
An Efficient Password-Only Two-Server
Authenticated Key Exchange System�

Haimin Jin1,2, Duncan S. Wong1, and Yinlong Xu2

1 Department of Computer Science
City University of Hong Kong

Hong Kong, China
duncan@cityu.edu.hk

2 Department of Computer Science
University of Science and Technology of China

China
jhm1213@mail.ustc.edu.cn, ylxu@ustc.edu.cn

Abstract. One of the prominent advantages of password-only two-server
authenticated key exchange is that the user password will remain secure
against offline dictionary attacks even after one of the servers has been
compromised. The first system of this type was proposed by Yang, Deng
and Bao in 2006. The system is efficient with a total of eight communi-
cation rounds in one protocol run. However, the security assumptions are
strong. It assumes that one particular server cannot be compromised by
an active adversary. It also assumes that there exists a secure communica-
tion channel between the two servers. Recently, a new protocol has been
proposed by the same group of researchers. The new one removes these
assumptions, but in return pays a very high price on the communication
overhead. It takes altogether ten rounds to complete one protocol run and
requires more computation. Therefore, the question remains is whether it
is possible to build a protocol which can significantly reduce the number
of communication roundswithout introducing additional security assump-
tions or computational complexity. In this paper, we give an affirmative an-
swer by proposing a very efficient protocol with no additional assumption
introduced. The protocol requires only six communication rounds without
increasing the computational complexity.

1 Introduction

Password-only authenticated key exchange is a scheme which allows a user who
holds only a low-entropy password to conduct authentication and key exchange
with a server. Comparing with related types of authenticated key exchange
schemes, for example, schemes based on cryptographic keys, password-only au-
thenticated key exchange is very practical with high usability, because users only
need to memorize a short password which is already used commonly in existing
authentication systems.
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A Password-only Two-Server Authenticated Key Exchange (PTAKE)
scheme [18,17] is an extension of the conventional single-server setting [13]. Be-
sides a user and a server, PTAKE also has an additional server. The existing,
front-end, server that the user is communicating with is called the Service Server,
SS, and the additional, back-end, server which communicates only with SS is
called the Control Server, CS. In a conventional single-server scheme, the server
has a database of the users’ passwords or some verification data of the passwords.
If the server is compromised, an adversary can obtain the passwords of all the
users directly from the database, or be able to launch offline dictionary attacks
against all users’ passwords as the database provides enough information about
the passwords. This problem is generally referred to as single point of failure.

In a PTAKE scheme instead, the password of each user is split into two shares
and each server is given only one share, so that the password cannot be obtained
in an information theoretic sense if only one share is known. Currently, all the
concrete PTAKE schemes [18,17] use the same splitting mechanism: two random
shares π1 and π2 are generated such that the password π ≡ π1 + π2 (mod q)
for a large prime q. A secure PTAKE scheme is designed such that even if one
of the two servers is compromised, the scheme should still be able to thwart
offline dictionary attacks against π. This feature together with the architecture
of PTAKE yields a very desirable and practical system. As we can see, users
only interact with SS but will never interact directly with CS, while CS only
interacts with SS. This creates two networks, one external and one internal, with
SS acting as the bridge/firewall between these two. In practice, this makes an
outsider very difficult to compromise the internal network. The internal network
can also be totally hidden from the outsiders. It is even possible for us to make
outsiders totally unaware of the existence of CS. In addition, since CS only
interacts with SS, it is relatively easy to provide maximal security protection for
CS and make it much more difficult to compromise. To defend against insider
attacks, it is also much easier to do so than the conventional one-server scheme
as the administrative and operational tasks of SS and CS are separated and can
be carried out by two independent teams. They do not share any secret.

The first PTAKE was proposed by Yang, Deng and Bao [18] in 2006. In one
protocol run of their scheme, the user carries out four rounds of communications
with SS and the CS carries out another four rounds with SS. The total number of
communications rounds is therefore eight. Following the notion of external and
internal networks, they assume that the internal network is impossible for an
active adversary1 to compromise. This assumption makes certain sense for some
systems, but not in general. An insider who has full access to CS but not to SS
may collude with an outsider and launch a successful offline dictionary attack
against their scheme. Another issue of the scheme is that the communication
channel between the two servers needs to be secure against eavesdroppers in order
to ensure the security of the session key. This also introduces some additional
cost for actual implementation of the scheme.

