A System Architecture for History-Based
Access Control for XML Documents

Patrick Roder*, Omid Tafreschi**, Fredrik Mellgren, and Claudia Eckert

Darmstadt University of Technology,
Department of Computer Science,
D-64289 Darmstadt, Germany
{roeder ,tafreschi,mellgren, eckert}@sec .informatik.tu-darmstadt.de

Abstract. In this paper, we present a history-based model which con-
siders not only the content of an XML document to define access, but
also how this content was created. The last aspect is an important factor
for access control. Within the proposed model, the creation of documents
is stored in histories, which also contain the source and destination of
copied document parts. This enables us to define access depending on the
origin of document parts. Applying this model in an environment where
multiple users can edit documents concurrently is a challenging task,
since access decisions depend on other documents, which are possibly
edited at the same time. For this purpose, we present a system architec-
ture which supports an efficient workflow and reduces the overhead for
determining access rights of documents depending on other documents.

Keywords: Access Control, Document Security, XML, XPath.

1 Introduction

In the modern business world, many IT systems use XML as a standard for
information storage and exchange. In such systems, security is crucial, since
unauthorized access and information theft are responsible for a major part of
damages caused by computer crime [9]. Access control (AC) is a central security
mechanism to reduce that kind of loss. Although much work on AC in the areas
of file systems or relational databases has already been done, defining access to
XML documents is a different issue as stated in [7].

Consequently, a large number of models for AC for XML documents were
proposed [2I56IRIT3]. These approaches consider the content of a document to
define access to its parts. This leads to a flexible way of defining policies inde-
pendently of concrete instances. However, theses approaches do not regard how
the content of an XML document was created. But this is important for AC, e.g.,
if the source of a copied part of a document is a top secret document, access to

* The author is supported by the PhD program Enabling Technologies for Electronic
Commerce of the German Research Foundation (DFG).

** The author is supported by the German Federal Ministry of Education and Research
under grant 01AK706C, project Premium.

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 362-B74,[2007.
© Springer-Verlag Berlin Heidelberg 2007

A System Architecture for History-Based Access Control 363

that part has to be restricted, too. A similar situation arises when a document
part is copied to a top secret document, e.g., a patent application. In this case, it
is desirable to deny access to the document parts located in the source document
to avoid information disclosure. Additionally, it is important to know who has
modified a document. Consider the following example: A researcher can change
the title of a section, e.g., to make a suggestion, until the title is changed by a
senior researcher, who has the authority to declare a title as final. Moreover, to
enable Chinese Wall policies [3], which are important in the financial domain,
the knowledge about previously performed operations is required.

Since in some cases XML elements contain a large amount of data, the gran-
ularity of AC on the level of XML elements is too coarse. An XML element can
be composed of text parts from different sources. In this case, the AC system
must be able to consider these parts individually to increase both flexibility and
usability.

For these reasons, we introduced a model in [I4] that is capable of defin-
ing access based on the content of the current document, the recorded histories
and the content of dependent documents. These are documents between which
documents parts have been copied to or from the current document. The histo-
ries contain information about the operations that led to the current document
state. Moreover, these histories also include the source and destination of copied
document parts. We use this information to define access.

Applying our model in a scenario where multiple users concurrently edit mul-
tiple documents introduces four challenges. First, since access rights of one doc-
ument depend on other documents, we need a method for accessing these dis-
tributed documents when calculating access rights. Second, changes to one doc-
ument require the recalculation of the views of all dependent documents, which
are currently viewed. The straight forward approach for this is to recalculate the
views of all dependent documents after a document has been changed. However,
this results in a much higher number of view recalculations compared to models
which only define access depending on the current edited document. For ex-
ample, editing 20 depending documents concurrently, leads to a 20 times higher
number of view recalculations with the straight forward approach. Therefore, we
need a method which reduces the number of these view recalculations. Third,
the changes of one user to a document can revoke the access rights of other
users which are currently editing dependent documents. As a consequence, ac-
cess rights can be revoked during an editing process, which can lead to conflicts
regarding the content of the document and the access rights. Consequently, we
need a method for handling these conflicts. Fourth, aforementioned the straight
forward approach causes intermediate editing steps to become relevant for access
decisions of other users, which is not desired. For example, a user can change a
policy relevant element of a document by first deleting it and then replacing it
with an updated version afterwards. In this example, the first step can revoke
the access rights of another user, whereas the second step might restore these
access rights.

