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Abstract. We construct a short group signature which is proven secure
without random oracles. By making certain reasonable assumptions and
applying the technique of non-interactive proof system, we prove that
our scheme is full anonymity and full traceability. Compared with other
related works, such as BW06 [9], BW07 [10], ours is more practical due
to the short size of both public key and group signature.
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1 Introduction

Group signature is a useful cryptographical tool, which is widely discussed in the
literature and also has many potential applications, such as network meeting, on-
line business, and software trading. The similar requirement of these applications
is to allow a member to sign a message on behalf of the group, and still remain
anonymous within the group. Group signature schemes meet this requirement by
providing anonymity and traceability at the same time, that is, a group signature
can be related with its signer’s identity only by a party who possesses an open
authority. In such environment, there exists a group manager to distribute certifi-
cates, open authority and other group settings. If one group member generates a
group signature, anyone can only verify the signature by using group public pa-
rameters. When some dissention happens, an opener finds out the real signer’s
identity. In this way, group members could protect their privacy.

In 1991, Chaum and van Heyst [13] firstly proposed group signature. Then,
many papers on this subject proposed various of approaches to give a secure
and practical group signature scheme. There exist a lot of practical schemes
secure in the random oracle model [2,7,19,20,21]. However, Canetti, Goldreich
and Halevi [11,12,14] have shown that security in the random oracle model does
not imply the security in the real world in that a signature scheme can be secure
in the random oracle model and yet be broken without violating any particular
intractability assumption, and without breaking the underlying hash functions.
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Therefore, to design a secure group signature scheme in the standard model
becomes an open and interesting research problem. Bellare et. al. introduced se-
curity definitions for group signatures and proposed a scheme based on trapdoor
permutation in [6]. Furthermore, Bellare et. [8] strengthened the security model
to include dynamic enrollment of members. After that, Groth [15] also gave a
group signature scheme based on bilinear groups which is proven CCA secure
in the standard model under the decisional-linear assumption. Their scheme
was constructed in the BSZ-model [8], but still the size of group signature is
enormous.

Ateniese, Camenisch, Hohenberger and de Medeiros [1] designed a practical
group signature with high efficiency which is also secure in the standard model.
The drawback of their scheme was that if the user’s private key is exposed, it
can be used to trace the identity of the user’s past signatures. Unfortunately,
this is not according with BSZ-models, and needs to be prevented.

Boyen and Waters [9] suggested group signature schemes that are secure in a
restricted version of the BMW-model [6], where the anonymity of the members
relies on the adversary can not make any query on the tracing of group signature.
The size of both public parameter and group signature are both logarithm of
identity and message. Afterwards, they [10] proposed a group signature scheme
the signature of which is of constant size (only 6 group elements) of signature.
However, the size of public parameter is still logarithm of identity. Groth also
presented a group signature scheme [16] based on non-interactive witness indis-
tinguishable proof of knowledge and other existing tools, which enhances the
security notion of BW [9,10]. We will compare our scheme with theirs in Section
7, specifically.

Our Contribution
We propose a new group signature scheme secure in the standard model. We
use short signature [3] and non-interactive proof system [17] as the foundation
to construct ours. Then we prove our scheme is secure in a restricted BMW-
model. Furthermore, the sizes of both public parameter and group signature are
reduced to two constants, and are shorter than that of both schemes in [10,16].
To the best of our knowledge, our group signature is the shortest one secure in
the standard model. Besides, the overall computational cost of our scheme is
low. Therefore, our scheme is more practical compared with the others.

Roadmap
The rest of this paper is arranged as follows. In next section, we provide the
preliminaries of our scheme including bilinear groups of composite order and
complexity assumptions. In Section 3, we describe the formal model of group
signature scheme. Then we propose the two-level signature and group signature
schemes in Section 4 & 5, respectively. We give the details of security proofs in
Section 6. Finally, we draw comparisons between ours and other related works
in Section 7 and summarize our paper in Section 8.
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2 Preliminaries

2.1 Bilinear Groups of Composite Order

Recently, a lot of cryptographical schemes are based on bilinear groups of com-
posite order. We briefly review some notions about it from other related works
[5,18,17,9,10].

