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Abstract. In this paper, we present a new approach called Secure Virtual 
Execution Environment (SVEE) which enables users to "try out" untrusted 
software without the fear of damaging the system in any manner. A key feature 
of SVEE is that it implements the OS isolation by executing untrusted code in a 
hosted virtual machine. Another key feature is that SVEE faithfully reproduces 
the behavior of applications, as if they were running natively on the underlying 
host OS. SVEE also provides a convenient way to compare the changes within 
SVEE and host OS. Referring to these comparison results, users can make a 
decision to commit these changes or not. With these powerful characteristics, 
SVEE supports a wide range of tasks, including the study of malicious code, 
controlled execution of untrusted software and so on. This paper focuses on the 
execution model of SVEE and the security evaluation for this model. 

Keywords: Virtual execution environment, isolated execution, execution 
model, virtual machine. 

1   Introduction 

On PC platforms, users often download and execute freeware/shareware. To benefit 
from the rich software resource on the Internet, most of the PC users seem to be 
willing to take the risk of being compromised by untrusted code.  

To enhance the host security, some host-based security mechanisms have been 
deployed, such as access control, virus detection and so on. But the access control 
mechanism will be easily bypassed by authorized but malicious code. The virus 
detection technology has been introduced to prevent the computer system from the 
widely prevalent malware, yet such technology does not work well for the unknown 
malware. A more promising approach for defending against unknown malicious code 
is based on sandboxing. However, the policies which the commodity sandboxing tools 
incorporate trend to be too restrictive to execute most useful applications. 
Consequently, the PC users, often not a computer expert, will prefer functionality to 
security. Thus, isolation execution, an intrusion-tolerant mechanism, has been applied 
to allow untrusted programs to run while shields the rest of the system from their 
effects. But on PC platforms, existing isolation solutions fail to achieve both the OS 
isolation and the execution environment reproduction (reproducing the execution 
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environment of the trusted environment in the untrusted environment), i.e., they 
cannot provide security against potential privileged malware without negating the 
functionality benefits of benign programs. 

In this paper, we propose a new execution model called Secure Virtual Execution 
Environment (SVEE) for executing untrusted code. In this execution model, all the 
untrusted code should be executed within a hosted virtual machine (SVEE VM) while 
other programs run in host OS. This feature guarantees the OS isolation and provides 
security against the privileged malicious code. The most desirable feature of SVEE 
VM is that it boots not from a newly installed OS image but just from the underlying 
host OS, so the execution environment reproduction is achieved. This is significantly 
different from the existing VM-based security approaches. In this local-booted OS, no 
privileged operations will be restricted. Thus, the behavior of untrusted code is 
reproduced accurately. To retain the acceptable execution results within SVEE VM, 
SVEE also provides an approach for users to track and compare the changes within 
SVEE VM and host OS. Using these comparison results for reference, users can make 
a choice between committing these execution effects and discarding them. 

The rest of the paper is organized as follows. Section 2 covers the execution model 
details of SVEE and discusses its implementation architecture. Section 3 proposes a 
qualitative security evaluation for SVEE. Section 4 shows the current implementation 
status and provides an evaluation of the functionality as well as the performance of 
our approach, then presents our plans for future work. In Section 5, we review 
previous works on isolated execution technology. Section 6 concludes this paper. 

2   Execution Model of SVEE 

As discussed in the previous section, the goal of SVEE is to accomplish three 
capabilities: OS isolation, execution environment reproduction and execution effects 
committing. The capability of OS isolation is a prerequisite to make the trusted 
environment be resistant to the attacks from kernel-mode malicious code. Execution 
environment reproduction is necessary to reproduce the behavior of untrusted code 
because the behavior of an application is usually determined by the execution 
environment, especially the contents of the file system. Besides, the execution 
environment reproduction should not be implemented via duplicating the complete 
resource of trusted environment, viz. reinstalling the OS and software in the untrusted 
environment. This is because few PC users can afford such deployment overhead 
from the usability’s standpoint. From the security pointer of view, the resource to be 
reproduced must be configurable for users to avoid uncovering the security-sensitive 
or privacy-sensitive files. In addition, for many of the applications running within 
untrusted environment, a user would like to retain the results of activities that are 
acceptable. So the execution mode of SVEE should provide an approach to track and 
commit the execution results of the isolated programs.  

