
T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 146–157, 2007.
IFIP International Federation for Information Processing 2007

A Server-Side Pre-linking Mechanism for Updating
Embedded Clients Dynamically

Bor-Yeh Shen1 and Mei-Ling Chiang2

1 Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

byshen@cs.nctu.edu.tw
2 Department of Information Management,

National Chi-Nan University, Puli, Taiwan, R.O.C.
joanna@ncnu.edu.tw

Abstract. To allow embedded operating systems to update their components
on-the-fly, dynamic update mechanism is required for operating systems to be
patched or added extra functionalities in without the need of rebooting the
machines. However, embedded environments are usually resource-limited in
terms of memory size, processing power, power consumption, and network
bandwidth. Thus, dynamic update for embedded operating systems should be
designed to make the best use of limited resources. In this paper, we have
proposed a server-side pre-linking mechanism to make dynamic updates of
embedded operating system efficiently. Applying this mechanism can reduce
not only memory usage and CPU processing time for dynamic update, but also
data transmission size for update components. Power consumption can be
reduced as well. Performance evaluation shows that compared with the
approach of Linux loadable kernel modules, the size of update components can
be reduced about 14-35% and the overheads in embedded clients are minimal.

Keywords: Embedded System, Operating System, Dynamic Update, Modules,
LyraOS.

1 Introduction

Dynamic update allows operating systems to update their components on-the-fly
without rebooting the whole systems or stopping any system services. This opens up a
wide range of opportunities: fixing bugs, upgrading services, improving algorithms,
adding extra functionalities, runtime optimization, etc. Although many operating
systems have already supported different kinds of mechanisms to extend their kernels,
they usually do not aim at resource-limited environments. For instance, Linux uses a
technique called loadable kernel modules (LKMs) [1]. By using this technique, Linux
can load modules, such as device drivers, file systems, or system call to extend the
kernel at run time. However, LKMs may take lots of overheads in embedded
environments. Since embedded systems are usually resource limited, in order to keep
the added overheads minimal while providing dynamic update in an embedded
operating system, we propose the server-side pre-linking mechanism which is a

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 147

client-server model similar to the server-side linking mechanism proposed in the
operating system portal (OSP) framework [2]. Unlike the OSP framework, our server-
side pre-linking mechanism does not have to negotiate between client and server to
know the starting address of components on client hosts. Besides, we can perform
component linking on the server-side before components are requested by clients.
Thus, we can also save the components processing time on server hosts.

To demonstrate the feasibility of our proposed dynamic component update and
component protection mechanisms, we have designed and implemented this
mechanism in LyraOS [3] operating system. LyraOS is a research operating system
designed for embedded systems, which uses component-oriented design in the system
development. However, just like many embedded operating systems such as eCos [4]
and MicroC/OS-II [5], LyraOS can be only statically configured at source-code level,
so system cannot be updated or extended on-the-fly. Performance evaluation shows
that the loader size under LyraOS is only about 1% and 7% as compared with the
Linux loadable kernel module of the Linux 2.4 and the Linux 2.6. The component
sizes under LyraOS are only about 14-35% of the Linux loadable kernel module. The
component loading time also takes a few milliseconds. The component invocation
time also adds only a few overheads caused by providing dynamic component
exported interface and memory protection for un-trusted components.

Although our proposed dynamic component update and component protection
mechanisms are implemented in LyraOS operating system, we believe that these
experiences can serve as the reference for other component-based embedded
operating systems that require an efficient and safe mechanism to dynamically update
their components.

The rest of this paper is organized as follows. Section 2 introduces the LyraOS
operating system. Section 3 introduces the related work. Section 4 details the design
and implementation of our dynamic update mechanism. Section 5 shows our
performance evaluation results and Section 6 concludes this paper.

2 LyraOS

LyraOS [3] is a component-based operating system which aims at serving as a
research vehicle for operating systems and providing a set of well-designed and clear-
interface system software components that are ready for Internet PC, hand-held PC,
embedded systems, etc. It was implemented mostly in C++ and few assembly codes.
It is designed to abstract the hardware resources of computer systems such that low-
level machine dependent layer is clear cut from higher-level system semantics. Thus,
it can be easily ported to different hardware architectures [6].