364 P. Roder et al.

The remainder of this paper is organized as follows: We summarize our model
for AC for XML documents in Section 2l In Section [B we present a system
architecture that solves the four challenges mentioned above. Section] presents
related work. We conclude and discuss future work in Section (Bl

2 Model

In this section, we give an overview of our model and its components, which are
explained in the following sections. We start with a description of the histories,
continue with the operations defined in our model and finally present the syntax
of our access rules.

2.1 Histories

We use histories to keep track of changes caused by the operations create,
copy, delete, and change attribute. The operation view is also logged in the
histories. These operations are described in detail in Section 221 We keep one
history for every element itself including its attributes and one history for its
text content. The latter history uses markup elements to divide the text into text
blocks with a block ID. This mechanism enables us to keep track of sub-elements
of arbitrary size. The markup elements are defined by ac:block elements, where
ac is the prefix for the namespace of the access control system. We use the block
IDs to reference individual text blocks in the history for the text content. If a
view is created for a user, the ac:block elements are omitted. Keeping track of
such implicitly defined sub-elements allows us to manage protection units smaller
than an XML element. Technically, we use XML elements to define those sub-
elements, but from a user’s point of view, these sub-elements are not visible.

A new text block is created in two cases. First, we create a new text block
as a result of copy operations, at both the source and the destination element.
Second, we create a new text block whenever text is added to an element.

In addition to the histories, we maintain a unique element ID for each element
to reference it independently of its current position within the document. More-
over, each document has a unique document ID. We use these IDs to keep track
of copy operations by maintaining an is-copy-of relation among the elements
and text blocks. Two objects are in is-copy-of relation with each other if one
object is a copy of the other.

A history entry consists of an action element, which contains details on the op-
eration and a context description. In addition to the operation, an action element
can have up to two arguments that describe the action. For the actions related
to attributes, we store the name of the corresponding attribute. The change
attribute and create attribute operations additionally store the new value
of the attribute. The create text and delete text operations store the block
ID of the corresponding text block.

A System Architecture for History-Based Access Control 365

2.2 Operations

In this section, we describe the details of the operations supported by our model.
These are view, create, delete, change attribute and copy. Most of the op-
erations can be applied to elements, text and attributes. Each operation, except
for view, has an effect on the document itself as well as on the histories. The
view operation creates a history entry only. The create operation is divided
into creating elements, creating attributes and creating text.

The create element operation creates an element without any attributes or
text. In addition to the element itself, the history of the element is created. The
first entry of the history for the element describes its creation. The attributes
of an element are created with the create attribute operation, which is also
logged with an entry in the history of the enclosing element. It can be required
that elements have mandatory attributes. This requirement should be checked on
the application level and not within the access control system. This also applies
to the deletion of mandatory attributes.

The create text operation is used to add new text to an element. This
operation has an argument that specifies the position of the new text. If this
position is within an existing block, this block is split at the position where the
new content should be placed and the new content is placed in-between the split
blocks. The split blocks keep their original histories, whereas the new content
gets a new history with one entry describing its creation. The boundaries of
the split content pieces are denoted by the ac:block elements, as described in
Section 211

The delete operation is used to delete elements, attributes, text or parts of
the text. Since elements and their attributes are checked in rules, we need to
keep them after deletion. For that purpose, the context of a delete operation is
captured in the element history with a delete action entry. A context is a tuple
of Date, Subject and Role, where Date refers to a date including time and Role
is the role of the Subject that performs the corresponding operation.

The copy operation is used for elements, text or parts of the text. In all cases,
we apply the corresponding create operation to create a new instance at the
destination as a copy from the source, which is registered in the destination
element. Additionally, the is-copy-of relation of the elements is updated.