To achieve OS isolation, the execution model of SVEE must introduce the virtual 
machine monitor as the software layer to close off the trusted environment and the 
untrusted ones. According to the definition of  Goldberg [1], a virtual machine 
monitor (VMM) is software for a computer system that creates efficient, isolated 
programming environments that are "duplicates", which provide users with the 
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appearance of direct access to the real machine environment. These duplicates are 
referred to as virtual machines. There are two different types of VMMs that can serve 
as a virtualization environment: Type I VMM and Type II VMM. A Type I VMM just 
runs above a bare computer hardware platform. It tends to be implemented as a 
lightweight OS with the virtualization capabilities. A Type II VMM is executed as an 
application. The OS that manages the real computer hardware is called the "host OS". 
Every OS that runs in the Type II virtual machine is called a "guest OS ". In a Type II 
VMM, the host OS provides resource allocation and a standard execution 
environment to each guest OS. 

Considering the performance of the trusted environment, Type II VMM wins an 
advantage over Type I VMM [1]. For Type I VMM, all OSes run above the virtual 
machine. So every OS, including the one serving as the trusted environment, cannot 
but suffer the performance penalties due to virtualization [2]. But for Type II VMM, 
the trusted environment, viz. the host OS, suffers no performance overhead. In 
addition, unlike mainframes that are configured and managed by experienced system 
administrators, desktop and workstation PC’s are often preinstalled with a standard 
OS and managed by the end-user. Ignoring the difficulty of proposing a practical and 
seamless migration approach for PC platforms, it will maybe take several years to 
migrate all of them to the Type I VMM. It also might be unacceptable for a PC user to 
completely replace an existing OS with a Type I VMM. In contrast, Type II VMM 
allows co-existing with the preinstalled host OS and programs. 

Thus, taking into account that PC platform is the prime concern for SVEE, as well 
as the significant predominance of Type II VMM on PC platforms, we select Type II 
VMM over Type I VMM. 

The execution model is illustrated in Fig. 1. If users wish to execute any untrusted 
program, they should firstly configure which resource will be reproduced and then 
boot the local-booted virtual machine (SVEE VM) created by SVEE VMM. From 
then on, these two OSes, the host OS above the bare computer hardware and the local-
booted OS above SVEE VM, will run concurrently. SVEE VMM catches the 
sensitive instruction traps and emulates their semantics to implement a Type II VMM. 
In this execution model, The SVEE VM serves as the untrusted execution 
environment wherein all untrusted programs are bounded. The local-booted OS above 
this virtual machine just is the virtualized instance of the underling host OS. In the 
local-booted OS, the behavior of untrusted programs is reproduced accurately while 
isolating their effects from the host OS which is the execution environment of the 
trusted applications.  

After SVEE ending, the user may make a choice among discarding the 
modification effects within SVEE, reserving them and committing them. In the first 
case, the contents of SVEE VM will be destroyed, which means that we simply delete 
all the reproduced resource and leave the contents of the file system in host OS "as 
is". In the second case, we reserve all the reproduced resource, so we can start SVEE 
VM using them next time or access them at any time. And in the third case, the 
contents of the reproduced resource need to be merged into the host OS.  

