
S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 398–411, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Approach for Untrusted Code Execution

Yan Wen1, Jinjing Zhao2, and Huaimin Wang1

1 School of Computer, National University of Defense Technology,
Changsha, China, 410073

wenyan@nudt.edu.cn, whm_w@163.com
2 Beijing Institute of System Engineering,

Beijing, China, 100101
misszhaojinjing@sina.com.cn

Abstract. In this paper, we present a new approach called Secure Virtual
Execution Environment (SVEE) which enables users to "try out" untrusted
software without the fear of damaging the system in any manner. A key feature
of SVEE is that it implements the OS isolation by executing untrusted code in a
hosted virtual machine. Another key feature is that SVEE faithfully reproduces
the behavior of applications, as if they were running natively on the underlying
host OS. SVEE also provides a convenient way to compare the changes within
SVEE and host OS. Referring to these comparison results, users can make a
decision to commit these changes or not. With these powerful characteristics,
SVEE supports a wide range of tasks, including the study of malicious code,
controlled execution of untrusted software and so on. This paper focuses on the
execution model of SVEE and the security evaluation for this model.

Keywords: Virtual execution environment, isolated execution, execution
model, virtual machine.

1 Introduction

On PC platforms, users often download and execute freeware/shareware. To benefit
from the rich software resource on the Internet, most of the PC users seem to be
willing to take the risk of being compromised by untrusted code.

To enhance the host security, some host-based security mechanisms have been
deployed, such as access control, virus detection and so on. But the access control
mechanism will be easily bypassed by authorized but malicious code. The virus
detection technology has been introduced to prevent the computer system from the
widely prevalent malware, yet such technology does not work well for the unknown
malware. A more promising approach for defending against unknown malicious code
is based on sandboxing. However, the policies which the commodity sandboxing tools
incorporate trend to be too restrictive to execute most useful applications.
Consequently, the PC users, often not a computer expert, will prefer functionality to
security. Thus, isolation execution, an intrusion-tolerant mechanism, has been applied
to allow untrusted programs to run while shields the rest of the system from their
effects. But on PC platforms, existing isolation solutions fail to achieve both the OS
isolation and the execution environment reproduction (reproducing the execution

 A Novel Approach for Untrusted Code Execution 399

environment of the trusted environment in the untrusted environment), i.e., they
cannot provide security against potential privileged malware without negating the
functionality benefits of benign programs.

In this paper, we propose a new execution model called Secure Virtual Execution
Environment (SVEE) for executing untrusted code. In this execution model, all the
untrusted code should be executed within a hosted virtual machine (SVEE VM) while
other programs run in host OS. This feature guarantees the OS isolation and provides
security against the privileged malicious code. The most desirable feature of SVEE
VM is that it boots not from a newly installed OS image but just from the underlying
host OS, so the execution environment reproduction is achieved. This is significantly
different from the existing VM-based security approaches. In this local-booted OS, no
privileged operations will be restricted. Thus, the behavior of untrusted code is
reproduced accurately. To retain the acceptable execution results within SVEE VM,
SVEE also provides an approach for users to track and compare the changes within
SVEE VM and host OS. Using these comparison results for reference, users can make
a choice between committing these execution effects and discarding them.

The rest of the paper is organized as follows. Section 2 covers the execution model
details of SVEE and discusses its implementation architecture. Section 3 proposes a
qualitative security evaluation for SVEE. Section 4 shows the current implementation
status and provides an evaluation of the functionality as well as the performance of
our approach, then presents our plans for future work. In Section 5, we review
previous works on isolated execution technology. Section 6 concludes this paper.

