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Abstract. Agreement problems are one of the keys to distributed com-
puting. In this paper, we propose a construction of the ideal-model
functionality of one of the most important agreement problems, non-
blocking atomic commitment (NBAC), in the universally-composability
(UC) framework. NBAC is not only important in realizing dependable
transactions in distributed computing environments but also useful in
constructing security protocols that require the fairness property, such as
fair exchange protocols. Our construction of NBAC functionality (namely
FNBAC) is exactly equivalent to the NBAC definition; it is formally
proved that a protocol UC-securely realizes FNBAC if and only if the
protocol is an NBAC protocol. The proposed functionality and its proof
of equivalence to NBAC enables the NBAC protocols to be used as a
provably secure building block, and thus makes it much easier to feasi-
bly and securely create higher-level protocols.

1 Introduction

Motivation. Agreement problems, which represent consistent decision making
processes among independent subjects interacting with each other, are the most
essential problem in the distributed computing literature. Their resolution is
indispensable to realize trustworthy electronic commerce; e.g., consistent money
transfer among banks is guaranteed by transaction processing systems that solve
one type of agreement problem, namely the atomic commitment problem[1].

Protocols that can solve agreement problems, namely agreement protocols,
are not only useful in themselves but also needed as fundamental building-blocks
for realizing security protocols since multi-party protocols that require fairness
explicitly or implicitly must include a process to resolve agreement problems.
For example, broadcast channels, commonly used in multi-party protocols[2],
are realized by solving the Byzantine agreement problem[3]. Another example
is fair exchange[4,5], which is known to be unconditionally reducible into non-
blocking atomic commitment (NBAC)[6] among trusted processes.[7,8]

Since the agreement problems are well-studied and a number of agreement
protocols for diverse environments and assumptions have been developed so
far[6,3,9,8], modeling agreement problems as securely composable functionali-
ties enables us to dispense with reinventing the wheel when creating multi-party
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protocols and makes it easier to implement those protocols by introducing the
concept of reusability, which is quite common in software programming, to se-
curity protocol design.

To realize this scenario, it is important to design functionalities that are “ex-
actly equivalent” to the agreement protocols; a too strong functionality may
lack protocols that realize it, while a too weak functionality may make it diffi-
cult to prove the security of the protocols that uses the functionality. The aim
of this paper is to introduce functionalities that are provably equivalent to the
agreement protocols so that we can use them as securely composable and sub-
stitutable building-blocks and so permit the design of high-level and complex
security protocols.

Contributions. In this paper, we propose a construction of the functionality of
NBAC, which is a fundamental agreement problem[6,10,11] known to be capable
of becoming a building block in the construction of fair exchange protocols[7,8],
in the universal composability (UC) framework[12]. To ensure that the func-
tionality, namely FNBAC, captures the NBAC properties exactly, we introduce
an oracle called failure detection oracle (OFD), which detects if any failure has
occurred during protocol execution. This oracle is a sort of failure detector[13]
commonly used to abstract the error detection abilities of distributed processes
(e.g. timeout detection) in the distributed computing literature[14]. To be ex-
act, the introduced oracle has abilities equivalent to those of the anonymous
perfect failure detector (usually denoted as ?P)[11], which can correctly detect
any failure but does not provide any information about where the failure has
occurred.

A proof of the exactness of the proposed functionality FNBAC is also provided
in this paper. Designing a functionality that exactly represents the properties
of the agreement protocols is, however, not be so straightforward that everyone
can intuitively understand its correctness; it must be proved that the designed
functionality exactly satisfies the properties in order to utilize the functionality
as a securely composable building block. We provide proofs that the proposed
functionality FNBAC is exactly equivalent to NBAC; i.e., some protocol π securely
realizes FNBAC if and only if π holds all of the NBAC properties.

Related works. The concept of universal protocol composition has been attracted
much attention, however, few studies have focused upon the agreement properties
of protocols.

Lindell et al.[15] focus upon composability of the Byzantine agreement (or
generals) problem[3], which are known to be reducible from the problem to
establish a broadcast channel in a point-to-point network. Their notable impos-
sibility results show that a Byzantine agreement protocol requires more than
2/3 honest parties to be secure under parallel composition even if the messages
are authenticated, although it was originally believed that the Byzantine agree-
ment with authenticated messages (authenticated Byzantine agreement) could
be solved under any number of dishonest (corrupted) parties.[3]
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Garay et al.[16] specified a composable ideal functionality that gives the
resource-fair property, which states that if one party learns the output of the
protocol, then so can all other parties, as long as they expend roughly the same
amount of resources. The functionality is defined in a similar way to the UC
framework, but works in the framework where the environment compensate the
additional resources for honest parties prematurely aborted by the adversary.
This functionality and framework provide the notion of fairness (which is a sim-
ilar notion to agreement) as a composable building block in secure multi-party
computation protocols, however, this model assumes synchronous channels and
the functionality is constructed upon a fair delivery mechanism that provides
complete fairness[2], where if one party receives the output, all parties receive
the output; these assumptions are too ideal and hard to realize in real systems.