Figure 1 shows system architecture of LyraOS. Each system component is
complete separate, self-contained, and highly modular. Components in LyraOS can be
statically configured at source-code level. In addition to being light-weight system
software, it is a time-sharing multi-threaded microkernel. Threads can be dynamically
created and deleted, and thread priorities can be dynamically adjusted.

148 B.–Y. Shen and M.–L. Chiang

Fig. 1. LyraOS system architecture

3 Related Work

Linux Loadable Kernel Modules (LKMs) [1] are object files that contain codes to
extend the running kernel. They are typically used to add support for new hardware,
file systems, or for adding system calls. When the functionality provided by an LKM
is no longer required, it can be unloaded. Linux uses this technology to extend its
kernel at run time. However, Linux modules can be removed only when they are
inactive. Another problem of LKMs is its space overheads. It needs additional kernel
symbol table in client site and additional symbol table in loadable modules due to
dynamic symbol linking. Dynamic symbol linking also takes lots of time during
module loading. Our approach can eliminate these overheads. Besides, the LKMs
require privilege permission to perform kernel modules loading. All of these modules
are located in the kernel level and have the same permission as kernels. Thus,
operating systems may crash because a vicious module is loaded in the kernel.

In operating system portal (OSP) [2], all the dynamically loadable modules are
located on the server host. A user-level process is responsible for loading, linking and
transmitting these modules to the clients. A kernel-level module manager is installed
on the client to make the client kernel extensible. The server-side linking mechanism
proposed in OSP is similar to our server-side pre-linking mechanism. Unlike the OSP
framework, our server-side pre-linking mechanism can perform component linking on
the server-side previously before components are requested by clients. We do not
have to know the starting address of components on each client host because
components will be relocated by client’s relocation hardware. Thus, the components
processing time on server hosts can also be saved since we do not need to link
components for each request of clients.

SOS [7] is a dynamic operating system for mote-class sensor nodes. It uses
dynamically loadable software modules to create a system supporting dynamic
addition, modification, and removal of network services. The SOS kernel provides a

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 149

set of system services that are accessible to the modules through a jump table in the
program memory. Furthermore, modules can also invoke functions in another module.
The SOS kernel provides a dynamic function registration service for modules.
Modules can register functions that they provide with the SOS kernel. The kernel
stores information regarding the dynamic functions in a function control block (FCB)
data structure. Processes can use a system call to subscribe a function.

4 Design and Implementation

According to the implementation of our component-based LyraOS operating system,
an updatable unit may be a set of functions and global variables or an encapsulation of
data members and methods. In both cases, software developers usually need to define
a clear interface to the unit or make the unit inherit the interface from a virtual base
class. Originally, other components should invoke the unit only through the static
interface.

In this research, we implement our proposed dynamic component update
mechanism in LyraOS. In our system, components are executable and linkable format
(ELF) [8] files and components can be a set of functions, global variables, or C++
classes. Components do not have to use static interface. The only one thing that
updatable components need to do is to register their exported methods to the
component manager. Then, the external components will invoke these methods
through the component manager.

Additionally, to make our system more flexible and safe, we separate all of the
updatable components into two groups, trusted components and un-trusted
components. In order to avoid un-trusted components causing our system crash, we
divide the original LyraOS from single mode into user and kernel modes. Trusted
components are located in kernel mode and can invoke system services directly. Un-
trusted components are located in user mode and run in different protection domains
enforced by hardware memory protection. Components permit system services
invocation and communicate with other components only through the system call
invocation when they are un-trusted.

In our system, all the dynamically updatable components are located on the server
host and are pre-linked. A component server running on the server-side is responsible
for loading and transmitting these pre-linked components to the embedded clients. A
dynamic loader called LyraLD within the operating system kernel on the embedded
client is responsible for downloading and installing pre-linked components. A
component manager manages all of the components on the client-side and provides an
interface for client-side applications to add, remove, or invoke components. For
example, if an embedded client wants to add a new functionality, the embedded client
will send a request through the component manager interface to the LyraLD. LyraLD
will send a request to a remote component server to download a new component. The
component server will respond with a pre-linked component which provides the
functionality requested. Finally, the LyraLD will download and install this component
directly without the need of linking or relocation.