The view operation displays elements which have not been deleted. When a
user wants to view a document, the view operation is invoked for every element
of the document itself, but also for its attributes and text. In contrast to the
read operation of some other systems, e.g., [IJ3], the view operation does not
imply a data transfer.

The change attribute operation allows users to change the value of a specific
attribute. Since former values of an attribute can be checked by rules, we record
the change with an entry in the element history.

2.3 Rules

In this section, we define a syntax for AC rules, which can express policies that
depend on the content of the current document, the recorded history information

366 P. Roder et al.

and the content of dependent documents. Generally speaking, a rule has the
typical structure of subject, operation, object and mode. The mode field of a rule
defines whether it is positive (allow) or negative (deny). The default semantics
of our model is deny: if the access to the object is neither allowed nor denied
by a rule, then the object is not accessible. If conflicts occur, we take the rule
with the superior role and finally apply “deny takes precedence over allow”. We
use roles [I5] to model the subjects to gain a higher level of abstraction and
therefore more flexibility compared to directly listing individual subjects.

Instead of listing individual objects in rules in an ACL-like manner [10], we
describe objects by their properties, e.g., location within a document or attribute
values. For this purpose, we use XPath patterns [4] to describe the objects for
which a rule is applicable. We use XPath, since its clearly defined semantics
makes the interpretation of the resulting rules unambiguous. Moreover, XPath
has a predefined set of mechanisms that can be used for our purpose, which
simplifies the implementation of our model.

We define two types of rules. The first type of rule defines permissions for the
unary operations create, view, delete and change attribute. The objects of
an AC rule are defined by an XPath pattern. The second type of rule defines
permissions for the binary copy operation, which requires the specification of a
source and a destination object. We use two XPath patterns for this. The syntax
of both types of rules is listed in Figure [Il

Unary rule Copy rule
Element Description Element Description
Role Role Role Role
Operation Operation Operation “Copy”
Object XPath Object XPath

Destination XPath
Mode allow | deny Mode allow | deny

Fig. 1. Syntax of AC rules

2.4 Accessing History Information with XPath

We use XPath patterns in rules to define access depending on histories. As
a consequence, we need a mechanism to access the histories within an XPath
pattern. Therefore, we extend the function library of XPath by a set of functions,
which we collect in the following six groups. The namespace of our functions is
indicated by the prefix ‘ac:’. In the context of XPath, we speak of a node instead
of an object.

Getting Copies of a Node. This group of functions is related to the is-copy-of
relation of nodes among each other. It is required to express rules that define
access depending on the source of an object or on the locations to where an
object was copied.

A System Architecture for History-Based Access Control 367

The function ac:copies returns all nodes that are in is-copy-of relation with
the current node, whereas the function ac:predecessors returns all nodes of
which the current node is a copy. Finally, the function ac:successors returns all
nodes that are copies of the current node. All three functions also return nodes
that are in indirect is-copy-of relation to the current node, e.g., ac:successors
also returns the copies of the copies of the current node.

Getting Attribute Values. The function ac:attribute-values returns a
chronologically sorted list of tuples of an attribute value and the context corre-
sponding to the change of the attribute value. It is required to define rules, which
inspect former values of an attribute. For example, the rule {researcherB, View,
deny, /Report [count (ac:attribute-values(’funded-by’) [value=’Company
A’1) > 01/*} states that subjects in the role researcherB are not allowed to
view reports that were funded by ’Company A’ in the past or at present.

Getting Related Nodes Depending on Time. This group of functions
retrieves nodes addressed relatively to the context node that existed within a
specified time interval. In the XPath terminology, the element to be checked
against the pattern is called the context node. XPath offers functions to retrieve
nodes addressed relatively to the context node, but without the specification of
a time interval, since XPath only considers the current state of a document. This
time interval is required to select related nodes depending on time, since nodes
can be deleted. Therefore, each of these functions can have a time interval as
parameter, e.g., ac:children-at(t1, t2) returns all nodes that were children
of the context node in the time interval between t1 and t2. To inspect a single
point in time, t2 can be omitted. The functions of this group are ac:parent-at,
ac:following-at, ac:preceding-sibling-at, ac:preceding-at, ac:follow-
ing-sibling-at, ac:children-at, ac:descendant-at, ac:root-at and ac:-
self-at.