1 An active adversary is considered to be an adversary which can do both eavesdrop-
ping and hijacking of messages.
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Recently, a new scheme has been proposed by the same group of researchers
[17]. The new one solves both of the problems mentioned above. In addition, it
further enhances the security with respect to the session key, namely, CS can no
longer compute the session key established between the user and SS. This is a
desirable feature in practice as SS (Service Server) is generally the one to provide
actual services while CS is simply called in for authenticating the user. There is
no need or it simply downgrades the user’s privacy if we let CS know the session
key. The tradeoff of this new scheme is that the number of communication rounds
for completing one protocol run is increased to ten.

1.1 Our Results

For the latest conventional password-only single-server schemes [13], the number
of communication rounds between the user and the server is usually only three.
In the two-server setting, there are three parties. The question we are asking is
whether we can build a secure PTAKE scheme which takes only three communi-
cation rounds for mutual authentication between the user and SS, another three
rounds for mutual authentication between CS and SS, and piggybacks some ad-
ditional messages along these rounds for mutual authentication between the user
and CS. As a result, the scheme only requires six rounds of communications to
complete one protocol run. It is also desirable if we can attain the same level of
security as in [17], namely

1. the scheme remains secure against offline dictionary attacks after one of CS
and SS has been compromised by an active adversary;

2. no secure channel is required between CS and SS;
3. at the end of a protocol run, for any of the three parties (the user, SS and

CS), the party can ensure that the other two parties have been involved; and
4. an honest-but-curious CS cannot compute the session key.

In this paper, we give an affirmative answer to this question. We propose a very
efficient protocolwhich requires only six communication rounds with no additional
assumption introduced, and satisfies all the security requirements above.

1.2 Related Work

Passwords chosen by users generally have very low entropy. Dictionary attacks
are feasible by efficiently enumerating all the possible passwords from a dictio-
nary, if enough information is given to an attacker. Dictionary attacks can be
launched online or offline. In an online attack, an attacker attempts to logon to
a server by trying all possible passwords until a correct one is found. Usually,
this can easily be defended against at the system level by designing a system
such that an unsuccessful online attack is detectable and limiting the number
of unsuccessful login attempts. In an offline attack, the attacker records several
successful login sessions and then tries all the possible passwords against the
login transcripts. This type of attacks is notoriously difficult to defend against
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and it is the main challenge for designing a secure password-based authenticated
key exchange scheme.

On the design of password-based authenticated key exchange schemes, most
of the schemes (e.g. most of the schemes in [13]) belong to the single-server cat-
egory. As explained, single-server setting has a serious drawback which is called
single point of failure. For enhancing the robustness, two-server and multi-server
models have been proposed [12,14,15,16]. For multi-server schemes, although
they alleviate the robustness problem, they usually require a user to commu-
nicate simultaneously with multiple servers or have the protocols become very
expensive, especially when too many servers are getting involved.

The two-server setting seems to facilitate a very good balance between robust-
ness and protocol complexity. Recently, a practical two-server architecture is pro-
posed by Yang, Deng and Bao [18,17]. This architecture is a password-only variant
of the one introduced by Brainard et al. [8]. As described in the Introduction sec-
tion of this paper, the user communicates only with the Service Server (SS) while
the Control Server (CS) communicates with SS only. In this paper, we propose
a scheme which achieves the same security level as that of [17] (summarized in
Sec. 1.1) but with much fewer number of communication rounds. Our scheme has
even fewer rounds than the weaker scheme proposed in [18].

Organization. In the next section, we describe the basic tools that are used
in our PTAKE scheme and then give the full details of the scheme. In Sec. 3,
we analyze its security in terms of off-line dictionary attacks, pairwise mutual
authentication and key privacy against Control Server. In Sec. 4, we provide the
performance analysis and compare our protocol with Yang, Deng and Bao’s in
[17]. In Sec. 5, we conclude and mention some of our future work.