150 B.–Y. Shen and M.–L. Chiang

4.1 Server-Side Pre-linking

Since embedded environments are usually resource-limited, we implement the server-
side component pre-linking mechanism to keep the imposed overheads minimal while
providing dynamic component update in an embedded operating system.

As mentioned above, components in our design and implementation have been
linked on the server-side before components are requested by embedded clients.
These components are linked according to their types (i.e., trusted or un-trusted) and
symbol tables of embedded clients. The trusted component will be linked with the
kernel symbol of the embedded client while the un-trusted one will be linked with
the user library symbol table of the client. Especially, we do not need to know where
the component will reside in the client-side memory (i.e., the starting address of the
component). All of the updatable components will be linked at the same starting
virtual address through the linker script we defined. Then the components will be
relocated by the client-side relocation hardware that we will describe later. Because
the updatable components can be linked in a prior time, we can save the component
processing time on the server-side when components are requested.

Figure 2 shows our server-side pre-linking architecture. In our system, there is a
component server on the server-side responsible for handling client requests. The
component server on the server host receives request from the embedded client
kernels and performs tasks as follows. If a pre-linked component is found in the pre-
linked component storage, the component server will send the pre-linked component
to the embedded clients immediately. Otherwise, the component server will link the
components on demand.

The merits of our approach can be summarized as follows. The server-side
component pre-linking can save not only the memory and the disk storage on
embedded clients but also the component transmitting time because we downgrade
the sizes of updatable components. Besides, it eliminates the need for clients to
perform dynamic linking. Furthermore, the power consumption of embedded devices
can be also decreased.

Fig. 2. Server-side pre-linking architecture

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 151

4.2 Client-Side Loading

We develop a dynamic component loader called LyraLD and a component manager in
LyraOS to perform dynamic component loading and component management. Both
the LyraLD and the component manager reside in the kernel level. Currently, the
LyraLD use the trivial file transfer protocol (TFTP) [9] to download pre-linked
components from the component server.

Figure 3 shows the steps of client-side component loading and installing. First, the
component manager receives an invocation request to load a new component. Second,
the component manager checks whether the component exists or not. If the
component is not found in the client-side, the component manager will call LyraLD to
send a request to a remote component server to download this component. Third, the
LyraLD downloads a pre-linked component image returned from the remote
component server to the client-side memory. Fourth, after the LyraLD reads the pre-
linked component image’s header from the memory address where the image is
located, the LyraLD will verify the pre-linked component image, initialize component
environments, and move each section of the image to the virtual address that the ELF
header specified. Finally, the LyraLD will jump to the entry address of the component
image to execute the component’s initialization function that registers the component
exported methods to the component manager.

Table 1 shows our component manager API. Components can be added, removed,
updated, and invoked through these APIs. In order to provide dynamic component
exported interface, the register method can register the component exported methods
to the component method vector table when a component is loaded. As a component
is downloaded and loaded into memory, the LyraLD will get the entry point address
from the header of the component and then jump to this address to perform the
registration of component’s methods.

function entry(Opt, Addr)

switch(Opt)
begin

case REGISTER:
CM::Register(1, functionA);
CM::Register(2, functionB);
//
break;

case IMPORT:
// convert and import
// component states from Addr
break;

case EXPORT:
// export states of this component
// return address of export states
break;

end

end function

Fig. 3. Client-side loading Fig. 4. Component interface

152 B.–Y. Shen and M.–L. Chiang

Table 1. Component manager API

Methods Descriptions

CM::Add(name, ver)
The CM::Add() method adds a new component name with version ver
from a remote component server and returns component’s ID.

CM::GetCID(name, ver)
The CM::GetID() method returns component ID of component name
(version ver).

CM::Invoke(cid, mid, arg)
The CM::Invoke() method invokes a method mid of a component cid
and passes arguments arg through the component manager.

CM::Register (mid, fptr)
The CM::Register() method registers method’s ID mid and its address
fptr to the component manager.

CM::Remove(cid) The CM::Remove() method removes component whose ID is cid.