When merging the reproduced resource and the native file system of host OS, 
conflicting changes may have taken place within and outside the SVEE VM. For 
example, the same file may have been modified both in host OS and in SVEE VM. In 
such cases, it is unclear what the desired merging result should be. Thus, firstly we  
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Fig. 1. Execution Model of SVEE 

must identify commit criteria that ensure the consistency of the file systems in host 
OS when implementing the commit operation. We use the commit criteria described 
in [3]. If the commit criteria are not satisfied, then manual reconciliation of conflicting 
actions that took place inside the SVEE VM and outside will be needed. On this 
condition, SVEE will provide the user the details about such conflict. Referring to this 
information, the user can make a choice among optional operation: 

Abort, just discards the results of SVEE VM execution.  
Retry, that means discarding the results of SVEE VM execution, restarting a new 

SVEE VM, redoing the actions that were just performed, and then trying to commit 
again. Usually it often has a high probability to solve the conflicts.  

Resolve conflicts, in this case, it is the user’s duty to commit the contents 
manually. 

To achieve the capabilities discussed previously, we introduce the local-booted 
technology implement SVEE. As shown in Fig. 2, SVEE is composed of three key 
components: SVEE Virtual Machine Monitor (SVEE VM), Virtual Simple Disk and 
Tracking Manager. 

SVEE Virtual Machine Monitor (SVEE VMM): it’s a novel local-booted virtual 
machine monitor which creates the local-booted virtual machine (SVEE VM). The 
local-booted OS, wherein untrusted programs run, just boots within this virtual 
machine. With the strong isolation capability of this system virtual machine, we 
achieve the features of OS Isolation and OS & Application Transparency 
effectively. With the local-booting technology, SVEE implements partial one-way 
isolation [4]. One-way isolation makes the host environment visible within the SVEE 
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Fig. 2. SVEE Architecture 

VM. Our partial one-way isolation means the environment visible within SVEE VM 
is a branch of host OS, and this branch was created just at the time SVEE VM started. 
In this sense, execution environment reproduction is achieved. 

Virtual Simple Disk Based on Volume Snapshot. The key challenge to implement 
the local-booting technology is how to reuse the system volume, wherein OS is 
installed. While SVEE VM is running, the host OS is also modifying the same system 
volume. However, the local-booted OS cannot be aware of these modifications and 
vice versa. So they will crash because of the content inconsistency between the 
memory and the disks. SVEE resolves these conflicts by introducing the virtual 
simple disk based on volume snapshot. Volume snapshot introduces Copy-on-Write 
mechanism to shield the modification effects of host O from SVEE VM and vice 
versa. Virtual simple disk acts as the virtual storage device to export the volume 
snapshots to SVEE VM. Before exporting volume snapshots, the user can remove the 
files or folders he does not want to make visible inside SVEE VM. This characteristic 
makes our execution environment reproduction more configurable, i.e., the processes 
in SVEE VM are given access to only the volumes and files exported to SVEE VM, 
but not the whole file system.  

From the perspective of implementation, the snapshot of an entire disk device is 
more intuitive than a volume snapshot. However for SVEE, such a virtual simple disk 
has more benefits listed as follows: 

Can configure the volumes to export. If SVEE uses the disk snapshots directly, all the 
volumes in this disk will be visible inside SVEE VM (this is usually not the users’ 
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desire). While in our approach, only the volumes the users want to expose will be 
accessible within SVEE VM. 
 

Volume format transparent. There are several types of volumes in host OS, including 
single partition volume and multi-partition volumes, e.g., mirrors, stripes and RAID-
5. So if the disk to export contains any multi-partition volume, we must export all 
other disk which this volume depends on. But our approach avoids this trouble. 
Convenient to manipulate the data in snapshots. A volume is the basic unit to mount 
for the file system. Via mounting volume snapshots, we can expediently access their 
files in the host OS. 

Tracking Manager. To support monitoring and committing changes, change tracking 
filter drivers are deployed within both local-booted OS and host OS. The tracking 
manger is responsible for collecting the results and comparing them to generate 
committing references for users. 