2 A New Efficient PTAKE

As introduced in Sec. 1, a protocol run of PTAKE involves a user U, a Service
Server SS and a Control Server CS. There is a communication link between U
and SS, another link between SS and CS, but no direct link between U and CS.

We consider two types of adversaries: passive adversaries and active adver-
saries. A passive adversary can eavesdrop any of the channels and try to derive
user passwords from protocol transcripts. If a server is compromised by the pas-
sive adversary, all the internal states, which include the password share, of the
server will be accessible by the adversary, but the server will still behave accord-
ing to the protocol specification. An active adversary controls all the communi-
cation channels. If a server is compromised by an active adversary, all internal
states of the server will be known to the adversary and the adversary has full
control on how the server behaves.

Note that all literature [18,17] in this field assumes that the servers do not
support multiple simultaneous sessions for one single user. We believe that this
assumption is realistic as it usually indicates identity theft when multiple ses-
sions from the same user are initiating from different places, for example, in the
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e-banking applications. We leave the study of simultaneous multiple session set-
ting as our future work.

2.1 Registration and Initialization

To begin with, user U first needs to register to the servers through some out-of-
band channels. In this paper, we assume that U has already generated random
password shares π1 and π2 such that U’s password π is congruent to π1 + π2
(mod q) for some large prime q. We refer readers to [18] for details on how this
registration and initialization phase can be carried out.

In the following, we let g1 and g2 be distinct random generators of some
multiplicative group G of large prime order q. Assume that the discrete loga-
rithm problem in G is intractable, and also the discrete logarithm of g2 to g1 is
intractable.

2.2 Basic Techniques

Before describing our proposed PTAKE, in this section, we propose several prim-
itive techniques that we use repeatedly in our protocol. These techniques are
mainly for defending against offline dictionary attacks while carrying out key
exchange.

Since the password π ≡ π1 + π2 (mod q), our protocol has to prevent an
active adversary from obtaining any information related to π1 + π2 even under
the condition that the adversary has already known one of these two password
shares. There are two basic building blocks in our design.

The first building block is applying a blinding factor to the password or a
password share. This building block has the message form of M1 = gr

1g
x
2 . Here x

is the password or a password share (i.e. π, π1 or π2), and r is chosen uniformly
at random from Z

∗
q . From M1, the adversary cannot get anything useful for

launching offline dictionary attacks for getting x (from gx
2 ) as gr

1 is not known.
Table 1 shows some examples of this building block being used in our protocol
which will be described shortly.

Table 1. Examples of the First Building Block

U → SS: B = ga
1gπ

2 ga
1 is the blinding factor

SS → CS: B1 = B/(gb1
1 gπ1

2 ) gb1
1 is the blinding factor

CS → SS: B4 = gb4
1 gπ2

2 gb4
1 is the blinding factor

The second building block is the randomization of the messages received which
are in the form of M2 = (D/gx

2 )r, M3 = gr
1. Here r ∈R Z

∗
q , x is a password share

(but not the password), D is the message received.
Note that D can be generated by the adversary. This implies that the ad-

versary is able to compute (gx
2 )r from M2 and M3. To see this, suppose the

adversary sets D = gd
1 for some arbitrarily picked d. The adversary can compute
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(gx
2 )r = Md

3 /M2. Since r is chosen uniformly at random from Z
∗
q and is unknown

to the adversary, knowing gr
1 and grx

2 does not help the adversary compute x as
the adversary cannot determine the value of gr

2 under the assumption that DDH
problem is hard2. Table 2 lists some examples on how this building bock is used
in our protocol.

Table 2. Examples of the Second Building Block

CS → SS: B2, A1

B2 = (B1/gπ2
2 )b2 , A1 = gb2

1

SS → U: B5, A3

B5 = ((Bgb6
1 /B4)/gπ1

2 )b5 , A3 = gb5
1

2.3 The PTAKE Protocol

The protocol is described in Fig. 1.
To initiate a request for service, U selects a random a ∈R Z

∗
q and computes

B = ga
1gπ

2 , then sends request Req, identity U and B to SS in M1. Upon receiving
M1, SS selects a random b1 ∈R Z