CM::Update(old, new)
The CM::Update() method updates a component from component ID
old to component ID new.

Figure 4 shows our component interface. This function would be implemented by
developers and will be linked as the entry point of updatable components during
server-side pre-linking. Every updatable component has to implement this interface to
register its methods and transfer its states. As the component jumps to the entry point,
the component will invoke the register method to register its exported methods to the
component manager. Therefore, other components can invoke these methods through
the component manager without using static component interface. When we want to
remove a component, all of the component information including current states of the
component and function pointers of the component exported methods should be
removed. Methods in Table 1 provide a component communication interface. In our
system, components must communicate with each other through the component
manager. This is because we provide dynamic component exported interface in our
system and these interfaces of components are managed by the component manager.

4.3 Component Relocation

The component relocation in our system implementation takes advantage of the ARM
fast context switch extension (FCSE) mechanism [10]. The FCSE is an extension in
the ARM MMU. It modifies the behavior of an ARM memory translation. This
modification allows our components to have their own first 32MB address space.
Thus, we make each component have its own address space and relocate in the first
32MB of memory. As shown in Figure 5, there is only one page table in our system.
The 4GB virtual address space is divided into 128 blocks, each of size 32MB. Each
block can contain a component which has been compiled to use the address ranging
from 0x00000000 to 0x01FFFFFF. Each block is identified with a 7-bit PID (Process
ID) register. Through the FCSE mechanism, we can switch between components’
address spaces by changing the PID register and do not have to flush caches and
TLBs. The same functionality can be achieved by other architectures which provide
paging and an address space identifier (ASID) found on many RISC processors such
as Alpha, MIPS, PA-RISC, and SPARC.

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 153

Fig. 5. Relocation by FCSE mechanism

However, there is a critical problem about communication among components.
Since every component has an address space itself, we cannot pass component a
pointer type argument that is pointed to another address space. Due to this reason, we
use a shared memory mechanism to resolve this problem. A memory region which is
greater than 32MB is reserved to store data that the argument points to. This is due to
the fact that if an address is greater than 32MB, it will not be modified by FCSE. This
means that the address space of components from 32MB to 4GB is shared. This also
allows components to directly access our kernel core or user libraries which are out of
the first 32MB without changing PID or page tables.

4.4 Component Protection

The ARM architecture provides a domain mechanism [10] to make different
protection domains running with the same page table. We use this mechanism to
make each un-trusted component have its own protection domain. A domain access
control register (DACR) can be used to control the access permissions of components.
Currently, each un-trusted component’s first descriptors of the page table in our
system are associated with one of the sixteen domains and its own DACR status. The
DACR describes the status of the current component with respect to each domain.
Since trusted components are the components that have been verified, they can use
the same protection domain as kernel core and run in the kernel mode. However,
although un-trusted components run in the user mode, they may also have vicious

154 B.–Y. Shen and M.–L. Chiang

codes to affect other un-trusted components. Therefore, they should locate in different
protection domains and use the client access types. Thus, we can avoid the situation
that the current un-trusted components will be affected as we load a new un-trusted
component into our system. Although ARM only supports 16 domains which may be
less than the number of un-trusted components concurrently in our system, we can
apply other approaches such as domain recycling [11,12] to resolve this problem.

5 Performance

This section presents the performance evaluation of the proposed dynamic component
update mechanism implemented in LyraOS. We compare the space overheads of our
architecture with the Linux loadable kernel modules. The experimental environment
consists of a client and a server host that are connected via a 100 Mbits/sec Ethernet.
The server host is a Pentium 4 3.2GHz PC with 1GB RAM, running Linux 2.4.26.
The client host is an ARM Integrator/CP920T development board with 128 MB
RAM, running LyraOS 2.1.12.