In the distributed computing literature, on the other hand, NBAC[6] is con-
sidered to be a fundamental agreement problem to ensure the atomicity of a
distributed transaction, and its characteristics including solvability have been
well-studied[10,1,17,11,9,14,8].

NBAC can be solved in the asynchronous model if (a certain class of) failure
detectors can be assumed. For example, every following protocol solves NBAC
in certain environment: the 3-phase commitment (3PC) protocol[6], the 2-phase
commitment (2PC) protocol1[1] and the optimistic NBAC protocol[8]. A differ-
ent application or situation would need a different NBAC protocol since every
protocol has its own strengths and weaknesses; e.g., the 3PC protocol is the most
versatile but is extremely complicated[9], 2PC is easy to implement but requires
special assumptions on a process (i.e. coordinator), and the optimistic NBAC is
simple and efficient but applicable only to the 2-party setting where each party
has a trusted module such as a smartcard.

The functionality proposed in this paper makes all protocols that correctly
hold the NBAC properties under parallel composition usable as securely com-
posable building blocks in the UC framework.

2 Preliminaries

2.1 Non-Blocking Atomic Commitment (NBAC)

An NBAC agreement guarantees that the participating processes, each of which
votes yes or no, eventually agree upon a common outcome, commit or abort. In
this agreement, commit can be decided only if all participants vote yes2. If any
process votes no, abort must be decided. Every correct process is guaranteed to
receive the decided value.

Precisely, the NBAC problem is defined as follows.[6,17]

1 The 2PC protocol is usually known to solve the atomic commitment problem, which
is similar to NBAC but does not guarantee the Termination property, but it solves
NBAC if no misbehavior (including crash) of the coordinator process and resilient
channels between the coordinator and the other processes can be assumed.

2 Note that “if” direction is not guaranteed.
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Definition 1 (NBAC). The NBAC problem consists of a set of independent
processes that reach a unanimous decision, commit or abort, according to initial
votes of the processes, yes or no, such that the following properties3 are satisfied:

Agreement. No two processes decide differently;
Termination. Every correct process eventually decides;
Commit-Validity (C-Validity). If all processes propose yes and there is no

failure, then the decision value must be commit; and
Abort-Validity (A-Validity). If at least one process proposes no, then the

decision value must be abort.

While NBAC is an essential problem in the distributed computing literature, it
is also valuable in constructing fair exchange protocols as mentioned in Sect. 1.
Fair exchange is reducible into NBAC between trusted processes by the following
reduction algorithm[7]:

FairExchange(item i, description d) {
〈send i to exchange partners over secure channel〉
timed wait for 〈expected item ie from exchange partners〉

〈check d on ie〉
if (check succeeds and no timeout)

then vote := yes else vote := no endif
result := NBAC(vote)
if (result = commit)

then return ie else return 〈abort〉 endif
}

The fair exchange protocol based on this algorithm enables parties to fairly
exchange arbitrary items. When using the optimistic NBAC protocol[8] as the
NBAC part of this algorithm, this exchange realizes optimistic (strong) fair
exchange of arbitrary items while other known optimistic protocols can guarantee
strong fairness only when at least one exchanged item has a special property
called strong generatability[5]4.

2.2 UC Framework

In the following, we briefly introduce the concept of the UC framework; its
comprehensive and rigorous definition is described in [12].

The UC framework is a sort of simulation-based security framework, where
the “formal specification” of the security requirements of a task is represented
as a set of instructions of a trusted process, namely ideal-model functionality.
3 C-Validity and A-Validity are often called “non-triviality” and “uniform-validity”,

respectively.
4 However, note that fair exchange by this method requires both parties to run trusted

processes; i.e., each party has to have access to a trusted device such as a smartcard.
This requirement would be easily satisfied by recent mobile phones (equipped with
(U)SIM cards), but might be rather difficult in other environments.
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A protocol is said to UC-realize the functionality (for the task) if running the
protocol “emulates” the functionality, in sense that observable outputs from the
parties and an adversary running the protocol and those from the parties and
an ideal adversary (i.e. a simulator) interacting with the functionality cannot
be distinguished by the environment machine with non-negligible probability.
The environment machine is a probabilistic interactive Turing machine (PITM)
that can hand arbitrary inputs to the parties and the adversary and can collect
(observe) outputs from them.