2 Execution Model of SVEE

As discussed in the previous section, the goal of SVEE is to accomplish three
capabilities: OS isolation, execution environment reproduction and execution effects
committing. The capability of OS isolation is a prerequisite to make the trusted
environment be resistant to the attacks from kernel-mode malicious code. Execution
environment reproduction is necessary to reproduce the behavior of untrusted code
because the behavior of an application is usually determined by the execution
environment, especially the contents of the file system. Besides, the execution
environment reproduction should not be implemented via duplicating the complete
resource of trusted environment, viz. reinstalling the OS and software in the untrusted
environment. This is because few PC users can afford such deployment overhead
from the usability’s standpoint. From the security pointer of view, the resource to be
reproduced must be configurable for users to avoid uncovering the security-sensitive
or privacy-sensitive files. In addition, for many of the applications running within
untrusted environment, a user would like to retain the results of activities that are
acceptable. So the execution mode of SVEE should provide an approach to track and
commit the execution results of the isolated programs.

To achieve OS isolation, the execution model of SVEE must introduce the virtual
machine monitor as the software layer to close off the trusted environment and the
untrusted ones. According to the definition of Goldberg [1], a virtual machine
monitor (VMM) is software for a computer system that creates efficient, isolated
programming environments that are "duplicates", which provide users with the

400 Y. Wen, J. Zhao, and H. Wang

appearance of direct access to the real machine environment. These duplicates are
referred to as virtual machines. There are two different types of VMMs that can serve
as a virtualization environment: Type I VMM and Type II VMM. A Type I VMM just
runs above a bare computer hardware platform. It tends to be implemented as a
lightweight OS with the virtualization capabilities. A Type II VMM is executed as an
application. The OS that manages the real computer hardware is called the "host OS".
Every OS that runs in the Type II virtual machine is called a "guest OS ". In a Type II
VMM, the host OS provides resource allocation and a standard execution
environment to each guest OS.

Considering the performance of the trusted environment, Type II VMM wins an
advantage over Type I VMM [1]. For Type I VMM, all OSes run above the virtual
machine. So every OS, including the one serving as the trusted environment, cannot
but suffer the performance penalties due to virtualization [2]. But for Type II VMM,
the trusted environment, viz. the host OS, suffers no performance overhead. In
addition, unlike mainframes that are configured and managed by experienced system
administrators, desktop and workstation PC’s are often preinstalled with a standard
OS and managed by the end-user. Ignoring the difficulty of proposing a practical and
seamless migration approach for PC platforms, it will maybe take several years to
migrate all of them to the Type I VMM. It also might be unacceptable for a PC user to
completely replace an existing OS with a Type I VMM. In contrast, Type II VMM
allows co-existing with the preinstalled host OS and programs.

Thus, taking into account that PC platform is the prime concern for SVEE, as well
as the significant predominance of Type II VMM on PC platforms, we select Type II
VMM over Type I VMM.

The execution model is illustrated in Fig. 1. If users wish to execute any untrusted
program, they should firstly configure which resource will be reproduced and then
boot the local-booted virtual machine (SVEE VM) created by SVEE VMM. From
then on, these two OSes, the host OS above the bare computer hardware and the local-
booted OS above SVEE VM, will run concurrently. SVEE VMM catches the
sensitive instruction traps and emulates their semantics to implement a Type II VMM.
In this execution model, The SVEE VM serves as the untrusted execution
environment wherein all untrusted programs are bounded. The local-booted OS above
this virtual machine just is the virtualized instance of the underling host OS. In the
local-booted OS, the behavior of untrusted programs is reproduced accurately while
isolating their effects from the host OS which is the execution environment of the
trusted applications.

After SVEE ending, the user may make a choice among discarding the
modification effects within SVEE, reserving them and committing them. In the first
case, the contents of SVEE VM will be destroyed, which means that we simply delete
all the reproduced resource and leave the contents of the file system in host OS "as
is". In the second case, we reserve all the reproduced resource, so we can start SVEE
VM using them next time or access them at any time. And in the third case, the
contents of the reproduced resource need to be merged into the host OS.