∗
q , computes B1 = B/(gb1

1 gπ1
2 ) = ga−b1

1 gπ2
2 , then

sends U, SS and B1 to CS in M2. Upon receiving M2, CS selects b2, b4 ∈R Z
∗
q ,

computes B2 = (B1/gπ2
2 )b2 = (ga−b1

1 )b2 , A1 = gb2
1 and B4 = gb4

1 gπ2
2 , then sends

A1, B2 and B4 back to SS in M3. SS selects b3, b5, b6 ∈R Z
∗
q and computes

B3 = (B2A
b1 )b3 = gab2b3

1 , S1 = h(B3), A2 = Ab3
1 , B5 = (B/(B4g

π1
2 ))b5gb6b5

1 =
g
(a−b4+b6)b5
1 and A3 = gb5

1 , then sends S1, A2, B5, A3 to U in M4. Upon receiving
M4, U checks if S1

?= h(Aa
2): if true, U accepts and computes S2 = h(Aa

2 , 0). It
then selects a random a∗ ∈R Z

∗
q , computes A4 = Aa∗

3 , B6 = (Aa
3/B5)a∗

and sends
S2, B6, A4 to SS in M5. The session key Ku = h(Aa

2 , U, SS) is also computed.
Otherwise, U aborts. Upon receiving M5, SS checks whether S2

?= h(B3, 0): if
true, SS accepts, computes S3 = h(B6A

b6
4 ) and session key Kss = h(B3, U, SS),

and sends S3, A4 to CS in M6. Otherwise, SS aborts. Upon receiving M6, CS
checks whether S3

?= h(Ab4
4 ), if it does not hold, CS aborts. Otherwise, CS

accepts. In all the steps above, when an element of G is received, the party
should always check if the element is not equal to 1. If so, the protocol should
be aborted.

3 Security Analysis

Recall that one of the main goals of our proposed scheme is to resist off-line
dictionary attacks by an active adversary who has compromised one of the two
servers. In the following, we first examine the proposed scheme against a com-
promised CS and then a compromised SS. We do not need to consider the case
2 DDH assumption: given (g, gr, h, z) where g, h ∈R G, r ∈R Zq, determine if z = hr

or just an element chosen uniformly at random from G.
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U SS CS

Input :π Input :π1 Input :π2

a ∈R Z∗
q

B = ga
1gπ

2
M1 : U, Req, B−−−−−−−−−−→ b1 ∈R Z∗

q M2 : U, SS, B1−−−−−−−−−−→
B1 = B/(gb1

1 gπ1
2 ) b2 ∈R Z∗

q

B2 = (B1/gπ2
2 )b2

A1 = gb2
1

b4 ∈ Z∗
q

B4 = gb4
1 gπ2

2
M3 : A1, B2, B4←−−−−−−−−−−−

b3 ∈R Z∗
q

B3 = (B2Ab1
1 )b3

S1 = h(B3)

A2 = Ab3
1

b5, b6 ∈ Z∗
q

B5 = (B/(B4gπ1
2 ))b5gb6b5

1
A3 = gb5

1
M4 : A2, S1, B5, A3←−−−−−−−−−−−−−−

S1
?
= h(Aa

2)
S2 = h(Aa

2 , 0)
Ku = h(Aa

2 , U, SS)

a∗ ∈ Z∗
q , A4 = Aa∗

3
B6 = (Aa

3/B5)a∗

M5 : S2, B6, A4−−−−−−−−−−−→
S2

?
= h(B3, 0)

Kss = h(B3, U, SS)

S3 = h(B6Ab6
4 ) M6 : S3, A4−−−−−−−−→

S3
?
= h(Ab4

4 )

Fig. 1. Our Proposed Efficient PTAKE

that an active adversary does not have any server compromised, as this scenario
has already been considered in the first two scenarios. After evaluating the secu-
rity against off-line dictionary attacks, we will show that the scheme satisfies the
authentication requirement as well as the desirable session key privacy, especially
against the Honest-but-Curious CS.