Getting the Context of a History Entry. This group of functions offers
access to the context of a specific history entry. Each function returns an element
consisting of subject, role and time. These functions are ac:creation-context
and ac:deletion-context.

Getting Accessed Nodes. This group of functions is used to get all nodes
which have been accessed by a specified user or by a user in a certain role.
For example, these functions are required to express Chinese Wall policies [3].
The functions are ac:created, ac:viewed, ac:changed-attribute and ac:-
deleted. Each function refers to a specific operation, e.g., ac:viewed returns
viewed nodes. In addition, the function ac:accessed returns all accessed nodes
independently of the operation. All functions have two parameters that define
conditions on the returned nodes. The first parameter user specifies to return
only nodes that have been accessed by the specified user. Analogously, we define
the parameter role. Both parameters can be set to any to indicate to return
nodes accessed by any user or in any role. Optionally, each parameter can be
set to current. In this case, the current user or his current role is used for the

368 P. Roder et al.

check. For example, created(any, current) returns all nodes which have been
created by users who were active in the same role as the one in which the current
user is active in.

Getting Specific Nodes of Current Rule. We define three functions for
accessing specific nodes within an XPath pattern. The function ac:current-
-node returns the node in question for which the XPath pattern is evaluated.
This function is required when the pattern’s context changes to a document that
is different from the document for which the pattern was initiated. The function
ac:src-node retrieves the source node in question when checking a copy rule.
In a similar fashion, the function ac:dest-node returns the destination node
of a copy rule. The last two functions are necessary to define copy rules which
compare the source and destination objects with each other.

3 System Architecture

In this section, we present a system architecture for applying history-based AC
in an environment where multiple users can edit documents concurrently. Its
components are explained in the following sections. Additionally, we describe
the algorithms and protocols that are required for the interaction between the
components.

3.1 Architecture Overview

Our system architecture and its components are depicted in Figure2 Our system
uses four databases. The document database (Doc DB) contains all documents
of the system. The rule database (Rule DB) contains the AC rules, which specify
allowed or denied accesses to the documents and their parts. The copy database
(Copy DB) stores the is-copy-of relation of the objects. Since the is-copy-of
relation can be depicted by a graph, we speak of an edge when we refer to a
single is-copy-of relation between two objects. Finally, the user database (User
DB) stores the credentials of the users of the system as well as the corresponding
roles including their hierarchy.

The user interface (UI) presents documents to the user and offers operations
that can be performed on the documents. If the user invokes such an opera-
tion, the corresponding request is sent to the document processor (DP), which

a
Rule DB
User DB

Fig. 2. System architecture

A System Architecture for History-Based Access Control 369

performs the requested operation if it is permitted. Inside the DP, the policy
enforcement point (PEP) intercepts each operation and asks the policy decision
point (PDP) whether the requested operation is allowed. The PDP uses the four
databases to decide whether to allow or deny the requested operation. This ar-
chitecture allows us to access distributed documents when a rule is evaluated
and therefore it represents a solution for the first challenge mentioned in the in-
troduction and. In the following, we explain the workflow for editing a document
to illustrate the processes within our architecture.

3.2 Workflow

A document must be opened before it can be viewed or edited. Therefore, the
UI offers a command to open a document. This command is sent to the DP,
which loads a copy of the document from the document database. We refer to
this process as check-out, since it has semantics similar to the check-out com-
mand of a version control system [I6]. After the check-out, the user can edit
the document by applying the operations of our model. The changed content
of an opened document including the corresponding histories becomes relevant
for access decisions of other documents after it is checked-in. Up to then, the
content of the opened document is only relevant for access decisions concerning
that document itself. The document and the corresponding histories are kept as
a local copy in the DP. To check-in a document, the user must invoke the cor-
responding command of the UL Then, the DP stores the copy of the document
back to the document database.