When merging the reproduced resource and the native file system of host OS,
conflicting changes may have taken place within and outside the SVEE VM. For
example, the same file may have been modified both in host OS and in SVEE VM. In
such cases, it is unclear what the desired merging result should be. Thus, firstly we

 A Novel Approach for Untrusted Code Execution 401

Fig. 1. Execution Model of SVEE

must identify commit criteria that ensure the consistency of the file systems in host
OS when implementing the commit operation. We use the commit criteria described
in [3]. If the commit criteria are not satisfied, then manual reconciliation of conflicting
actions that took place inside the SVEE VM and outside will be needed. On this
condition, SVEE will provide the user the details about such conflict. Referring to this
information, the user can make a choice among optional operation:

Abort, just discards the results of SVEE VM execution.
Retry, that means discarding the results of SVEE VM execution, restarting a new

SVEE VM, redoing the actions that were just performed, and then trying to commit
again. Usually it often has a high probability to solve the conflicts.

Resolve conflicts, in this case, it is the user’s duty to commit the contents
manually.

To achieve the capabilities discussed previously, we introduce the local-booted
technology implement SVEE. As shown in Fig. 2, SVEE is composed of three key
components: SVEE Virtual Machine Monitor (SVEE VM), Virtual Simple Disk and
Tracking Manager.

SVEE Virtual Machine Monitor (SVEE VMM): it’s a novel local-booted virtual
machine monitor which creates the local-booted virtual machine (SVEE VM). The
local-booted OS, wherein untrusted programs run, just boots within this virtual
machine. With the strong isolation capability of this system virtual machine, we
achieve the features of OS Isolation and OS & Application Transparency
effectively. With the local-booting technology, SVEE implements partial one-way
isolation [4]. One-way isolation makes the host environment visible within the SVEE

402 Y. Wen, J. Zhao, and H. Wang

Fig. 2. SVEE Architecture

VM. Our partial one-way isolation means the environment visible within SVEE VM
is a branch of host OS, and this branch was created just at the time SVEE VM started.
In this sense, execution environment reproduction is achieved.

Virtual Simple Disk Based on Volume Snapshot. The key challenge to implement
the local-booting technology is how to reuse the system volume, wherein OS is
installed. While SVEE VM is running, the host OS is also modifying the same system
volume. However, the local-booted OS cannot be aware of these modifications and
vice versa. So they will crash because of the content inconsistency between the
memory and the disks. SVEE resolves these conflicts by introducing the virtual
simple disk based on volume snapshot. Volume snapshot introduces Copy-on-Write
mechanism to shield the modification effects of host O from SVEE VM and vice
versa. Virtual simple disk acts as the virtual storage device to export the volume
snapshots to SVEE VM. Before exporting volume snapshots, the user can remove the
files or folders he does not want to make visible inside SVEE VM. This characteristic
makes our execution environment reproduction more configurable, i.e., the processes
in SVEE VM are given access to only the volumes and files exported to SVEE VM,
but not the whole file system.

From the perspective of implementation, the snapshot of an entire disk device is
more intuitive than a volume snapshot. However for SVEE, such a virtual simple disk
has more benefits listed as follows:

Can configure the volumes to export. If SVEE uses the disk snapshots directly, all the
volumes in this disk will be visible inside SVEE VM (this is usually not the users’

 A Novel Approach for Untrusted Code Execution 403

desire). While in our approach, only the volumes the users want to expose will be
accessible within SVEE VM.

Volume format transparent. There are several types of volumes in host OS, including
single partition volume and multi-partition volumes, e.g., mirrors, stripes and RAID-
5. So if the disk to export contains any multi-partition volume, we must export all
other disk which this volume depends on. But our approach avoids this trouble.
Convenient to manipulate the data in snapshots. A volume is the basic unit to mount
for the file system. Via mounting volume snapshots, we can expediently access their
files in the host OS.

Tracking Manager. To support monitoring and committing changes, change tracking
filter drivers are deployed within both local-booted OS and host OS. The tracking
manger is responsible for collecting the results and comparing them to generate
committing references for users.

As a summary, the key component of SVEE is the SVEE VM, a system virtual
machine, whose effects are to be shielded from the host OS. Any untrusted code or
the programs that trend to be attacked will be bounded inside SVEE, and share the
same consistent OS. One or more such SVEE VMs can be active on the same host
OS. Moreover, SVEE also provides a convenient way for users to compare the
changes within local-booted OS and host OS. Using these comparison results for
reference, users can make a decision to commit these changes or not.

