules through a jump table in the 
program memory. Furthermore, modules can also invoke functions in another module. 
The SOS kernel provides a dynamic function registration service for modules. 
Modules can register functions that they provide with the SOS kernel. The kernel 
stores information regarding the dynamic functions in a function control block (FCB) 
data structure. Processes can use a system call to subscribe a function. 

4   Design and Implementation 

According to the implementation of our component-based LyraOS operating system, 
an updatable unit may be a set of functions and global variables or an encapsulation of 
data members and methods. In both cases, software developers usually need to define 
a clear interface to the unit or make the unit inherit the interface from a virtual base 
class. Originally, other components should invoke the unit only through the static 
interface. 

In this research, we implement our proposed dynamic component update 
mechanism in LyraOS. In our system, components are executable and linkable format 
(ELF) [8] files and components can be a set of functions, global variables, or C++ 
classes. Components do not have to use static interface. The only one thing that 
updatable components need to do is to register their exported methods to the 
component manager. Then, the external components will invoke these methods 
through the component manager. 

Additionally, to make our system more flexible and safe, we separate all of the 
updatable components into two groups, trusted components and un-trusted 
components. In order to avoid un-trusted components causing our system crash, we 
divide the original LyraOS from single mode into user and kernel modes. Trusted 
components are located in kernel mode and can invoke system services directly. Un-
trusted components are located in user mode and run in different protection domains 
enforced by hardware memory protection. Components permit system services 
invocation and communicate with other components only through the system call 
invocation when they are un-trusted. 

In our system, all the dynamically updatable components are located on the server 
host and are pre-linked. A component server running on the server-side is responsible 
for loading and transmitting these pre-linked components to the embedded clients. A 
dynamic loader called LyraLD within the operating system kernel on the embedded 
client is responsible for downloading and installing pre-linked components. A 
component manager manages all of the components on the client-side and provides an 
interface for client-side applications to add, remove, or invoke components. For 
example, if an embedded client wants to add a new functionality, the embedded client 
will send a request through the component manager interface to the LyraLD. LyraLD 
will send a request to a remote component server to download a new component. The 
component server will respond with a pre-linked component which provides the 
functionality requested. Finally, the LyraLD will download and install this component 
directly without the need of linking or relocation. 



150 B.–Y. Shen and M.–L. Chiang 

4.1   Server-Side Pre-linking 

Since embedded environments are usually resource-limited, we implement the server-
side component pre-linking mechanism to keep the imposed overheads minimal while 
providing dynamic component update in an embedded operating system. 

As mentioned above, components in our design and implementation have been 
linked on the server-side before components are requested by embedded clients. 
These components are linked according to their types (i.e., trusted or un-trusted) and 
symbol tables of embedded clients. The trusted component will be linked with the 
kernel symbol of the embedded client while the un-trusted one will be linked with  
the user library symbol table of the client. Especially, we do not need to know where 
the component will reside in the client-side memory (i.e., the starting address of the 
component). All of the updatable components will be linked at the same starting 
virtual address through the linker script we defined. Then the components will be 
relocated by the client-side relocation hardware that we will describe later. Because 
the updatable components can be linked in a prior time, we can save the component 
processing time on the server-side when components are requested. 

Figure 2 shows our server-side pre-linking architecture. In our system, there is a 
component server on the server-side responsible for handling client requests. The 
component server on the server host receives request from the embedded client 
kernels and performs tasks as follows. If a pre-linked component is found in the pre-
linked component storage, the component server will send the pre-linked component 
to the embedded clients immediately. Otherwise, the component server will link the 
components on demand. 

The merits of our approach can be summarized as follows. The server-side 
component pre-linking can save not only the memory and the disk storage on 
embedded clients but also the component transmitting time because we downgrade 
the sizes of updatable components. Besides, it eliminates the need for clients to 
perform dynamic linking. Furthermore, the power consumption of embedded devices 
can be also decreased. 

 

Fig. 2. Server-side pre-linking architecture 
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4.2   Client-Side Loading 

We develop a dynamic component loader called LyraLD and a component manager in 
LyraOS to perform dynamic component loading and component management. Both 
the LyraLD and the component manager reside in the kernel level. Currently, the 
LyraLD use the trivial file transfer protocol (TFTP) [9] to download pre-linked 
components from the component server. 