The check-in and check-out concept is more efficient and offers a higher usabil-
ity compared to directly working on the policy-relevant version of a document.
The first concept is more efficient, because changed content must be propagated
less often, i.e., only when a document is checked-in compared with immediately
after each change. This also reduces the overhead for recalculating permissions.
The usability is also higher, because of the transaction semantics of the approach.
With this concept a user can decide when the changing of a document is done,
instead of having potentially unwanted intermediate states to get relevant for
access decisions. With this concept we give a solution for the second and fourth
challenge mentioned in the introduction.

Check-Out. When a user invokes the command to check-out a document, the
DP first loads a copy of that document from the Doc DB. The Doc DB main-
tains a list for each document that denotes by which users the corresponding
document is currently opened to support concurrent access to documents. The
PDP executes Algorithm [to create a view. This algorithm removes nodes from
the document for which the user in question has no view permission and deleted
nodes. For that purpose, the algorithm adds a marker to each node which is set
initially to “default”, where a node can either be an element, an attribute or a
text block. Next, we sort all rules by their role and their mode. More special roles
are priorized over less special roles and deny rules are placed before allow rules.

370 P. Roder et al.

Then, we remove inapplicable rules. For each of the remaining rules, the corre-
sponding XPath pattern is evaluated. The result of this step is a set of nodes
that match with the current XPath pattern, which defines the applicable objects
of the rule. For each of these nodes, the marker is set according to the mode field
of the current rule. If all nodes have a marker different from “default” we stop
inspecting rules. Finally, we remove every node with a marker set to “default”,
every node with a marker set to “deny” and deleted nodes. After that, the PDP
sends the view to the DP, which creates history entries for the view operation
and forwards the view to the UL

Algorithm 1. Create View

Input : rulesan, rolecyrr, role_hierarchy, doc
Output: doc

1 add marker to every node of doc

2 set marker of every node of doc to “default”

3 sort rulesan by role (special first) and mode (deny first)

4 for each rule; of rules,n do

5 if operation of rule; is not “view” or role of rule; is not inferior or equal to

rolecurr then

6 continue with next iteration of loop

7 nodesresuit < evaluate XPath of rule; for doc

8 for each nodej of nodesresuiy do

9 if marker of node; is “default” then
10 L set marker of node;j to mode of rule;
11 if all markers of doc are different from “default” then
12 L exit loop
13 for each node; of doc do
14 if marker of node;j is “default” or “deny” or the node is deleted then
15 L remove node; and subtree below from doc

16 return doc

Editing. To edit a document, the user first selects an operation offered by the
UI. This operation is sent to the DP, where the PEP intercepts the operation
to check whether it is allowed. For this purpose, the PEP sends the requested
operation together with the current document to the PDP, which evaluates the
rules to answer the request of the PEP. For this purpose, the PDP performs the
Algorithm

The algorithm for rule evaluation sorts all rules like the previous algorithm.
Then, it checks the applicability of each rule by inspecting its role and its opera-
tion. For each rule, the XPath pattern is evaluated to check whether it matches
with the object in question. In case of a copy operation, the XPath pattern for
the destination is evaluated, too. If the rule is applicable, its mode is returned.
After evaluating all rules, the algorithms returns “deny”, if none of the rules was
applicable. The PDP sends the result of this algorithm back to the DP. If the
result is deny, the DP does not perform the requested operation and informs the
user via the Ul If the result is allow, the DP performs the requested operation.