The characteristic merit of this framework is to guarantee secure universal
composition of the protocol (i.e. universal composition theorem); when a proto-
col UC-realize a functionality, the functionality that is “called” within another
protocol (like a subroutine) can be securely substituted by an execution of the
protocol UC-realizing the functionality5.

This merit makes security protocols modular as building-blocks and makes it
much easier to design and analyze complicated security protocols, however, the
other side of the coin is the difficulty of designing functionalities. Since universal
composability is founded upon tight simulatability between a protocol and a
functionality, a functionality that is either stronger or weaker than the desired
properties of the task obstructs secure composition of the protocol; a too strong
functionality often lacks protocols that realize it, while a too weak functionality
often makes it impossible to prove the security of the hybrid protocol that use
the functionality even if the protocol is actually secure.

Designing an adequate functionality exactly equivalent to the desired proper-
ties of a task, therefore, is quite important in realizing modularized designs and
simplified implementation of security protocols in the UC framework.

3 Ideal Functionality of NBAC

The ideal functionality in the UC framework is represented as a trusted party
that captures the desired specification of the task by way of specifying a set of
instructions.

Since the desired specification of NBAC is defined as the four NBAC properties
(i.e., Agreement, Termination, C-Validity and A-Validity), designing the ideal
functionality of NBAC is, accordingly, basically similar to finding a constraint
satisfaction algorithm that exactly satisfies these properties.

As mentioned in Sect. 2, it is important to be careful not to make the func-
tionality “too ideal” — it should exactly satisfy the properties to make the func-
tionality useful as a secure building block. For example, a functionality, which
outputs commit if all input values are yes or outputs abort otherwise, obviously
satisfies all NBAC properties, but is almost useless as the ideal functionality of
NBAC. This functionality is too ideal to be securely realized by any practical

5 To be more exact, provided that protocol ρ UC-realizes some functionality F and
protocol π in which parties make calls to F UC-realizes some functionality G, pro-
tocol πρ in which parties run ρ instead of calling F also UC-realizes G.
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NBAC protocol in the real world, so any hybrid protocol constructed with this
functionality would also be unrealizable.

In order for the functionality to exactly capture the desired properties, the
functionality interacts with a party called simulator, which simulates attacks
by an adversary in the real-world model. Most agreement protocols including
NBAC, however, have a property that cannot be represented even by interacting
with the simulator; i.e., the condition “there is no failure” in the C-Validity
properties. A simulator naturally knows whether a failure occurs internally, but
there is no means for a functionality to rightly know that from the simulator; even
if the simulator sends a message that indicates that a failure has occurred, the
functionality may not trust it because the UC framework does not guarantee that
the simulator sends a message based on its internal states correctly . Accordingly,
another means by which the functionality can accurately know whether a failure
has occured is needed for the functionality to correctly represent the C-Validity
property.

3.1 Failure Detection Oracle

To adequately represent the C-Validity property, we introduce the failure de-
tection oracle, denoted by OFD. This oracle is an ideal failure detector that
detects if any failure (including network failure, prematurely abortion or any
other misbehaviors by corrupted party) is caused by the adversary.

Definition 2 (Failure detection oracle). Failure detection oracle OFD is an
oracle that outputs f ← {0, 1} upon receiving sid, where f takes the following
value according to failure events in the protocol execution identified by sid:

f =

{
1 (if no failure occurs in the protocol), or
0 (otherwise).

(1)

No failure in the above definition means that every participant behaved correctly
and every message is transfered as expected by the protocol definition.