3 Security Evaluation of SVEE

Section 2 has covered the execution model details of SVEE and its advantages under
PC platforms. In this section, we evaluate the security of SVEE qualitatively. Thus,
the correlative definitions are listed as follows:

S = { p | p is a program}
SU = { p | p∈S is an untrusted program}, ST = { p | p∈S is a trusted program} =

S - ST
SM = { p | p∈SU and contains malicious code}, SI = SU – SM
SV = { p | p∈ST and contains vulnerable code}, SS = ST – SV
VMM and OSes are two types of special programs, for they are programs as well

as execution environments.
Senv = { p | p∈S and runs within env}, env∈ENV = {OS, local-booted OS, host

OS}, OS refers to a conventional multiprogramming OS, local-booted OS and host OS
are illustrated in Fig. 2.

P (p), p∈Senv: : The probability that p will cause a security violation within env to
occur.

PM (p), p∈Senv: : The probability that program p within env contains malicious
code.

PV (p), p∈Senv: : The probability that a given program p contains vulnerable code
which will cause a security violation to occur.

Size (p): the number of lines of a program p in source code, this is a measurement
for a software scale.

404 Y. Wen, J. Zhao, and H. Wang

Based on these definitions, we would get the following conclusions:

S = ST
∪SU = (SV

∪SS) ∪(SM
∪SI) (1)

P (p) = PM (p) + PV (p), and () () () 1
env env envp p p

p p p
∈ ∈ ∈

= + ≤∑ ∑ ∑M V
S S S

P P P (2)

() () () ()env env env env

env envp p

p p
∈ ∈

⊂∑ ∑' '' ' ''

S' S''

P S P S PP for S S= < = (3)

As showed in formula (3), the probability of system failure tends to increase with
the load on the env (i.e., the number of different requests issued, the variety of
functions provided, the frequency of requests, etc.).

Noted "secure coder" Wietse Venema estimates that there is roughly one security
bug per 1000 lines in software source code. This conclusion assumed the complexities
of all the programs to be analyzed are approximately same. So we can deduce that the
vulnerability of a program p is proportion to Size(p). Thus, PV (p) can be calculated
as:

()
()

()
,

i env

env
i

p

p
p p

p
α

∈

∈×
∑V

S

Size
P S

Size
= , α is a constant.

(4)

For a conventional multiprogramming OS, we can calculate P (SOS) by:

() () () () () () () ()

() () ()

+ + + +

= + +

T U T U V S M I
OS OS OS OS OS OS OS OS OS

V M I
OS OS OS

P S =P S S =P S P S =P S P S P S P S

 P S P S P S

∪
 (5)

In formula (5), P (SS
OS) is ignored because the programs in SS

OS are trusted and
without any vulnerability. Then, with these basic conclusions, we can evaluate the
security of the isolation mechanism for hosted SVEE architecture as follows.

For the local-booted OS within SVEE and underlying host OS:

() () () ()+U M I
Local-Booted OS Local-Booted OS Local-Booted OS Local-Booted OSP S P S P S P S= = (6)

() () () () ()+ =T V S V
Host OS Host OS Host OS Host OS Host OSP S P S P S P S P S= = (7)

Considering that within host OS, only the SVEE VMM, network adapter driver and
network protocol components of OS will exchange data with other environments, we
can deduce the following formula:

{ },

() () ()

SVEE VMM Network Components

SVEE VMM Network Components Size OS

≅ ⊂ <<

+ <<

V T T
Host OS Host OS OS Host OS OSS , S S and |S | |S |

Size Size
 (8)

Based on formula (3), (4), (7) and (8), inequality (9) is reached:

() () () ()SVEE VMM P Network Components≅ + <<Host OS OSP S P P S (9)

 A Novel Approach for Untrusted Code Execution 405

Since SVEE VMM, a Type II VMM, tends to be shorter, simpler, and easier to
debug than conventional multiprogramming OSes, even when SSVEE VMM = SOS, the
VMM is less error-prone. For example, since the VMM is defined by the hardware
specifications of the real machine, the field engineer's hardware diagnostic software
can be used to checkout the correctness of the VMM.