A System Architecture for History-Based Access Control 371

Algorithm 2. Evaluate Rules

Input : rulesay, rolecurr, role_hierarchy, op, doc, obj, docdest, Objdest
Output: deny | allow

sort rulesan by role (special first) and mode (deny first)

for each rule; of rules,n do

[

3 if operation of rule; is not op or role of rule; is not inferior or equal to
rolecy,r then

4 L continue with next iteration of loop

5 if op is “copy” then

6 L nodes;esuit < evaluate XPath for source of rule; for doc

7 else

8 L nodesyesult < evaluate XPath of rule; for doc

9 if obj is not contained in nodesyesuit then
10 L continue with next iteration of loop
11 if op is “copy” then
12 nodesyesult < evaluate XPath for destination of rule; for docgest
13 if objdest %s mot contained in nodesresuir then
14 L continue with next iteration of loop
15 return mode of rule;

16 return “deny”

Check-In. A user can invoke the check-in command of the Ul to save his changes
to an opened document doc,, which is currently stored only within the DP, to
the Doc DB. As a result of this, the checked-in version of the document becomes
relevant for the access decisions of other documents, which also includes con-
currently opened versions of doc,. For these documents the permissions must
be recalculated, which possibly revokes permissions of currently edited docu-
ments. The concurrent editing of a document can also lead to conflicts, where
the editing of one user to doc, is incompatible to the editing of another user,
who also has edited doc,. For these reasons, we have to perform two steps when
a document is checked-in. In step one, we have to solve conflicts between the
concurrent versions of a document. In step two, we must update the permissions
of other affected documents whose permissions depend on the saved document.

To perform step one, we first retrieve the list of concurrently edited versions of
doc,, which is maintained by the Doc DB for each opened document. Next, we must
merge all concurrently edited versions of doc, to one consistent version. We apply
a conflict resolution strategy to solve conflicts between concurrently edited docu-
ments. It depends on the scenario to define a specific strategy. One possible strategy
is to resolve conflicts manually. An automatic strategy can accept or reject changes
depending on the role of the subject that performed the changes or depending on
the time the changes were performed, since this information is available in the cor-
responding histories. After the conflicts are solved, the temporarily stored edges,
which correspond to the accepted operations, are saved to the Copy DB.

To perform step two, we first inspect the Copy DB to retrieve the opened
documents that might depend on doc,. These documents have at least one node,

372 P. Roder et al.

that is in is-copy-of relation with a node of doc,. Then, we recalculate the per-
missions of these documents for their current users. In some cases, permissions
of edited nodes are revoked. In these cases, the Ul asks the user whether he
wants to reject the current changes or keep them and accept being unable to
make further changes. These two steps provide a solution for the third challenge
mentioned in the introduction.

3.3 Implementation

We have implemented all components of our system architecture in Java ver-
sion 1.5. We have extended the XPath function library of the Saxon XSLT and
XQuery processoﬂ version 8.8 with the functions defined in Section 24l The
implementation supports all operations defined in Section In addition, it
is able to evaluate and enforce our AC rules defined in Section We have
verified the feasibility of our model by evaluating the performance of our im-
plementation. For example, the calculation of a view for a document with 2000
nodes takes less than a second. This performance is sufficiently fast, since our
check-in and check-out concept avoids additional view recalculations after every
operation on depending documents. Instead, we must update views only when a
depending document is checked-in. More details about the implementation and
performance evaluation can be found in [12].

4 Related Work

The model proposed in [2] supports selective authorizations to parts of docu-
ments based on the semantic structure of XML documents. Authorizations can
be defined for different nodes together with propagation options. Regarding these
aspects, the model is very similar to our work. However, the supported opera-
tions and their semantics are different, since our approach is able to differentiate
between objects with different histories. The support of copying data differs from
our work, since the model proposed in [2] supports only a push of different views
of a document to different sets of users, whereas our model allows us to define
which elements of one document may be reused in other documents. Similar
approaches can be found in [5J6IRIT3], where [8I13] consider access control rules
for the read operation only. All these approaches consider the XML element as
the smallest unit of protection, in contrast to our approach, which is capable of
handling parts of the text.