As a summary, the key component of SVEE is the SVEE VM, a system virtual 
machine, whose effects are to be shielded from the host OS. Any untrusted code or 
the programs that trend to be attacked will be bounded inside SVEE, and share the 
same consistent OS. One or more such SVEE VMs can be active on the same host 
OS. Moreover, SVEE also provides a convenient way for users to compare the 
changes within local-booted OS and host OS. Using these comparison results for 
reference, users can make a decision to commit these changes or not. 

3   Security Evaluation of SVEE 

Section 2 has covered the execution model details of SVEE and its advantages under 
PC platforms. In this section, we evaluate the security of SVEE qualitatively. Thus, 
the correlative definitions are listed as follows: 

S = { p | p is a program} 
SU = { p | p∈S is an untrusted program}, ST = { p | p∈S is a trusted program} =  

S - ST 
SM = { p | p∈SU and contains malicious code}, SI = SU – SM 
SV = { p | p∈ST and contains vulnerable code}, SS = ST – SV 
VMM and OSes are two types of special programs, for they are programs as well 

as execution environments.  
Senv = { p | p∈S and runs within env}, env∈ENV = {OS, local-booted OS, host 

OS}, OS refers to a conventional multiprogramming OS, local-booted OS and host OS 
are illustrated in Fig. 2. 

P (p), p∈Senv: : The probability that p will cause a security violation within env to 
occur. 

PM (p), p∈Senv: : The probability that program p within env contains malicious 
code. 

PV (p), p∈Senv: : The probability that a given program p contains vulnerable code 
which will cause a security violation to occur.  

Size (p): the number of lines of a program p in source code, this is a measurement 
for a software scale. 
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Based on these definitions, we would get the following conclusions: 

S = ST
∪SU = (SV

∪SS ) ∪(SM
∪SI) (1) 

P (p) = PM (p) + PV (p), and ( ) ( ) ( ) 1
env env envp p p

p p p
∈ ∈ ∈
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∈ ∈
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As showed in formula (3), the probability of system failure tends to increase with 
the load on the env (i.e., the number of different requests issued, the variety of 
functions provided, the frequency of requests, etc.).  

Noted "secure coder" Wietse Venema estimates that there is roughly one security 
bug per 1000 lines in software source code. This conclusion assumed the complexities 
of all the programs to be analyzed are approximately same. So we can deduce that the 
vulnerability of a program p is proportion to Size(p). Thus, PV (p) can be calculated 
as: 
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i env
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For a conventional multiprogramming OS, we can calculate P (SOS) by: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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OS OS OS OS OS OS OS OS OS
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                              P S P S P S

∪
 (5) 

In formula (5), P (SS
OS) is ignored because the programs in SS

OS are trusted and 
without any vulnerability. Then, with these basic conclusions, we can evaluate the 
security of the isolation mechanism for hosted SVEE architecture as follows. 

For the local-booted OS within SVEE and underlying host OS: 

( ) ( ) ( ) ( )+U M I
Local-Booted OS Local-Booted OS Local-Booted OS Local-Booted OSP S P S P S P S= =  (6) 

( ) ( ) ( ) ( ) ( )+ =T V S V
Host OS Host OS Host OS Host OS Host OSP S P S P S P S P S= =  (7) 

Considering that within host OS, only the SVEE VMM, network adapter driver and 
network protocol components of OS will exchange data with other environments, we 
can deduce the following formula: 

{ },

( ) ( ) ( )

SVEE VMM Network Components

SVEE VMM Network Components Size OS

≅ ⊂ <<

+ <<

V T T
Host OS Host OS OS Host OS OSS   , S S  and  |S | |S |

Size  Size  
 (8) 

Based on formula (3), (4), (7) and (8), inequality (9) is reached: 

( ) ( ) ( ) ( )SVEE VMM P Network Components≅ + <<Host OS OSP S P   P S  (9) 
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Since SVEE VMM, a Type II VMM, tends to be shorter, simpler, and easier to 
debug than conventional multiprogramming OSes, even when SSVEE VMM = SOS, the 
VMM is less error-prone. For example, since the VMM is defined by the hardware 
specifications of the real machine, the field engineer's hardware diagnostic software 
can be used to checkout the correctness of the VMM.  