For all untrusted programs run within SVEE VM, and SVEE is particularly
concerned about the host OS security, we can define the probability of a program p on
one SVEE VM violating the security of another concurrent program on host OS as:

(| |) ()

() () () ()

VMM Host OS

VMM Host OS

+ =

× × +
Host OSLocal-Booted OS

Local-Booted OS Host OS

P S P S

 P S P P P S
 (10)

P (Slocal-booted OS |VMM | host OS) is the probability of the simultaneous security
failure of local-booted OS, VMM and host OS. If a single OS's security fails, the
VMM isolates this failure from the other virtual machines. If the VMM'S security
fails, the malicious code will have to break the protection of host OS. But, if
functioning correctly, malicious code within local-booted OS will not take advantage
of the security breach. This assumes that the designers of the individual OSes are not
in collusion with malicious users. This seems to be a reasonable hypothesis.

Based on the formulas of (3), (9) and |{VMM}|=|{host OS}|=1 << |SOS|, we arrive
at the following conclusion:

(| |) ()

() () () () ()

VMM Host OS

VMM Host OS

+ =

× × + <<
Local-Booted OS Host OS

Local-Booted OS Host OS OS

P S P S

 P S P P P S P S
 (11)

As a summary, based on the inequality (11), the conclusion that the isolation
architecture of SVEE improves the security of host OS observably can be reached.

4 Status and Future Work

SVEE has been firstly implemented on Windows with Intel x86 processors because of
the prevalence of Windows and Intel processors under PC platforms. A detailed
description of SVEE implementation is beyond the scope of this paper. Instead, the
framework of the three key components in SVEE is outlined in this section.

It’s well-known that Intel x86 processor is not virtualizable [5]. Ignoring the legacy
"real" and "virtual 8086" modes of x86, even the more recently architected 32- and
64-bit protected modes are not classically virtualizable for its visibility of privileged
state and lack of traps when privileged instructions run at user-level. To address this
problem, we have come up with a set of unique techniques that we call ISDT
(Instruction Scan and Dynamic Translation) technology, which is composed of two
components: Code Scanner (CS) and Code Patcher (CP). Before executing any ring 0
code, CS scans it recursively to discover problematic instructions. CP then performs
in-situ patching, i.e. replace the instruction with a jump to hypervisor memory where
an integrated code generator has placed a more suitable implementation. In reality,
this is a very complex task as there are lots of odd situations to be discovered and
handled correctly.

406 Y. Wen, J. Zhao, and H. Wang

We implement the volume snapshot using the Windows volume filter driver. This
driver creates two types of device objects, one is a volume filter device object just
located above the original volume to filter all I/O Request Package (IRP) sent to it and
execute the COW operations, and the other is a volume snapshot device object which
exports all general volume interfaces to provide a way to access volume snapshots.

To support change committing, we must track all the modification made within
SVEE VM and host OS. For Windows, besides file changes, the registry changes are
also pivotal. Our approach accomplishes file change tracking as a file system filter
driver, and adopts a Native API interceptor to monitor the registry modification. On
termination of SVEE, tracking manager collects the change results generated by
change tracking filter driver and registry monitor, and compares them to provider
committing reference for uses.