Iwaihara et al. allow to define access based on the version relationship of docu-
ments and elements among each other [IT]. They define six operations including
copy, which is similar to our copy operation, but can only be applied to elements
or subtrees and not to text content or parts of the text content. In contrast to
our model, the modification of the text content of an element is modeled by
the operation update only, which describes that the entire content of a node is

! See [http://saxon.sourceforge.net/

http://saxon.sourceforge.net/

A System Architecture for History-Based Access Control 373

replaced with a new content. Concerning AC, Iwaihara et al. only consider read
and write operations and do not define a copy operation as part of their privi-
leges. Consequently, they can not express which transfers among documents are
permitted or denied. Moreover, they do not have the concept of splitting copied
elements to have different history information for parts from different sources.

5 Conclusions and Future Work

In this paper, we have summarized our model for defining access control for
XML documents and presented a system architecture that enables us to ap-
ply the model in a scenario where multiple users concurrently edit documents
in an efficient way. The proposed system architecture maintains the rules, the
documents and the history, so that this information is accessible for access de-
cisions of the PDP. We introduced the check-in and check-out approach, which
reduces the overhead of recalculating permissions for dependent documents. We
specified the workflow for editing a document by explaining the algorithm for
the calculation of permissions and the algorithm for the creation of views. We
are currently using the implementation of our model to study its usability in
different application scenarios.

References

1. Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations and
Model. Technical Report M74-244, MITRE Corp, Bedfort, MA (1973)

2. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents.
ACM Transactions on Information and System Security 5(3), 290-331 (2002)

3. Brewer, F.D., Nash, J.M.: The Chinese Wall Security Policy. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society Press, Los Alamitos (1989)

4. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C recommen-
dation, W3C (1999), http://www.w3.org/TR/1999/REC-xpath-19991116

5. Damiani, E., Capitani, S.D., Paraboschi, S., Samarati, P.: Securing XML Docu-
ments. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT
2000. LNCS, vol. 1777, pp. 121-135. Springer, Heidelberg (2000)

6. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Fine-Grained
Access Control System for XML Documents. TISSEC 5(2), 169-202 (2002)

7. Fundulaki, I., Marx, M.: Specifying Access Control Policies for XML Documents
with XPath. In: SACMAT 2004. Proceedings of the ninth ACM Symposium on
Access Control Models and Technologies, ACM Press, New York (2004)

8. Gabillon, A., Bruno, E.: Regulating Access to XML Documents. In: Working Con-
ference on Database and Application Security, pp. 299-314. Kluwer Academic Pub-
lishers, Dordrecht (2002)

9. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: 2006 CSI/FBI Computer
Crime and Security Survey. Technical report, CSI (2006)

10. Graham, G.S., Denning, P.J.: Protection - Principles and Practice. In: Spring Joint
Computer Reference, vol. 40, pp. 417-429 (1972)

http://www.w3.org/TR/1999/REC-xpath-19991116

374

11.

12.

13.

14.

15.

16.

P. Roder et al.

Iwaihara, M., Chatvichienchai, S., Anutariya, C., Wuwongse, V.: Relevancy Based
Access Control of Versioned XML Documents. In: SACMAT 2005. Proceedings of
the tenth ACM Symposium on Access Control Models and Technologies, Stock-
holm, Sweden, pp. 85-94. ACM Press, New York (2005)

Mellgren, F.: History-Based Access Control for XML Documents. Master’s thesis,
Technische Universitdt Darmstadt (June 2007)

Murata, M., Tozawa, A., Kudo, M.: XML Access Control using Static Analysis. In:
ACM Conference on Computer and Communications Security, ACM Press, New
York (2003)

Roder, P., Tafreschi, O., Eckert, C.: History-Based Access Control for XML Doc-
uments. In: ASTACCS 2007. Proceedings of the ACM Symposium on Information,
Computer and Communications Security, ACM Press, New York (2007)

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Computer 29(2), 38-47 (1996)

Tichy, W.F.: RCS - A System for Version Control. Softw. - Practice and Experi-
ence 15(7), 637-654 (1985)

	A System Architecture for History-Based Access Control for XML Documents
	Introduction
	Model
	Histories
	Operations
	Rules
	Accessing History Information with XPath

	System Architecture
	Architecture Overview
	Workflow
	Implementation

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