5.1 Comparison of Space Overheads

Table 2 shows the loader sizes of the client kernel. We compare the size of LyraLD to
the sizes of Linux LKMs linker/loader under kernel version both 2.4 and 2.6. The
fundamental difference between Linux 2.4 and Linux 2.6 is the relocation and linking
of kernel modules are done in the user level or kernel level. Loadable kernel modules
in Linux are ELF object files which can be loaded by a user program called insmod.
In Linux 2.4, insmod does all the work of linking Linux kernel module to the running
kernel. While the linking is done, it generates a binary image and then passes it to the
kernel. In Linux 2.6, the insmod is a trivial program that only passes ELF objects
directly to the kernel, and then the kernel does the linking and relocation. In Table 2,
the Linux 2.4 module linker/loader shows the static and dynamic size of the insmod
program on Linux 2.4.26. The Linux 2.6 module linker and module loader were
measured from the object files of kernel/module.c and kernel/kmod.c in the Linux
2.6.19 source tree. All symbols in these programs and object files have already been
stripped. From the table we can see that, the size of LyraLD is less than 1% of the
module linker/loader under Linux 2.4 and is about 7% of the module linker/loader
under Linux 2.6.

Table 2. Sizes of loaders

Loader Object Code Size

Linux 2.4 module linker/loader
618,712 bytes
133,140 bytes

(static linked)
(dynamic linked)

Linux 2.6 module linker
Linux 2.6 module loader

14,088 bytes
2,060 bytes

(kernel/module.o)
(kernel/kmod.o)

LyraLD (LyraOS loader) 1,140 bytes

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 155

Table 3. Kernel and symbol sizes

Items Size
LyraOS kernel image
LyraOS kernel symbol table

35,752 bytes
24,850 bytes

Linux 2.6.19 kernel image (vmlinux)
Linux 2.6.19 kernel image (zImage)
Linux 2.6.19 symbol table

1,219,296 bytes
1,181,932 bytes
505,487 bytes

Table 4. Component overheads

Components Linux LyraOS Ratio
Task scheduler

Interrupt handler
Timer driver
Serial driver

Signal
Semaphore

4280 bytes
7544 bytes
4424 bytes
5640 bytes
7768 bytes
4116 bytes

 604 bytes
1612 bytes
 992 bytes
1324 bytes
2736 bytes
 632 bytes

(14%)
(21%)
(22%)
(23%)
(35%)
(15%)

Table 5. Component loading and pre-linking time

Components Client-side
Loading

Server-side Pre-
linking

Task scheduler
Interrupt handler

Timer driver
Serial driver

Signal
Semaphore

20.31ms
31.17ms
39.86ms
30.44ms
22.04ms
20.32ms

26ms
25ms
35ms
32ms
29ms
28ms

In addition, to perform the dynamic linking, Linux also requires the kernel symbol

table to be stored on the client host. The size of the symbol table is dependent on the
client-side kernel. From Table 3 we can see that, the kernel symbol table of LyraOS is
about 24 Kbytes in our system. It occupies almost 70% of the LyraOS kernel size.
The kernel symbol table of Linux 2.6.19 in our system is about 494 Kbytes. It
occupies about 40% of the Linux kernel size.

Table 4 shows the component space overheads of the task scheduler, the interrupt
handler, the timer driver, the serial driver, the signal, and the semaphore component in
LyraOS and Linux. In this table, the column of Linux shows the sizes of ELF object
files of these components under the Linux LKMs approach. The column of LyraOS
shows the size of pre-linked images of these components under the LyraOS server-
side pre-linking approach. The numbers in parentheses are the ratios of component
overheads under LyraOS to those under the Linux LKMs. From the table we can see
that, the sizes of components under the LyraOS approach are only about 14-35% of
the sizes under the Linux LKMs approach. This is because the LKMs mechanism

156 B.–Y. Shen and M.–L. Chiang

contains more overheads for dynamic linking, such as symbol tables, string tables,
relocation data, and other data structures.

5.2 Component Loading/Pre-linking Time

Table 5 shows the component client-side loading and server-side pre-linking time of
those components we described above. The component loading only takes a few
milliseconds. From the Table 4 and Table 5, we can see that the component loading
time is not related to the sizes of the components. This is because the loader has to
initialize some of the ELF sections. For example, BSS is a memory section where un-
initialized C/C++ variables are stored. If there is a BSS section in a component, it
needs to clear to zero while the component is loaded into memory. Besides, from the
server-side pre-linking time we can see that embedded clients save lots of linking time
when new components are loaded since the linking has been done previously on the
server. We should know that the server-side pre-linking runs on a Pentium4 3.2GHz
machine, and the frequency of ARM920T processors is only about 200MHz. It could
cause large overheads if the component linking is performed on the embedded clients.