Consider two finite cyclic groups G and GT having the same order n, where
n = pq, p, q are large primes and p �= q. It is clear that the respective group
operation is efficiently computable. Assume that there exists an efficiently com-
putable mapping e : G × G → GT , called a bilinear map or pairing, with the
following properties.

– Bilinear: For any g, h ∈ G, and a, b ∈ Zn, we have e(ga, hb) = e(g, h)ab,
where the product in the exponent is defined modulo n.

– Non-degenerate: ∃ g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

– Computable: There is an efficient algorithm to compute e(g, h) for all g, h ∈ G.

2.2 Complexity Assumptions

Before describing our new group signature, we firstly introduce the complexity
assumptions from other related works [5,18,17] and then propose new ones.

Subgroup Decision Problem. The subgroup decision problem in G of com-
posite order n = pq is defined as follows: given a tuple (n, G, GT , e) and an
element h selected at random either from G or from Gq as input, output 1 if
h ∈ Gq; else output 0.

Definition 1. We say that the subgroup decision assumption holds for generator
GBGN if any non-uniform polynomial time adversary A we have

Pr[(p, q, G, GT , e, g) ← GBGN (1k); n = pq; r ← Z
∗
n;

h = gr : A(n, G, GT , e, g, h) = 1]
= Pr[(p, q, G, GT , e, g) ← GBGN (1k); n = pq; r ← Z

∗
n;

h = gpr : A(n, G, GT , e, g, h) = 1]

l-Strong Diffie-Hellman Problem. [3] The l-SDH problem in G is defined as
follows: given a (l+1)-tuple (g, gx, g(x2), ..., g(xl)) as input, output a pair (c, g

1
x+c )

where c ∈ Z∗
p . An algorithm A has advantage ε in solving l-SDH in G if

Pr[A(g, gx, g(x2), ..., g(xl)) = (c, g
1

x+c )] ≥ ε

Definition 2. We say that the (l, t, ε)-SDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the l-SDH problem in G.
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Now, we give some new assumptions and observe the relationship between them.

l-One More Strong Diffie-Hellman Problem. (l-OMSDH) The l-one more
strong Diffie-Hellman problem in the prime-order bilinear group G is defined as
follows: on input three generator g, gx ∈ G, and l distinct tuples (ci, g

1
x+ci ),

where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tuple (c, g
1

x+c ) distinct of all the
others. An algorithm A has advantage ε in solving l-OMSDH in G if

Pr[A(g, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (c, g
1

x+c )] ≥ ε,

where c �= ci, for i = 1, 2, ..., l

Definition 3. We say that the (l, t, ε)-OMSDH assumption holds in G if no
t-time algorithm has advantage at least ε in solving the l-OMSDH problem in G.

l-Modified One More Strong Diffie-Hellman Problem. (l-MOMSDH)
The l-modified one more strong Diffie-Hellman problem in the prime-order bi-
linear group G is defined as follows: on input three generator g, gx ∈ G, and
l distinct tuples (ci, g

1
x+ci ), where ci ∈ Zn, i ∈ {1, 2, ..., l}, outputs another tu-

ple (gc, g
1

x+c , g
1

c+m , m) where c /∈ {c1, ..., ci} and m ∈R Z. An algorithm A has
advantage ε in solving l-SDH in G if

Pr[A(g, c1, g
1

x+c1 , c2, g
1

x+c2 , ..., cl, g
1

x+cl ) = (gc, g
1

x+c , g
1

c+m , m)] ≥ ε,

where c �= ci, for i = 1, 2, ..., l

Definition 4. We say that the (l, t, ε)-MOMSDH assumption holds in G if no t-
time algorithm has advantage at least ε in solving the l-MOMSDH problem in G.

It is easy to see that for any l ≥ 1, hardness of the l-SDH problem implies
hardness of the l-OMSDH problem in the same group. Meanwhile, hardness of
the l-MOMSDH problem implies hardness of the l-OMSDH problem in the same
group. To be more convincing, we claim all of these problems are hard to solve,
and the proof of them will appear in the full paper.

3 Formal Model of Group Signatures

In this section, we introduce some basic models and security issues which have
been defined in the papers [9,10]. A group signature scheme consists of the
following algorithms: Setup, Join, Sign, Verify and Trace.