For all untrusted programs run within SVEE VM, and SVEE is particularly 
concerned about the host OS security, we can define the probability of a program p on 
one SVEE VM violating the security of another concurrent program on host OS as: 

( | | ) ( )

( ) ( ) ( ) ( )

VMM Host OS

VMM Host OS

+ =

× × +
Host OSLocal-Booted OS

Local-Booted OS Host OS

P S  P S

                     P S P P  P S
 (10) 

P (Slocal-booted OS |VMM | host OS) is the probability of the simultaneous security 
failure of local-booted OS, VMM and host OS. If a single OS's security fails, the 
VMM isolates this failure from the other virtual machines. If the VMM'S security 
fails, the malicious code will have to break the protection of host OS. But, if 
functioning correctly, malicious code within local-booted OS will not take advantage 
of the security breach. This assumes that the designers of the individual OSes are not 
in collusion with malicious users. This seems to be a reasonable hypothesis. 

Based on the formulas of (3), (9) and |{VMM}|=|{host OS}|=1 << |SOS|, we arrive 
at the following conclusion: 

( | | ) ( )

( ) ( ) ( ) ( ) ( )

VMM Host OS

VMM Host OS

+ =

× × + <<
Local-Booted OS Host OS

Local-Booted OS Host OS OS

P S  P S

             P S P P  P S P S
 (11) 

As a summary, based on the inequality (11), the conclusion that the isolation 
architecture of SVEE improves the security of host OS observably can be reached. 

4   Status and Future Work 

SVEE has been firstly implemented on Windows with Intel x86 processors because of 
the prevalence of Windows and Intel processors under PC platforms. A detailed 
description of SVEE implementation is beyond the scope of this paper. Instead, the 
framework of the three key components in SVEE is outlined in this section. 

It’s well-known that Intel x86 processor is not virtualizable [5]. Ignoring the legacy 
"real" and "virtual 8086" modes of x86, even the more recently architected 32- and 
64-bit protected modes are not classically virtualizable for its visibility of privileged 
state and lack of traps when privileged instructions run at user-level. To address this 
problem, we have come up with a set of unique techniques that we call ISDT 
(Instruction Scan and Dynamic Translation) technology, which is composed of two 
components: Code Scanner (CS) and Code Patcher (CP). Before executing any ring 0 
code, CS scans it recursively to discover problematic instructions. CP then performs 
in-situ patching, i.e. replace the instruction with a jump to hypervisor memory where 
an integrated code generator has placed a more suitable implementation. In reality, 
this is a very complex task as there are lots of odd situations to be discovered and 
handled correctly. 
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We implement the volume snapshot using the Windows volume filter driver. This 
driver creates two types of device objects, one is a volume filter device object just 
located above the original volume to filter all I/O Request Package (IRP) sent to it and 
execute the COW operations, and the other is a volume snapshot device object which 
exports all general volume interfaces to provide a way to access volume snapshots. 

To support change committing, we must track all the modification made within 
SVEE VM and host OS. For Windows, besides file changes, the registry changes are 
also pivotal. Our approach accomplishes file change tracking as a file system filter 
driver, and adopts a Native API interceptor to monitor the registry modification. On 
termination of SVEE, tracking manager collects the change results generated by 
change tracking filter driver and registry monitor, and compares them to provider 
committing reference for uses. 