5.3 Component Invocation Time

In Figure 6, we invoke a method of each component we described above. “Direct
Invocation” measures the invocation time of the direct component invocation. That is,
direct component invocation invokes methods directly without calling the component
manager and system calls. “Trusted Component” measures the invocation time of the
trusted component invocation through the component manager. “Un-trusted
Component” measures the invocation time of the un-trusted component invocation
through the system call and the component manager. From the figure we can see that,
it only adds a few overheads by providing dynamic component exported interface and
memory protection for un-trusted components. Besides, relocation by hardware also
keeps the overhead of switching between components’ address space minimal.

0

10

20

30

40

50

60

70

80

90

Semaphore Signal Serial driver Timer driver Interrupt handler Task scheduler

Components

In
v
o
c
at
io
n
 T
im
e
(μ
s
)

Direct Invocation Trusted Component Un-trusted Component

Fig. 6. Component invocation time

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 157

6 Conclusion

In this paper, we have proposed a server-side pre-linking mechanism to make an
embedded operating system more extensible. The embedded operating system can be
updated dynamically without the need of dynamic linker and symbol table. Besides,
the dynamic component exported interface can make component developers change
component exported interfaces easily. Furthermore, to make the system more flexible,
components are separated into trusted components and un-trusted components, which
run in different protection domains enforced by hardware memory protection.

After applying the proposed mechanisms in our target embedded operating system,
LyraOS, the performance evaluation shows that the loader size under LyraOS is only
about 1% and 7% as compared with the Linux loadable kernel module of the Linux
2.4 and the Linux 2.6. The component overhead under LyraOS is only about 14-35%
of the Linux loadable kernel module. The component loading time also takes only a
few milliseconds. The component invocation time also adds a few overhead caused by
providing dynamic component exported interface and memory protection for un-
trusted components.

References

1. Linux Loadable Kernel Module HOWTO, http://www.tldp.org/HOWTO/Module-
HOWTO/

2. Chang, D.-W., Chang, R.-C.: OS Protal: an economic approach for making an embedded
kernel extensible. Journal of Systems and Software 67(1), 19–30 (2003)

3. LyraOS, http://163.22.34.199/joannaResearch/LyraOS/index.htm
4. eCos, http://sources.redhat.com/ecos/
5. MicroC/OS-II, http://www.ucos-ii.com/
6. Cheng, Z.Y., Chiang, M.L., Chang, R.C.: A Component Based Operating System for

Resource Limited Embedded Devices. In: IEEE International Symposium on Consumer
Electronics, Hong Kong (2000)

7. Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A Dynamic Operating System
for Sensor Nodes. In: Proceedings of the 3rd International Conference on Mobile Systems,
Applications and, Services, Seattle, WA, USA (2005)

8. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification,
Version 1.2, http://www.x86.org/ftp/manuals/tools/elf.pdf

9. The TFTP Protocol (Revision 2), http://www.ietf.org/rfc/rfc1350.txt
10. Seal, D.: ARM Architecture Reference Manual, 2nd edn. Addison-Wesley, Reading (2001)
11. Wiggins, A., Heiser, G.: Fast Address-Space Switching on the StrongARM SA-1100

Processor. In: Proceedings of the 5th Australasian Computer Architecture Conference,
Canberra, Australia (2000)

12. Wiggins, A., Tuch, H., Uhlig, V., Heiser, G.: Implementation of Fast Address-Space
Switching and TLB Sharing on the StrongARM Processor. In: Proceedings of the 8th
Asia-Pacific Computer Systems Architecture Conference, Aizu-Wakamatsu City, Japan
(2003)

	A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically
	Introduction
	LyraOS
	Related Work
	Design and Implementation
	Server-Side Pre-linking
	Client-Side Loading
	Component Relocation
	Component Protection

	Performance
	Comparison of Space Overheads
	Component Loading/Pre-linking Time
	Component Invocation Time

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