1. Setup: Taking as input the system security parameter λ, this algorithm
outputs group’s public parameter PP for verifying signatures, a master key
MK for enrolling group members, and a tracing key TK for identifying signers.

2. Join: Taking as input the master key MK and an identity id, and outputs a
unique identifier sid and a private signing key Kid which is to be given to
the user. That is: Kid ← Join(PP, MK, id).
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3. Sign: Taking as input a user’s private key Kid and a message M , and outputs
a group signature σ. That is σ ← Sign(PP, Kid, M).

4. Verify: Taking as input a message M , a signature σ, and the group’s public
parameter PP, and outputs valid or invalid. That is ”Valid” or ”Invalid” ←
Verify(PP, σ, M).

5. Trace: Taking as input a group signature σ, and a tracing key TK, and
outputs an identity sid or ⊥. That is sid or ⊥ ← Trace(PP, σ, TK)

Consistency. We require that the following equations hold.

Verify(PP, Sign(PP, Kid, M), M) = Valid

Trace(PP, Sign(PP, Kid, M), TK) = sid

Security.
Bellare, Micciancio, and Warinschi [6] presented the fundamental properties of
group signatures, which are considered to be restrictions in the following designs.
The most two important properties are:

Full Anonymity which requires that no PPT adversary is able to find the
identity of a group signature. The game could be described as follows: the adver-
sary A could firstly query some private keys and some valid signatures from the
simulator B, then A outputs id1, id2, m and sends them to B. B random choose
b ∈ {0, 1} and generate σb corresponding with (idb, m). If A has negligible advan-
tage to guess the correct b, our group signature scheme is full anonymity (CPA).
We notice that if we give the trace oracle to the adversary, the full anonymity
is enhanced, which is similar with the CCA-secure notion. In this paper, we
following [10] and using non-interactive proof system to design a simple group
signature in the CPA-full anonymity notion.

Full Traceability which requires that no forged signatures, even if there
exists a coalition of users. The game could be described as follows: the adversary
A is given group public parameters PP and the tracing key TK. Then A could
query some private keys and some valid signatures from the simulator B. The
validity of signature and identity tracing could be checked by A. At some point,
A outputs a forged group signature σ∗ with its tracing identity id∗ and message
m∗. The restrictions are that the private key of id∗ and (id∗, m∗) should not be
queried before. If A has only negligible advantage to forge a valid signature, our
group signature scheme is full traceability.

We refer the reader to [6] for more details of these and related notion.

4 Hierarchical Signatures

We build a hierarchical signature scheme based on the short signature proposed
by BB04 [3]. To implement a group signature scheme, we construct a short
two-level hierarchical signature with existential unforgeability against adaptive
chosen message attacks based on l-MOMSDH assumption. The first level can be
seen as a certificate that signed by the group manage, while the second level is
a short signature on message m.
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4.1 Two-Level Signature Scheme

Let λ be the security parameter. Suppose the user’s identity id and the message
M are chosen from {0, 1}λ. We build a group G with order n = pq and record g
as a generator of Gp, where Gp is a subgroup of G with order p. There exists a
bilinear map e from G × G to GT .

Setup(1λ): It firstly generates the master key MK = z ∈ Zp and calculates
the public parameter PP = {Z = gz} ∈ Gp. Moreover, it generates the public
collision-resistant hash function H : {0, 1}λ → Zp.
Extract(PP,MK, id): To create a private key for an user, it chooses a secret
value sid ∈ Zp and return:

Kid = (K1, K2) = (sid, g
1

z+sid ) ∈ Zp × Gp

Note that the value z + sid must lie in Z
∗
p

Sign(PP, Kid, M): To sign a message M ∈ {0, 1}λ, the algorithm generates and
outputs:

σ = (σ1, σ2, σ3) = (gsid , g
1

z+sid , g
1

sid+H(M) )
Note that the probability of sid + H(M) ≡ 0 (mod p) is negligible.

Verify(PP, M, σ): To verify whether the signature σ is valid for a message M ,
the algorithm checks:

e(Zσ1, σ2)
?= e(g, g)

e(gH(M)σ1, σ3)
?= e(g, g)

If the above two equations both hold, the verifier outputs valid; else outputs
invalid.