Fig. 3. Screenshot of a Running SVEE

Fig. 3 is a screenshot of a running SVEE VM showed in the window with a title of
Secure Virtual Execution Environment. The resolution of the local-booted Windows
within SVEE VM is 1024x768 while the resolution of host Windows is 800x600, so
the icon arrangement within its desktop differs from that of host Windows. As
showed in Fig. 3, the programs of Explorer and MediaPlayer are running in this local-
booted Windows. Compared the file system volumes showed in the Explorer
programs running within local-booted Windows and outside, we can find that only the
volumes C: and D: are exported to it. This just brings forth the SVEE’s capability of
configurable execution environment reproduction: the resource to be reproduced to
SVEE VM can be configurable for users. In the Explorer of host Windows, volume
K: and L: are the relevant snapshots of C: and D:. When local-booted Windows is
running, no programs except SVEE VMM on host Windows can access these

 A Novel Approach for Untrusted Code Execution 407

snapshots which compose the virtual simple disk of SVEE VM. After local-booted
Windows ends, SVEE will help users to access its file system contents for execution
effects committing.

We have tested the basic functions of SVEE VMM, including instruction set and
hardware virtualization. Instruction set virtualization is verified by the QEMU’s test-
i386 tool, which we have ported to Windows. This tool tests all the x86 user-mode
instructions, including SSE, MMX and VM86 instructions. The results show that the
execution results of all the instructions are equivalent with those in Host Windows. In
addition, we ran PassMark on local-booted Windows. All the virtual hardware devices
works perfectly well, including IDE disk, CD-ROM, network card, display adapter
and so forth.

For a desktop-oriented workload, we ran Everest Ultimate 2006 both natively and
in a local-booted Windows. Everest Ultimate is a synthetic suite of microbenchmarks
intended to isolate various aspects of workstation performance. Since user-level
computation is almost not taxing for VMMs, we expect local-booted Windows runs to
score close to native. Fig. 4 confirms this expectation, showing a slowdown over
native of 0.41-4.18%, with a 1.75% average slowdown for SVEE VMM.

Fig. 4. Performance Comparison between host OS and SVEE VM

To improve the usability and performance of SVEE, we are currently improving
the memory management mechanism of SVEE VMM to share the memory pages
between SVEE VM and host OS. Multiprocessor virtualization capability is also to be
added to SVEE VMM to support Multiprocessor-Specialized host OS version. In
addition, we are integrating some intrusion detection mechanisms into SVEE at the
virtual hardware layer. To make SVEE VM support the multimedia programs such as
3D games, we plan to reimplement the graphic virtualization mechanism referring to
the approach proposed by H. Andres Lagar-Cavilla, et al [6]. Finally, we will
investigate the automated change committing technology for SVEE.

408 Y. Wen, J. Zhao, and H. Wang

5 Related Work

Sandbox. A sandbox is an environment in which the actions of a process are restricted
according to a security policy. Sandboxing based approaches involve observing a
program’s behavior and blocking actions that may compromise the system’s security.
Janus [7] and Chakravyuha [8] implement sandboxing using kernel interposition
mechanism. MAPbox [9] introduces a sandboxing mechanism with the aim at making
the sandbox more configurable and usable via providing a template for sandbox
policies based on a classification of application behaviors. Safe Virtual Execution
(SVE) [10] implements sandboxing using software dynamic translation, a technology
for modifying binaries at runtime. Systrace [11] proposes a sandboxing system that
notifies the user about all the system calls that an program tries to invoke and then
generates a policy for the program according to the response from the user.

However, use of sandboxing approaches in practice has been hampered by the
difficulty of policy selection: determining resource access rights that would allow the
code to execute successfully without compromising system security. Sandboxing
tools often adopt highly restrictive policies that preclude execution of most useful
applications. So users usually choose functionality over security, i.e., executing
untrusted code outside such sandboxing tools, exposing themselves to unbounded
damage if this code turned out to be malicious.

Isolation Technology within Mono-OS. Isolated execution has previously been
studied by researchers in the context of Java applets [12, 13]. Compared with general
applications, such applets do not make much access to system resources. So the
approach used by applets often relied on executing these untrusted applets on a
"remote playground", i.e., an isolated computer. However, most of the desktop
applications will usually require access to more resources such as the file system on
the user’s computer. To run such applications on a remote playground, the complete
execution environment on the user’s computer, especially the entire file system
contents, should be duplicated to the remote playground.