Figure 3 shows the steps of client-side component loading and installing. First, the 
component manager receives an invocation request to load a new component. Second, 
the component manager checks whether the component exists or not. If the 
component is not found in the client-side, the component manager will call LyraLD to 
send a request to a remote component server to download this component. Third, the 
LyraLD downloads a pre-linked component image returned from the remote 
component server to the client-side memory. Fourth, after the LyraLD reads the pre-
linked component image’s header from the memory address where the image is 
located, the LyraLD will verify the pre-linked component image, initialize component 
environments, and move each section of the image to the virtual address that the ELF 
header specified. Finally, the LyraLD will jump to the entry address of the component 
image to execute the component’s initialization function that registers the component 
exported methods to the component manager. 

Table 1 shows our component manager API. Components can be added, removed, 
updated, and invoked through these APIs. In order to provide dynamic component 
exported interface, the register method can register the component exported methods 
to the component method vector table when a component is loaded. As a component 
is downloaded and loaded into memory, the LyraLD will get the entry point address 
from the header of the component and then jump to this address to perform the 
registration of component’s methods. 

 

 

function entry(Opt, Addr) 
 

switch(Opt) 
begin 
 
case REGISTER: 
CM::Register(1, functionA); 
CM::Register(2, functionB); 
// ...... 
break; 
 

case IMPORT: 
// convert and import 
// component states from Addr 
break; 
 

case EXPORT: 
// export states of this component 
// return address of export states 
break; 
 

end 
 

end function 

Fig. 3. Client-side loading Fig. 4. Component interface 
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Table 1. Component manager API 

Methods Descriptions 

CM::Add(name, ver) 
The CM::Add() method adds a new component name with version ver
from a remote component server and returns component’s ID. 

CM::GetCID(name, ver) 
The CM::GetID() method returns component ID of component name
(version ver). 

CM::Invoke(cid, mid, arg) 
The CM::Invoke() method invokes a method mid of a component cid
and passes arguments arg through the component manager. 

CM::Register (mid, fptr) 
The CM::Register() method registers method’s ID mid and its address 
fptr to the component manager. 

CM::Remove(cid) The CM::Remove() method removes component whose ID is cid.

CM::Update(old, new) 
The CM::Update() method updates a component from component ID 
old to component ID new.

 

Figure 4 shows our component interface. This function would be implemented by 
developers and will be linked as the entry point of updatable components during 
server-side pre-linking. Every updatable component has to implement this interface to 
register its methods and transfer its states. As the component jumps to the entry point, 
the component will invoke the register method to register its exported methods to the 
component manager. Therefore, other components can invoke these methods through 
the component manager without using static component interface. When we want to 
remove a component, all of the component information including current states of the 
component and function pointers of the component exported methods should be 
removed. Methods in Table 1 provide a component communication interface. In our 
system, components must communicate with each other through the component 
manager. This is because we provide dynamic component exported interface in our 
system and these interfaces of components are managed by the component manager. 

4.3   Component Relocation 

The component relocation in our system implementation takes advantage of the ARM 
fast context switch extension (FCSE) mechanism [10]. The FCSE is an extension in 
the ARM MMU. It modifies the behavior of an ARM memory translation. This 
modification allows our components to have their own first 32MB address space. 
Thus, we make each component have its own address space and relocate in the first 
32MB of memory. As shown in Figure 5, there is only one page table in our system. 
The 4GB virtual address space is divided into 128 blocks, each of size 32MB. Each 
block can contain a component which has been compiled to use the address ranging 
from 0x00000000 to 0x01FFFFFF. Each block is identified with a 7-bit PID (Process 
ID) register. Through the FCSE mechanism, we can switch between components’ 
address spaces by changing the PID register and do not have to flush caches and 
TLBs. The same functionality can be achieved by other architectures which provide 
paging and an address space identifier (ASID) found on many RISC processors such 
as Alpha, MIPS, PA-RISC, and SPARC. 
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Fig. 5. Relocation by FCSE mechanism 

However, there is a critical problem about communication among components. 
Since every component has an address space itself, we cannot pass component a 
pointer type argument that is pointed to another address space. Due to this reason, we 
use a shared memory mechanism to resolve this problem. A memory region which is 
greater than 32MB is reserved to store data that the argument points to. This is due to 
the fact that if an address is greater than 32MB, it will not be modified by FCSE. This 
means that the address space of components from 32MB to 4GB is shared. This also 
allows components to directly access our kernel core or user libraries which are out of 
the first 32MB without changing PID or page tables. 