3.1 Security Against Off-Line Dictionary Attacks

So far for PTAKE, there is no formal security model defined with comparable
formality to [2,9] for conventional single-server password-based authenticated key
exchange or [4,5,1,10] for cryptographic key based authenticated key exchange
schemes. We believe that it is important to propose a formal security model for
PTAKE and we consider this to be our next work. In this paper, our focus is on
the performance optimization while providing the proposed scheme with some
heuristic security evidence which is comparable to that in [17].
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Also note that we follow the current literature [18,17] in this field by assum-
ing that the servers do not support multiple simultaneous sessions from one
single user. If a user is attempting to make simultaneous logins, the servers
should consider this as some impersonation attacks. For conventional single-
server password-based authenticated key exchange, multiple sessions are gener-
ally considered in the corresponding models [2,9]. For preventing various kinds
of interleaving attacks [6,7], “binding” mechanisms of the identities of senders
and receivers as well as the session IDs are generally required. Under the cur-
rent single-session setting, the mechanisms may not be needed. Also because of
this weaker security requirement, our scheme can achieve such a great efficiency.
We believe that it is interesting to construct a provably secure PTAKE without
sacrificing its efficiency when compared with our proposed scheme in this paper.

Proposition 1. The proposed scheme can defend against offline dictionary at-
tacks launched by an active adversary which has compromised CS.

Through eavesdropping and hijacking the communication channels, we can see
that the honest parties, U and SS, are actually providing the following oracles
to the active adversary:

– Oracle1: It outputs B = ga
1gπ

2 , where a is chosen uniformly at random from
Z
∗
q and π is the password of U.

– Oracle2: On input B, X, Y, Z ∈ G, it outputs a quadruple: B/(gb1
1 gπ1

2 ), Xb3 ,
h((Y Xb1)b3), (B/(Zgπ1

2 ))b5gb5b6
1 , where b1, b3, b5, b6 ∈R Z

∗
q and π1 is SS’s

password share.
– Oracle3: On input U, V, W, B ∈ G and another finite binary string S1, it

outputs O1 = h(W a, 0), O2 = Ua∗
, O3 = (Ua/V )a∗

only if S1 = h(W a),
where a is the random number chosen by Oracle1 when outputting B. If
Oracle1 has never outputted B before, Oracle3 returns ⊥. Note that a∗ above
is chosen uniformly at random by Oracle3.

– Oracle4: On input S, T, S2, U, V, O1, O2, O3, it outputs h(ST b6) only if
h((V U b1)b3 , 0) = S2, where U , V , b1, b3 and b6 are corresponding to one
query of Oracle3. Note that O1, O2, O3 are needed to be in the query for
identifying which query of Oracle3 it is associated with.

Oracle1 outputs B in the form of first building block described in Sec. 2.2. As
explained, it gives no additional information about π. Oracle2’s output has forms
of both first and second building blocks described in Sec. 2.2. Again, as explained,
they give no additional information about π or π1 if DDH problem is hard. For
Oracle3 and Oracle4, no particular password related information is involved and
therefore do not provide additional information about π or π1.

Proposition 2. The proposed scheme can defend against offline dictionary at-
tacks launched by an active adversary which has compromised SS.

Similarly, we may consider the honest parties, U and CS, to provide the following
oracles to the active adversary:

– Oracle1′: It outputs B = ga
1gπ

2 , where a is chosen uniformly at random from
Z
∗
q and π is the password of U.
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– Oracle2′: On input X ∈ G, it outputs a triple: gb2
1 , (X/gπ2

2 )b2 , gb4
1 gπ2

2 , where
b2, b4 ∈R Z

∗
q and π2 is CS’s password share.

– Oracle3′: On input U, V, W, B ∈ G and S1, it outputs h(W a, 0), Ua∗
, (Ua/V )a∗

only if S1 = h(W a), where a is the random number chosen by Oracle1′ when
outputting B. If Oracle1′ has never outputted B before, Oracle3′ returns ⊥.
Note that a∗ above is chosen uniformly at random by Oracle3′.

Oracle1′ outputs B in the form of first building block described in Sec. 2.2. It
gives no additional information about π. The output of Oracle2′ has forms of both
first and second building blocks described in Sec. 2.2. As explained, they give no
additional information about π or π2 if DDH problem is hard. For Oracle3′, no
particular password related information is involved and therefore do not provide
any additional information about π or π2.