Notice that this signature scheme doesn’t reveal the user’s identity, the private
key generator could record the mapping from id to sid. However, the signatures
signed by one user can be easily linked with invariant values σ1, σ2. We mod-
ified two-level hierarchical signature scheme to group signature which achieves
unlinkability and anonymity by using non-interactive proof system mentioned in
G07 [16].

4.2 Existential Unforgeability

The two-level signature scheme proposed above is existential unforgeable against
adaptive chosen message attacks. We review the short group signature in BB04,
and prove the security issues based on the hardness of q-SDH and l-MOMSDH
problems.

Theorem 1. Our two-level signature scheme is (t, qe, qs, ε)-secure against ex-
istential forgery under a chosen message attack provided that (t′, q, εOMSDH)-
OMSDH assumption and (t′′, l, εMOMSDH)-MOMSDH assumption hold in Gp,
where

ε ≤ 2qsεOMSDH + 2εMOMSDH and t ≈ max(t′, t′′), q ≥ qs + 1 and l ≥ qe + qs

The proofs are detailed in the full paper.
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5 Proposed Group Signature

We now present the group signature scheme in details.

5.1 Schemes

The group signature scheme is described as the following algorithms. Figure 1.
presents the scheme executed by three parties: group manager, user and verifier.

Setup(1λ): The input is a security parameter 1λ. Suppose the maximum group
members 2k and the signing message in {0, 1}m, where k = O(λ), m = O(λ). It
firstly chooses n = pq where p, q are random primes of bit size �log2p
, �log2q
 =
Θ(λ) > k. We builds a cyclic bilinear group G and its subgroup Gp and Gq of
respective order p and q. Denote g a generator of G and h a generator of Gq.
Next, The algorithm picks a random exponents z ∈ Z

∗
n, and defines Z = gz ∈ G.

Additionally, a public collision-resistant hash function H is from {0, 1}m to Zn.
The public parameters consist,

PP = (g, h, Z) ∈ G × Gq × Gp

The master key MK and the tracing key TK are

MK = z ∈ Z
∗
n, TK = q ∈ Z

Join(PP, MK, id): The input is a user’s identity id. The algorithm assigns a secret
unique value sid ∈ Zn for tracing purpose. Then the secret key is constructed
as:

Kid = (K1, K2) = (sid, g
1

z+sid )

The user may verify that the key is well formed by checking

e(ZgK1 , K2)
?= e(g, g)

Sign(PP, id, Kid, M): To sign a message M ∈ {0, 1}m, a user parse Kid =
(K1, K2) and computes a two-level signature:

ρ = (ρ1, ρ2, ρ3) = (gK1 , K2, g
1

K1+H(M) )

Notice that, ρ does not satisfy the anonymity and unlinkability to anyone,
since ρ1, ρ2 are unchangeable for each signature. So, by adopting the same ap-
proach from BW07 [10] and G07 [16], we let the signers choose t1, t2, t3 ∈ Zn

and computes:
σ1 = ρ1 · ht1 , σ2 = ρ2 · ht2 , σ3 = ρ3 · ht3

Additionally, it computes a proof:

π1 = ρt1
2 (Zρ1)t2ht1t2 , π2 = ρt1

3 (gH(M)ρ1)t3ht1t3

The output signature is:

σ = (σ1, σ2, σ3, π1, π2) ∈ G5
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Verify(PP, M , σ): To check the validity of signature σ, the verifier calculates:

T1 = e(σ1Z, σ2) · e(g, g)−1, T2 = e(σ1g
H(M), σ3)e(g, g)−1

Then verifies:
T1

?= e(h, π1), T2
?= e(h, π2)

If the above equations hold, the verifier outputs valid; else outputs invalid.

Trace(PP, TK, σ): Let σ be a valid signature, the opener parses it and finds the
element σ1. Then, to trace the identity of signer, it calculates σq

1 and tests:

(σ1)q ?= (gsid · ht1)q = (gsid)q

Since all the (gsid)q can be pre-calculated firstly and recorded in a list by
opener, the time to find the identity id is linearly dependent on the number of
initial users.