Literature [4] is the first approach to present a systematic development of the
concept of one-way isolation as an effective means to isolate the effects of running
processes from the point they are compromised. They developed protocols for
realizing one-way isolation in the context of databases and file systems. However,
they did not present an implementation of their approach. As a result, they do not
consider the research challenges that arise due to the nature of COTS applications and
commodity OSes.

Alcatraz [14] and its improved version [3], Security Execution Environment (SEE),
proposes its improved version with the name of. A key property of SEE is that it
reproduces the behavior of applications, as if they were running natively on the
underlying host OS. But this approach does not achieve OS isolation, so such
protection mechanism can be bypassed by kernel-mode malicious code. And in SEE,
a number of privileged operations, such as mounting file systems, and
loading/unloading modules are not permitted.

All these approaches suffer from the same problem: they can be turned off if
intruders compromise the operating system and gain system privileges [15]. The file
protection they provide is thus less effective in a compromised environment.

 A Novel Approach for Untrusted Code Execution 409

Isolation Based on Virtual Machine. Covirt [16] proposes that most of applications
may be run inside virtual machine instead of host machines. User-mode VMs have
been proposed for the Linux OS [17]. All the above approaches suffer from the
difficulty of environment reproduction.

Denali [18, 19] is another virtual machine based approach that runs untrusted
distributed server applications. Denali focuses on supporting lightweight VMs,
relying on modifications to the virtual instruction set exposed to the guest OS and
thus requiring modifications to the guest OS. In contrast, we are focusing on heavier
weight VMs and make no OS modifications.

VMWare ESX Server provides an isolation approach for server platform with a
similar objective to ours. XEN [20] and L4-based virtual machine [21] also
implement isolated virtual execution environments. But all of these three
environments are just located above computer hardware in form of Type I VMM. So
as discussed in section 2, they are not fit for PC platforms because of their drawbacks
caused by Type I VMM architecture.

The COW/COW2 mechanism of QEMU [22], an open source emulator, can only
isolate the Guest OS’s modifications to file system from host OS. But modifications
made by host OS will cause the conflicts between the disk and file system content in
Guest OS and crash it. Thus QEMU failed to achieve the environment reproduction.
Besides, its poor performance prevents it from server as an effective virtual
environment. KVM [23], a Kernel-based Virtual Machine based on QEMU,
significantly improves the performance. But it also cannot provide the capability of
environment reproduction. Besides, it must modify the host OS and rely on the
hardware virtualization technology, such as Intel VT and AMD-V.

6 Conclusions

In this paper, we proposed a new execution model called SVEE for executing
untrusted code safely and shown the security evaluation for this model. SVEE is
versatile enough to coexist with the existing OS and programs. The most considerable
benefit of SVEE is that it provides the capability of OS isolation while accomplishing
the configurable execution environment reproduction. SVEE also provides a
convenient way for users to track the changes made within the SVEE VM, viz. the
untrusted execution environment. These changes can be discarded if the user does not
accept them. Otherwise, the changes can be committed so as to become visible within
host OS.

SVEE accomplishes all the capabilities discussed in section 2: OS isolation,
configurable execution environment reproduction and execution effects committing.

Consequently, SVEE provides security against potential malicious code without
negating the functionality benefits provided by benign programs. With these
capabilities, SVEE supports a wide range of tasks, including the study of malicious
code, controlled execution of untrusted software, experimentation with software
configuration changes, testing of software patches and so on.

410 Y. Wen, J. Zhao, and H. Wang

Acknowledgements

This research is supported by National Basic Research Program of China (Grant
No. 2005CB321801), National Natural Science Foundation of China (Grant No.
60673169), and National Science Fund for Outstanding Youths under Grant No.
60625203.