3.2 Authentication

Unlike one-way or mutual authentication in a two-party setting, a secure TPAKE
should ensure that for each of the three parties (i.e. U, SS, CS), the party is given
enough evidence of the involvement of the other two parties before the party can
complete a protocol run without early abortion.

U authenticates CS and SS: The authentication idea is to have U send a ‘masked’
commitment of π, in the form of B = ga

1gπ
2 , to servers and require the servers

to work jointly to remove the commitment gπ
2 of π from B. If the returned

value is ga
1 , the two servers are authenticated. However, it is not trivial to do so

because all the communication channels are open and susceptible to both passive
and active attacks. For making the authentication idea work, blinding factors
and randomization techniques are introduced. We can see that SS computes
B1 = g−b1

1 Bg−π1
2 and CS computes B2 = (B1g

−π2
2 )b2 , where the component

g−b1
1 in the computation of B1 is the blinding factor; and the power b2 for

computing B2 is the randomization. The authentication idea remains the same,
that is, Bg−π1

2 when computing B1 and B1g
−π2
2 when computing B2, in other

words, having SS and CS remove gπ
2 from B using their knowledge of π1 and π2.

Note that after adding the blinding factor and randomization, the value received
by U becomes h(B3) = h(ga

1
b2b3) where b3 is the randomization introduced by

SS. This is to prevent a malicious CS from launching off-line dictionary attack
against an honest SS.

Note that randomization is an important technique to defend against off-line
dictionary attack while allowing an initiator (in this case, it is U) to authenticate.
This can be seen by imagine that the two servers were one single party holding
π. Upon receiving B = ga

1gπ
2 , the combined server computes S1 = h((B/gπ

2 )b′
)

for a random b′ ∈ Z
∗
q , and sends S1 and A2 = gb′

1 back to U. U then checks

if S1
?= h(Aa

2). Suppose an adversary impersonates U and sets B as ga′

1 . The
received response from the combined server will become h(ga′b′

1 g−πb′

2 ). We can
see that the adversary is not able to determine gb′

2 from all the known values
and therefore, is not able to launch off-line dictionary attack.
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CS authenticates SS and U: The approach is similar to the above. The ‘masked’
commitment of π2 is B4 = gb4

1 gπ2
2 . SS and U then work jointly to remove the

commitment gπ2
2 from B4 using their knowledge of π1 and π, respectively. After

introducing blinding factors and randomization techniques, the value received
by CS becomes S3 = h(gb4a∗b5

1 ). With A4 = ga∗b5
1 , CS can check if S3

?= h(Ab4
4 ).

As mentioned, the role of CS is to assist SS in authenticating U . Therefore, it
some security model, it may be fine if we remove the components corresponding
to authenticating SS and U by CS, that is, those related to B4. However, in a
more general security model, SS may make use of CS as an oracle for launch-
ing an unlimited and undetectable online dictionary attack for compromising
CS’s password share π2. Specified in our protocol, [B4, B5, B6, A3, A4, S3] are
added to provide this authentication. If without checking S3

?= h(Ab4
4 ) by CS,

SS can arbitrarily choose a trial password πguess and send B1 = g
πguess−π1
2 to

CS, then check if the received value B2 from CS, which should be of the form
(gπguess−π1

2 /gπ2
2 )b2 is equal to 1. Without S3, we can see that CS has no way to

find out if SS is launching this kind of online dictionary attacks. Therefore, SS
can simply repeat the trial above until the value of π2 is found. Without B4 and
the associated components for authenticating SS and U , this type of online dic-
tionary attacks is undetectable and therefore cannot be defended against using
the conventional system-level method which is commonly applied to limit the
number of unsuccessful login attempts (Sec. 1.2).

SS authenticates CS and U: The authentication idea is similar but with a dif-
ferent order. SS obtains a ‘masked’ commitment of π from U first. SS asks CS to
work together for removing the commitment of π. If the ‘masked’ commitment
received from the claimed U is properly formatted and CS also performs accord-
ing to the protocol, the commitment of π will be removed, with the blinding
factors and randomization remained as S2 = h(gab2b3

1 , 0). SS knows the value of
b3. From B2 = g

(a−b1)b2
1 , A1 = gb2

1 and b1, SS can compute gab2
1 . Hence SS can

verify if S2
?= h(gab2b3

1 ).