Group Manager User Verifier
generate secret
value K1 = sid

K2 = g
1

z+sid

K1,K2−−−−→ Verifies

e(ZgK1 , K2)
?= e(g, g)

random chooses t1, t2, t3 ∈ Z∗
q

σ1 = gK1 · ht1 Verifies
σ2 = K2 · ht2 T1 = e(σ1Z, σ2) · e(g, g)−1

σ3 = g
1

K1+H(M) · ht3 T2 = e(σ1g
H(M), σ3) · e(g, g)−1

π1 = Kt1
2 (ZgK1)t2ht1t2 T1

?= e(π1, h)

π2 = g
t1

K1+H(M) gt3(K1+H(M))ht1t3 T2
?= e(π2, h)

σ1,σ2,σ3,π1,π2−−−−−−−−−−→ if all pass, the signature is valid

Fig. 1. Short Group Signature Scheme

6 Security Analysis

We now analyze the security of our group signature scheme.

6.1 Full Anonymity

Since our scheme adopts the same approach from BW06 [9] and BW07 [10], we
only prove the security of our group signature scheme in the anonymity game
against chosen plaintext attacks. The proof sketch borrows from G07 [16]. That
is, if h is chosen from G, we achieve perfect hiding property. Meanwhile, if h
is chosen from Gq, we achieve perfect biding property. However, the adversary
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A can not distinguish these two different environment, since subgroup deci-
sion problem is unsolvable in polynomial time. Therefore, we give the following
theorem.

Theorem 2. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least ε. Then for every t′-time adversary A to break the
full anonymity, we have that AdvA < 2εsub, where t ≈ t′.

To prove the above theorem, the two lemmas are necessary.

Lemma 1. For all t′-time adversaries A, the probability to distinguish the true
environment and the simulated environment is negligible. That is AdvA−AdvA,S <
2εsub

Proof. Suppose there is a simulator B trying to solve subgroup problem. Upon
receiving a tuple (e, G, GT , n, h), he wants to find out whether h ∈ Gq or not.
Firstly, he setups the group signature scheme by choosing the public parameters
exactly as in the group signature scheme. Then B publishes them to the adversary
A. Whether h is chosen from Gq or not, B can always answer all queries, since it
knows the master key. If h ∈R Gq, then the simulated environment is identical
to the actual one.

At some point, the adversary A chooses a message M and two identities id
and id′. The constraints are the secret keys of id and id′, and (M, id), (M, id′)
should not be queried before. Then, B outputs the challenge signature with
(M, id∗), where id∗ ∈ {id, id′}. After that, A outputs its guess. If it is correct,
B outputs 1; else outputs 0. Denote by AdvB the advantage of the simulator B
in the subgroup decision game. As we know that

Pr[h ∈ G] = Pr[h ∈ Gq] =
1
2

we obtain that,
AdvA − AdvA,S = Pr[b = 1|h ∈ Gq] − Pr[b = 1|h ∈ G]

= 2Pr[b = 1, h ∈ Gq] − 2Pr[b = 1, h ∈ G]
= 2AdvB
< 2εsub

Thus, under our subgroup decision assumption in Section 2.2, the probability
to distinguish the actual environment and the simulated one is negligible. �

Lemma 2. For any adversary A, we have AdvA,S = 0

Proof. The proof sketch is similar to that of BW07 [10] and G07 [16]. We prove
that when h is chosen uniformly from G at random, instead of Gq, the adversary
A can not sense the identity from the challenge signature. Although the tracing
value sid may have been used to answer previous signing queries on (id, M) and
(id′, M), the challenge signature is statistically independent of the real identity.

To proceed, we write the challenge ciphertext is σ = (σ1, σ2, σ3, π1, π2).
Since the signature σ1, σ2, σ3 is blinded with random number h1, h2, h3 ∈ G,

respectively, they reveal nothing about the identity. Then, we give two signatures:
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σ with (id, M) and σ′ with (id′, M) and analyze two tuples π = (π1, π2), π′ =
(π′

1, π
′
2).