References

1. Goldberg, R.P.: Architectural Principles for Virtual Computer Systems, Ph.D. Thesis.
Harvard University, Cambridge, MA (1972)

2. Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for x86
Virtualization. In: Proceedings of The 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2006), pp. 2–13
(2006)

3. Sun, W., Liang, Z., Sekar, R., Venkatakrishnany, V.N.: One-way Isolation: An Effective
Approach for Realizing Safe Execution Environments. ISOC Network and Distributed
System Security (NDSS 2005) (2005)

4. Liu, P., Jajodia, S., McCollum, C.D.: Intrusion confinement by isolation in information
systems. Journal of Computer Security 8, 243–279 (2000)

5. ScottRobin, J.: Analyzing the Intel Pentium’s Capability to Support a Secure Virtual
Machine Monitor, Master’s Thesis. Naval Postgraduate School, Monterey, CA, 133 (1999)

6. Lagar-Cavilla, H.A.e., Tolia, N., Satyanarayanan, M., Lara, E.d.: VMM-Independent
Graphics Acceleration. In: Proceedings of the Third International ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE 2007), San Diego, CA (2007)

7. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.: A Secure Environment for Untrusted
Helper Applications (Confining the Wily Hacker). In: Proceedings of the Sixth USENIX
UNIX Security Symposium, San Jose, California (1996)

8. Dan, A., Mohindra, A., Ramaswami, R., Sitaram, D.: ChakraVyuha(CV): A Sandbox
Operating System Environment for Controlled Execution of Alien Code. IBM T.J. Watson
research center (1997)

9. Acharya, A., Raje, M.: Mapbox: Using Parameterized Behavior Classes to Confine
Applications. In: Proceedings of the 9th USENIX Security Symposium (2000)

10. Scott, K., Davidson, J.: Safe Virtual Execution using Software Dynamic Translation. In:
Computer Security Applications Conference, pp. 209–218 (2002)

11. Provos, N.: Improving Host Security with System Call Policies. In: Proceedings of the
12th USENIX Security Symposium, Washington, D.C., USA (2003)

12. Chiueh, T.-c., Sankaran, H., Neogi, A.: Spout: A Transparent Distributed Execution
Engine for Java Applets. In: Proceedings of the 20th International Conference on
Distributed Computing Systems, vol. 394 (2000)

13. Malkhi, D., Reiter, M.K.: Secure Execution of Java Applets using A Remote Playground.
IEEE Transactions on Software Engineering 26, 1197–1209 (2000)

14. Liang, Z., Venkatakrishnan, V.N., Sekar, R.: Isolated Program Execution: An Application
Transparent Approach for Executing Untrusted Programs. In: Omondi, A.R., Sedukhin, S.
(eds.) ACSAC 2003. LNCS, vol. 2823, Springer, Heidelberg (2003)

15. Kernel brk() vulnerability, http://seclists.org/lists/bugtraq/2003/Dec/0064.html
16. Chen, P.M., Noble, B.D.: When Virtual is Better Than Real. In: 8th Workshop on Hot

Topics in Operating Systems (2001)

 A Novel Approach for Untrusted Code Execution 411

17. Dike, J.: A User-mode Port of the Linux Kernel. In: Proceedings of the 4th Annual Linux
Showcase & Conference, Atlanta, Georgia, USA (2000)

18. Whitaker, A., Shaw, M., Gribble, S.D.: Denali: A Scalable Isolation Kernel. In:
Proceedings of the Tenth ACM SIGOPS European Workshop, Saint-Emilion, France
(2002)

19. Whitaker, A., Shaw, M., Gribble, S.D.: Denali: Lightweight Virtual Machines for
Distributed and Networked Applications. In: Proceedings of the 2002 USENIX Technical
Conference (2002)

20. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauery, R., Pratt,
I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP 2003), pp. 164–177. ACM Press,
New York (2003)

21. Biemueller, S., Dannowski, U.: L4-Based Real Virtual Machines - An API Proposal. In:
Proceedings of the MIKES 2007: First International Workshop on MicroKernels for
Embedded Systems, Sydney, Australia, pp. 36–42 (2007)

22. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: USENIX Association
Technical Conference (2005)

23. Qumranet: KVM: Kernel-based Virtualization Driver (2006)

	A Novel Approach for Untrusted Code Execution
	Introduction
	Execution Model of SVEE
	Security Evaluation of SVEE
	Status and Future Work
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