3.3 Key Privacy Against an Honest-But-Curious CS

In the following, we focus on discussing the key privacy against an honest-but-
curious CS rather than an eavesdropper. This is because the key privacy against
the honest-but-curious CS implies the key privacy against an eavesdropper.

Our idea is based on the Diffie-Hellman key exchange between U and SS. At
the end of the protocol, we target to have each of U and SS generate a session
key which is essentially computed from the Diffie-Hellman contributions of these
two parties, while ensuring the CS is not able to get the discrete logarithm of
any of the two contributions.

The session key established between U and SS is h(gab2b3
1 , U, SS), where b2 is

picked by CS. Due to the idealness assumption of h as a random oracle [3], CS
has to know gab2b3

1 in order to obtain the session key. This implies that CS has
to know gab3

1 . However, the only available information related to gab3
1 is ga

1 and
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gb3 . Hence CS has to solve the Computational Diffie-Hellman problem in order
to obtain the session key.

4 Performance

We now compare the performance of our proposed scheme with the YDB scheme
proposed by Yang, Deng and Bao [17] as their scheme is the only one currently
known to also satisfy all the requirements stated in Sec. 1.1.

Let |p| and |h| denote the bit length of p and the output of hash function h(.),
respectively. The performance comparison is given in Table 3.

Table 3. Performance Comparison

U SS CS

Computation YDB scheme 5/2 6/1 3/1
(exponentiations) our scheme 4/1 6/2 4/2
Communication YDB scheme 4|p| + 2|h| 8|p| + 3|h| 4|p| + |h|

(bits) our scheme 6|p| + 2|h| 11|p| + 2|h| 5|p| + 1|h|
Communication YDB scheme 6 10 4

(rounds) our scheme 3 6 3

Computational Complexity: Since the complexity of exponentiation dominates
a party’s computational overhead, we count the number of exponentiations re-
quired for each party. The digits before ”/” in the table denote the total number
of exponentiations performed by the party, the digits followed denote the num-
ber of exponentiations that can be pre-computed. Note that by leveraging on the
techniques in [11], each of ga

1gπ
2 , gb1

1 gπ1
2 , (B2A

b1)b3 and (B1/gπ2
2 )b2 can be com-

puted by a single exponentiation operation. We can see that the computational
complexity of our proposed scheme is comparable to that of YDB scheme.

Communication Performance in terms of Effective Bits: As |Q| is only one bit
longer than |p|, we do not distinguish them when evaluating the YDB scheme.
The number of bits transmitted by each party is comparable to the YDB scheme.
Note that this measures the total number of effective bits transmitted that are
related to the protocol. It does not include the additional overhead of headers
and trailers required for transferring the data packets in each communication
round. We will see just in the next point that our proposed scheme has much
fewer number of rounds than that of YDB scheme. Therefore, our scheme in-
curs much less communication overhead due to headers and trailers in actual
implementation.

Communication Performance in terms of Rounds : One round is a one-way
transmission of messages. Our proposed scheme has a total of six rounds while
YDB scheme requires altogether 10 rounds to complete one protocol run. Also
note that the number of rounds made by U is significantly reduced to half from
the original number. This is desirable especially for low-power wireless users.
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5 Conclusion and Future Work

We proposed a new PTAKE which outperforms all previously proposed ones in
terms of the number of communications rounds, while maintaining almost the
same extent of computational complexity.

This proposed scheme is particularly suitable for implementation on resource-
constrained wireless devices. Transmitting radio signals on these devices usually
consumes much more power than computation does. Furthermore, if we use
appropriate elliptic curve groups in actual implementation, the computational
requirement of our scheme can further be reduced. Therefore, our scheme which
reduces the number of communication rounds by 40% helps reducing battery
power consumption as well as improving the performance of actual implementa-
tion significantly.

While we examined the security of the proposed protocol, a formal treatment
of the system is necessary. Currently, there is no formal security model proposed
for PTAKE. Therefore, our future work is to formally define and validate the
security of PTAKE and provide formal proofs with various desirable security
features captured. Examples of desirable features are security against known-
key attacks3, forward secrecy4, etc.
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