 

Fig. 3. Screenshot of a Running SVEE 

Fig. 3 is a screenshot of a running SVEE VM showed in the window with a title of 
Secure Virtual Execution Environment. The resolution of the local-booted Windows 
within SVEE VM is 1024x768 while the resolution of host Windows is 800x600, so 
the icon arrangement within its desktop differs from that of host Windows. As 
showed in Fig. 3, the programs of Explorer and MediaPlayer are running in this local-
booted Windows. Compared the file system volumes showed in the Explorer 
programs running within local-booted Windows and outside, we can find that only the 
volumes C: and D: are exported to it. This just brings forth the SVEE’s capability of 
configurable execution environment reproduction: the resource to be reproduced to 
SVEE VM can be configurable for users. In the Explorer of host Windows, volume 
K: and L: are the relevant snapshots of C: and D:. When local-booted Windows is 
running, no programs except SVEE VMM on host Windows can access these 
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snapshots which compose the virtual simple disk of SVEE VM. After local-booted 
Windows ends, SVEE will help users to access its file system contents for execution 
effects committing. 

We have tested the basic functions of SVEE VMM, including instruction set and 
hardware virtualization. Instruction set virtualization is verified by the QEMU’s test-
i386 tool, which we have ported to Windows. This tool tests all the x86 user-mode 
instructions, including SSE, MMX and VM86 instructions. The results show that the 
execution results of all the instructions are equivalent with those in Host Windows. In 
addition, we ran PassMark on local-booted Windows. All the virtual hardware devices 
works perfectly well, including IDE disk, CD-ROM, network card, display adapter 
and so forth. 

For a desktop-oriented workload, we ran Everest Ultimate 2006 both natively and 
in a local-booted Windows. Everest Ultimate is a synthetic suite of microbenchmarks 
intended to isolate various aspects of workstation performance. Since user-level 
computation is almost not taxing for VMMs, we expect local-booted Windows runs to 
score close to native. Fig. 4 confirms this expectation, showing a slowdown over 
native of 0.41-4.18%, with a 1.75% average slowdown for SVEE VMM. 

 

Fig. 4. Performance Comparison between host OS and SVEE VM 

To improve the usability and performance of SVEE, we are currently improving 
the memory management mechanism of SVEE VMM to share the memory pages 
between SVEE VM and host OS. Multiprocessor virtualization capability is also to be 
added to SVEE VMM to support Multiprocessor-Specialized host OS version. In 
addition, we are integrating some intrusion detection mechanisms into SVEE at the 
virtual hardware layer. To make SVEE VM support the multimedia programs such as 
3D games, we plan to reimplement the graphic virtualization mechanism referring to 
the approach proposed by H. Andres Lagar-Cavilla, et al [6]. Finally, we will 
investigate the automated change committing technology for SVEE. 
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5   Related Work 

Sandbox. A sandbox is an environment in which the actions of a process are restricted 
according to a security policy. Sandboxing based approaches involve observing a 
program’s behavior and blocking actions that may compromise the system’s security. 
Janus [7] and Chakravyuha [8] implement sandboxing using kernel interposition 
mechanism. MAPbox [9] introduces a sandboxing mechanism with the aim at making 
the sandbox more configurable and usable via providing a template for sandbox 
policies based on a classification of application behaviors. Safe Virtual Execution 
(SVE) [10] implements sandboxing using software dynamic translation, a technology 
for modifying binaries at runtime. Systrace [11] proposes a sandboxing system that 
notifies the user about all the system calls that an program tries to invoke and then 
generates a policy for the program according to the response from the user.  

However, use of sandboxing approaches in practice has been hampered by the 
difficulty of policy selection: determining resource access rights that would allow the 
code to execute successfully without compromising system security. Sandboxing 
tools often adopt highly restrictive policies that preclude execution of most useful 
applications. So users usually choose functionality over security, i.e., executing 
untrusted code outside such sandboxing tools, exposing themselves to unbounded 
damage if this code turned out to be malicious. 
 