4.4   Component Protection 

The ARM architecture provides a domain mechanism [10] to make different 
protection domains running with the same page table. We use this mechanism to 
make each un-trusted component have its own protection domain. A domain access 
control register (DACR) can be used to control the access permissions of components. 
Currently, each un-trusted component’s first descriptors of the page table in our 
system are associated with one of the sixteen domains and its own DACR status. The 
DACR describes the status of the current component with respect to each domain. 
Since trusted components are the components that have been verified, they can use 
the same protection domain as kernel core and run in the kernel mode. However, 
although un-trusted components run in the user mode, they may also have vicious 
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codes to affect other un-trusted components. Therefore, they should locate in different 
protection domains and use the client access types. Thus, we can avoid the situation 
that the current un-trusted components will be affected as we load a new un-trusted 
component into our system. Although ARM only supports 16 domains which may be 
less than the number of un-trusted components concurrently in our system, we can 
apply other approaches such as domain recycling [11,12] to resolve this problem. 

5   Performance 

This section presents the performance evaluation of the proposed dynamic component 
update mechanism implemented in LyraOS. We compare the space overheads of our 
architecture with the Linux loadable kernel modules. The experimental environment 
consists of a client and a server host that are connected via a 100 Mbits/sec Ethernet. 
The server host is a Pentium 4 3.2GHz PC with 1GB RAM, running Linux 2.4.26. 
The client host is an ARM Integrator/CP920T development board with 128 MB 
RAM, running LyraOS 2.1.12. 

5.1   Comparison of Space Overheads 

Table 2 shows the loader sizes of the client kernel. We compare the size of LyraLD to 
the sizes of Linux LKMs linker/loader under kernel version both 2.4 and 2.6. The 
fundamental difference between Linux 2.4 and Linux 2.6 is the relocation and linking 
of kernel modules are done in the user level or kernel level. Loadable kernel modules 
in Linux are ELF object files which can be loaded by a user program called insmod. 
In Linux 2.4, insmod does all the work of linking Linux kernel module to the running 
kernel. While the linking is done, it generates a binary image and then passes it to the 
kernel. In Linux 2.6, the insmod is a trivial program that only passes ELF objects 
directly to the kernel, and then the kernel does the linking and relocation. In Table 2, 
the Linux 2.4 module linker/loader shows the static and dynamic size of the insmod 
program on Linux 2.4.26. The Linux 2.6 module linker and module loader were 
measured from the object files of kernel/module.c and kernel/kmod.c in the Linux 
2.6.19 source tree. All symbols in these programs and object files have already been 
stripped. From the table we can see that, the size of LyraLD is less than 1% of the 
module linker/loader under Linux 2.4 and is about 7% of the module linker/loader 
under Linux 2.6. 

Table 2. Sizes of loaders 

Loader Object Code Size  

Linux 2.4 module linker/loader 
618,712 bytes 
133,140 bytes 

(static linked) 
(dynamic linked) 

Linux 2.6 module linker 
Linux 2.6 module loader 

14,088 bytes 
2,060 bytes 

(kernel/module.o)
(kernel/kmod.o)

LyraLD (LyraOS loader) 1,140 bytes  
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Table 3. Kernel and symbol sizes 

Items Size 
LyraOS kernel image 
LyraOS kernel symbol table 

35,752 bytes 
24,850 bytes 

Linux 2.6.19 kernel image (vmlinux) 
Linux 2.6.19 kernel image (zImage) 
Linux 2.6.19 symbol table 

1,219,296 bytes 
1,181,932 bytes 
505,487 bytes 

Table 4. Component overheads 

Components Linux LyraOS Ratio 
Task scheduler 

Interrupt handler 
Timer driver 
Serial driver 

Signal 
Semaphore 

4280 bytes 
7544 bytes 
4424 bytes 
5640 bytes 
7768 bytes 
4116 bytes 

  604 bytes 
1612 bytes 
  992 bytes 
1324 bytes 
2736 bytes 
  632 bytes 

(14%) 
(21%) 
(22%) 
(23%) 
(35%) 
(15%) 