If σ1 = σ′
1, σ2 = σ′

2 and σ3 = σ′
3, we show that π and π′ do not reveal the

identity either.

gsidht1 = gsid′ ht′
1

g
1

z+sid ht2 = g
1

z+s
id′ ht′

2

g
1

sid+H(M) ht3 = g
1

s
id′+H(M) ht′

3

Suppose h = gη, ε = z+sid

z+sid′
, τ = sid+H(M)

sid′+H(M) , we obtain that

t′1 = t1 + sid−sid′
η

t′2 = t2 + 1
η ( 1

z+sid
− 1

z+sid′
) = t2 + 1−ε

η(z+sid)
t′3 = t3 + 1

η ( 1
sid+H(M) − 1

sid′+H(M) ) = t3 + 1−τ
η(sid+H(M))

Now, we need to show that π1, π2 do not reveal any information about the
user’s identity. Taking the adversary’s view, we see that π1, π2, π

′
1, π

′
2 satisfy,

π′
1 =g

t′
1

z+s
id′ g(z+sid′ )t′

2ht′
1t′

2

loggπ
′
1 =

t1+
sid−s

id′
η

z+sid′
+ (z + sid′)(t2 + 1−ε

η(z+sid) ) + η(t1 + sid−sid′
η )(t2 + 1−ε

η(z+sid) )

= t1
z+sid′

+ sid−sid′
η(z+sid′ ) +zt2 + sid′t2 + (1−ε)(z+sid′ )

η(z+sid) + ηt1t2 + sidt2 − sid′t2+
t1(1−ε)
z+sid

+ (1−ε)(sid−sid′ )
η(z+sid)

= t1
z+sid

+ (z + sid)t2 + ηt1t2

π′
1 =g

t1
z+sid

+(z+sid)t2+ηt1t2

=g
t1

z+sid g(z+sid)t2ht1t2

=π1

π′
2 = g

t′
1

s
id′+H(M) g(sid′+H(M))t′

3ht′
1t′

3

loggπ
′
2 =

t1+
sid−s

id′
η

sid′+H(M) + (sid′ + H(M))(t3 + 1−τ
η(sid+H(M)) )

+η(t1 + sid−sid′
η )(t3 + 1−τ

η(sid+H(M)) )

= t1
sid′+H(M) + sid−sid′

η(sid′ +H(M)) + H(M)t3 + sid′t3 + (1−τ)(sid′+H(M))
η(sid+H(M))

+ηt1t3 + sidt3 − sid′t3 + t1(1−τ)
sid+H(M) + (1−τ)(sid−sid′ )

η(sid+H(M))
= t1

sid+H(M) + (sid + H(M))t3 + ηt1t3

π′
2 = g

t1
sid+H(M) +(sid+H(M))t3+ηt1t3

= g
t1

sid+H(M) g(sid+H(M))t3ht1t3

= π2

Therefore, π1, π2 is identical to π′
1, π

′
2. The challenge signature σ does not re-

veal the identity id, though the simulator uses sid to generate it. Hence, we claim
that the adversary A in the anonymity game under the simulated environment
has negligible advantage to guess the correct identity. �
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6.2 Full Traceability

We prove that our group signature is existential unforgeability based on the
security of two-level signature scheme proposed in Section 4.1.

Theorem 3. If there exists a (t, ε) adversary for the full traceability game against
the group signature scheme, then there exists a (t′, ε) adaptive chosen message
existential unforgeability adversary against the two-level signature scheme, where
t ≈ t′.

Proof. We note that our group signature scheme is an extension form of our two-
level signature scheme by adding some random number on the signing and veri-
fying equations. Intuitively, we prove that our group signature is secure against
adaptive chosen message attack by using two-level signature’s unforgeability.

Suppose there exists a simulator B, who interacts with the adversary A and
wants to break two-level signature scheme. Then, B executes the following algo-
rithms and plays a game with A.

In Setup algorithm, B runs two-level signature Setup, generates public pa-
rameters and publishes them. Furthermore, B deliveries TK = q to A, and A is
entitled the authority to tracing authority.

A queries a secret key on id to B. To answer this request, B queries the key
extract oracle of two-level signature scheme and obtains the user’s secret key
Kid. Then B sends Kid to A.

A queries a signature on (id, M) to B. B directly queries the signing oracle
of two-level signature scheme and obtains σ = (σ�

1 , σ�
2 , σ�

3) corresponding with
(id, M). Then, B randomly choose t1, t2, t3, and generates the group signature,

σ = (σ�
1 · ht1 , σ�

2 · ht2 , σ�
3 · ht3 , (σ�

2)t1(Zσ�
1)t2ht1t2 , (σ�

3)t1(gH(M)σ�
1)t3ht1t3) (1)

We could see that this is a valid group signature. After receiving the responding
signature. A could check its validity by using PP and trace its identity by using
TK = q. These verification equations are correct.