Isolation Technology within Mono-OS. Isolated execution has previously been 
studied by researchers in the context of Java applets [12, 13]. Compared with general 
applications, such applets do not make much access to system resources. So the 
approach used by applets often relied on executing these untrusted applets on a 
"remote playground", i.e., an isolated computer. However, most of the desktop 
applications will usually require access to more resources such as the file system on 
the user’s computer. To run such applications on a remote playground, the complete 
execution environment on the user’s computer, especially the entire file system 
contents, should be duplicated to the remote playground. 

Literature [4] is the first approach to present a systematic development of the 
concept of one-way isolation as an effective means to isolate the effects of running 
processes from the point they are compromised. They developed protocols for 
realizing one-way isolation in the context of databases and file systems. However, 
they did not present an implementation of their approach. As a result, they do not 
consider the research challenges that arise due to the nature of COTS applications and 
commodity OSes.  

Alcatraz [14] and its improved version [3], Security Execution Environment (SEE), 
proposes its improved version with the name of. A key property of SEE is that it 
reproduces the behavior of applications, as if they were running natively on the 
underlying host OS. But this approach does not achieve OS isolation, so such 
protection mechanism can be bypassed by kernel-mode malicious code. And in SEE, 
a number of privileged operations, such as mounting file systems, and 
loading/unloading modules are not permitted. 

All these approaches suffer from the same problem: they can be turned off if 
intruders compromise the operating system and gain system privileges [15]. The file 
protection they provide is thus less effective in a compromised environment. 
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Isolation Based on Virtual Machine. Covirt [16] proposes that most of applications 
may be run inside virtual machine instead of host machines. User-mode VMs have 
been proposed for the Linux OS [17]. All the above approaches suffer from the 
difficulty of environment reproduction. 

Denali [18, 19] is another virtual machine based approach that runs untrusted 
distributed server applications. Denali focuses on supporting lightweight VMs, 
relying on modifications to the virtual instruction set exposed to the guest OS and 
thus requiring modifications to the guest OS. In contrast, we are focusing on heavier 
weight VMs and make no OS modifications. 

VMWare ESX Server provides an isolation approach for server platform with a 
similar objective to ours. XEN [20] and L4-based virtual machine [21] also 
implement isolated virtual execution environments. But all of these three 
environments are just located above computer hardware in form of Type I VMM. So 
as discussed in section 2, they are not fit for PC platforms because of their drawbacks 
caused by Type I VMM architecture. 

The COW/COW2 mechanism of QEMU [22], an open source emulator, can only 
isolate the Guest OS’s modifications to file system from host OS. But modifications 
made by host OS will cause the conflicts between the disk and file system content in 
Guest OS and crash it. Thus QEMU failed to achieve the environment reproduction. 
Besides, its poor performance prevents it from server as an effective virtual 
environment. KVM [23], a Kernel-based Virtual Machine based on QEMU, 
significantly improves the performance. But it also cannot provide the capability of 
environment reproduction. Besides, it must modify the host OS and rely on the 
hardware virtualization technology, such as Intel VT and AMD-V. 

6   Conclusions 

In this paper, we proposed a new execution model called SVEE for executing 
untrusted code safely and shown the security evaluation for this model. SVEE is 
versatile enough to coexist with the existing OS and programs. The most considerable 
benefit of SVEE is that it provides the capability of OS isolation while accomplishing 
the configurable execution environment reproduction. SVEE also provides a 
convenient way for users to track the changes made within the SVEE VM, viz. the 
untrusted execution environment. These changes can be discarded if the user does not 
accept them. Otherwise, the changes can be committed so as to become visible within 
host OS. 

SVEE accomplishes all the capabilities discussed in section 2: OS isolation, 
configurable execution environment reproduction and execution effects committing. 

Consequently, SVEE provides security against potential malicious code without 
negating the functionality benefits provided by benign programs. With these 
capabilities, SVEE supports a wide range of tasks, including the study of malicious 
code, controlled execution of untrusted software, experimentation with software 
configuration changes, testing of software patches and so on. 
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