Table 5. Component loading and pre-linking time 

Components Client-side 
Loading 

Server-side Pre-
linking 

Task scheduler 
Interrupt handler 

Timer driver 
Serial driver 

Signal 
Semaphore 

20.31ms 
31.17ms 
39.86ms 
30.44ms 
22.04ms 
20.32ms 

26ms 
25ms 
35ms 
32ms 
29ms 
28ms 

 
In addition, to perform the dynamic linking, Linux also requires the kernel symbol 

table to be stored on the client host. The size of the symbol table is dependent on the 
client-side kernel. From Table 3 we can see that, the kernel symbol table of LyraOS is 
about 24 Kbytes in our system. It occupies almost 70% of the LyraOS kernel size. 
The kernel symbol table of Linux 2.6.19 in our system is about 494 Kbytes. It 
occupies about 40% of the Linux kernel size. 

Table 4 shows the component space overheads of the task scheduler, the interrupt 
handler, the timer driver, the serial driver, the signal, and the semaphore component in 
LyraOS and Linux. In this table, the column of Linux shows the sizes of ELF object 
files of these components under the Linux LKMs approach. The column of LyraOS 
shows the size of pre-linked images of these components under the LyraOS server-
side pre-linking approach. The numbers in parentheses are the ratios of component 
overheads under LyraOS to those under the Linux LKMs. From the table we can see 
that, the sizes of components under the LyraOS approach are only about 14-35% of 
the sizes under the Linux LKMs approach. This is because the LKMs mechanism 
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contains more overheads for dynamic linking, such as symbol tables, string tables, 
relocation data, and other data structures. 

5.2   Component Loading/Pre-linking Time 

Table 5 shows the component client-side loading and server-side pre-linking time of 
those components we described above. The component loading only takes a few 
milliseconds. From the Table 4 and Table 5, we can see that the component loading 
time is not related to the sizes of the components. This is because the loader has to 
initialize some of the ELF sections. For example, BSS is a memory section where un-
initialized C/C++ variables are stored. If there is a BSS section in a component, it 
needs to clear to zero while the component is loaded into memory. Besides, from the 
server-side pre-linking time we can see that embedded clients save lots of linking time 
when new components are loaded since the linking has been done previously on the 
server. We should know that the server-side pre-linking runs on a Pentium4 3.2GHz 
machine, and the frequency of ARM920T processors is only about 200MHz. It could 
cause large overheads if the component linking is performed on the embedded clients. 

5.3   Component Invocation Time 

In Figure 6, we invoke a method of each component we described above. “Direct 
Invocation” measures the invocation time of the direct component invocation. That is, 
direct component invocation invokes methods directly without calling the component 
manager and system calls. “Trusted Component” measures the invocation time of the 
trusted component invocation through the component manager. “Un-trusted 
Component” measures the invocation time of the un-trusted component invocation 
through the system call and the component manager. From the figure we can see that, 
it only adds a few overheads by providing dynamic component exported interface and 
memory protection for un-trusted components. Besides, relocation by hardware also 
keeps the overhead of switching between components’ address space minimal. 
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Fig. 6. Component invocation time 
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6   Conclusion 

In this paper, we have proposed a server-side pre-linking mechanism to make an 
embedded operating system more extensible. The embedded operating system can be 
updated dynamically without the need of dynamic linker and symbol table. Besides, 
the dynamic component exported interface can make component developers change 
component exported interfaces easily. Furthermore, to make the system more flexible, 
components are separated into trusted components and un-trusted components, which 
run in different protection domains enforced by hardware memory protection. 

After applying the proposed mechanisms in our target embedded operating system, 
LyraOS, the performance evaluation shows that the loader size under LyraOS is only 
about 1% and 7% as compared with the Linux loadable kernel module of the Linux 
2.4 and the Linux 2.6. The component overhead under LyraOS is only about 14-35% 
of the Linux loadable kernel module. The component loading time also takes only a 
few milliseconds. The component invocation time also adds a few overhead caused by 
providing dynamic component exported interface and memory protection for un-
trusted components. 
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