At some point, A outputs its forgery signature σ∗ = (σ∗
1 , σ∗

2 , σ∗
3 , π∗

1 , π∗
2) with

(id∗, M∗). According to the game’s constraints, id∗ should be excluded from key
extract queries and (id∗, M∗) should not be queried from signing oracle before.

Then, B generates λ which satisfies λ ≡ 1 (mod p) and λ ≡ 0 (mod q). Then,
from π∗

1 , π∗
2 and the verification equations, we obtain:

e(σ∗
1Z, σ∗

2) · e(g, g)−1 = e(π∗
1 , h)

e(σ∗
1gH(M∗), σ∗

3)e(g, g)−1 = e(π∗
2 , h)

And we use λ to obtain:

e(σ∗
1

λZ, σ∗
2

λ) = e(g, g)
e(σ∗

1
λgH(M∗), σ∗

3
λ) = e(g, g)

Since (σ∗
1

λ, σ∗
2

λ, σ∗
3

λ) pass the verification equations of two-level signature
scheme in Section 4.1, they are a forged two-level signature, which means B suc-
cessfully breaks the unforgeability of two-level signature scheme. Thus, Theorem
3 has been proved. �
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By combining with Theorem 2 and Theorem 3, we prove our scheme to have full
anonymity and full traceability in the standard model.

7 Comparison

In this section, we compare our group signature with others. Boyen and Waters
[9] proposed a nice group signature based on the Waters’s identity-based signa-
ture [22]. However, the hierachical identity-based signature in that scheme leads
logarithmic size of both group public key and group signature. Then, Boyen and
Waters [10] improved the signature to be constant size. Furthermore, we propose
a new group signature to achieve constant size of both public key and signature.
We could see the details in table 1. (M ∈ {0, 1}m, id ∈ {0, 1}k):

Table 1. Comparisons on size in Group Signatures

BW06 [9] BW07 [10] Our Scheme
Public Key (k + m + 3)|G| (m + 4)|G| 2|G| + |Gq|

+|Gq | + |GT | +|Gq | + |GT |
Master Key |G| |G| + |Zn| |Zn|
User Key 3|G| 3|G| |G| + |Zn|
Signature (2k + 3)|G| 6|G| 5|G|

More than that, we continue to compare the computational cost on every par-
ticipant in these group signature schemes. In Table 2, we note that TExp,TPair,
TMul to represent the time for one modular exponentiation, one bilinear pairing
computation, and one group multiplication, respectively. Certainly, our approach
largely reduces the computational cost and enhances the whole efficiency, that
means, our scheme is more applicable in real environment.

Recently, Groth [16] proposed a group signature scheme with full anonymity
(CCA) in the standard model. His scheme adopts the existing tools, including
certisignature scheme, strong one-time signature scheme, non-interactive proofs

Table 2. Comparisons on computational cost in Group Signatures

BW06 [9] BW07 [10] Our Scheme
Join 3TExp + (k + 2)TMul 3TExp TExp

Sign (2k+5)TExp+(3k+m+
6)TMul

12TExp + (m +
10)TMul

11TExp + 8TMul

Verify (2k+3)TPair+(2k+m+
4)TMul

6TPair + 3TExp +
(m + 5)TMul

6TPair+3TExp+4TMul

Open kTExp TExp TExp

Exhaustively
Search

No Yes Yes
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system for bilinear groups, selective-tag weakly CCA-secure encryption, but it
increases the size and computational cost. The total size of a group signature is
50 group elements in G. In case full anonymity (CPA) is sufficient, the signature
is reduced to 30 group elements. Thus, taking efficiency into consideration, our
scheme is better.

8 Conclusion

In this paper, we proposed a practical group signature scheme, which has shorter
sizes of both public key and signature than that of the other existing schemes.
Since we adopted the approach of short signature proposed by BB04 [3] and
non-interactive proof system [17], we proved the security of ours without random
oracles, including full anonymity and full traceability. Furthermore, our scheme
reduces the computational cost on both user and verifier sides. In the future
work, we should improve ours on the full anonymity security in the CCA notion
without random oracles and develop other practical group signature schemes
based on weaker assumptions.
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