Since OFD is a virtual function to define a functionality in the ideal model,
protocols realizing a functionality with this oracle do not have to assume the
existence of OFD in the real-world model. However, interestingly, this oracle has
equivalent abilities to the anonymous perfect failure detector (?P), which can
detect any failure completely (i.e. any failure is detected within some time) and
accurately (i.e. no failure is detected unless a failure occurs) but does not provide
any information about where the failure happened; this failure detector is known
to be sufficient to transform Consensus6 into NBAC.[18]

6 The Consensus problem is another agreement problem where the following validity
property holds instead of C-Validity and A-Validity properties in NBAC: a value
decided must be a value proposed by some process.
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3.2 Definition of FNBAC

The ideal functionality of NBAC, namely FNBAC, is defined as follows:

Definition 3 (Ideal functionality of NBAC (FNBAC)). This functionality
proceeds as follows, running with participants P = {P1, P2, ..., Pn}, simulator S,
and failure detection oracle OFD:

1. Upon receiving a vote (Vote, sid,P, votei) from Pi, where votei ← {0, 1} is
the proposal value of Pi (yes: 1, no: 0), check if a vote from Pi is recorded.
If it is already recorded, ignore the received vote. If not, record the vote.

2. When all votes from P are recorded, send (Exec, sid,P) to S.
3. Upon receiving (Notice, sid, φ, χ) from S, where φ ← {0, 1} indicates if abort

was forcibly caused by the adversary (forcibly aborted: 1, otherwise: 0) and
χ = χ1||χ2||...||χn ← {0, 1}n indicates if termination of a participant Pi was
interrupted by corrupt acts of the adversary (Pi can terminate: χi = 1, Pi is
corrupted and cannot terminate: χi = 0), send sid to OFD.

4. Upon receiving f from OFD, send (Result, sid, resulti) to Pi, where resulti
takes the following value:

resulti =

⎧⎪⎨
⎪⎩

⊥ (if χi = 0 and Pi is corrupted),∏n
j=1 votej (else if f = 1),∏n
j=1 votej · φ (otherwise).

(2)

resulti is the decision value that participant Pi receives. 0 and 1 represent
abort and commit, respectively. ⊥ indicates that Pi cannot decide (i.e., does
not terminate).

4 Proving the Equivalence of FNBAC to NBAC

In this section, we prove that FNBAC defined in Sect. 3 is the equivalent function-
ality of NBAC; i.e., a protocol is an NBAC protocol if and only if it UC-securely
realizes FNBAC.

Before proving it, we firstly provide a formal definition of an NBAC protocol,
namely πNBAC, by using symbolic logic in order to rigorously discuss the equiv-
alence of the functionality to NBAC. Next, we prove two lemmas: 1) πNBAC
UC-realizes FNBAC (i.e., FNBAC is not stronger than πNBAC), and 2) any pro-
tocol realizing FNBAC is πNBAC (i.e., FNBAC is not weaker than πNBAC). The
equivalence can be stated as a corollary of these two lemmas.

4.1 Formal Definition of NBAC

Although the definition of NBAC in Sect. 2 (1) is commonly used and easy
to understand, it isn’t rigorous enough to discuss the equivalence of FNBAC to
NBAC. An NBAC protocol can be formally defined by using symbolic logic as
follows:

Definition 4 (NBAC protocol). A protocol running with a set of independent
processes P = {P1, P2, ..., Pn} is an NBAC protocol πNBAC if it satisfies the
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following, where Pi inputs a vote value vi(∈ {0, 1}; yes : 1, no : 0) and receives a
decision value ri(∈ {0, 1, ⊥}; commit : 1, abort : 0,no decision :⊥), PC(⊆ P) is a
set of corrupted (incorrect) processes, and f is a value defined as Eqn. 1:

Agreement. The requirement of Agreement property, No two processes decide
differently, means that the results of any two different processes (ri and
rj(i �= j)) are equal if both processes receive the result (ri �=⊥ ∩ rj �=⊥).
Hence, this property can be formalized as follows:

∀((ri, rj)|ri �=⊥, rj �=⊥)ri = rj . (3)

(Termination). This property requires that any honest process (Pi(/∈ PC)) can
terminate and get a result (ri �=⊥). Hence,

∀(ri|Pi /∈ PC)ri �=⊥ . (4)

(C-Validity). This property requires that the result of any process is commit
(∀(ri)ri = 1) if all votes are yes ((∀(vj)vj = 1)) and there is no failure (i.e.,
the failure detection oracle OFD outputs f = 1). Hence,

∀(ri)ri = 1 if (∀(vj)vj = 1) ∩ (f = 1). (5)

(A-Validity). This property requires that the result of any terminated process
is abort (∀(ri|ri �=⊥)ri = 0) if at least one vote is no (∃(vj)vj = 0). Hence,

∀(ri|ri �=⊥)ri = 0 if ∃(vj)vj = 0. (6)

4.2 Proving That πNBAC UC-Realizes FNBAC

Lemma 1. An NBAC protocol (πNBAC) UC-securely realizes FNBAC.

Proof. To prove this lemma, it suffices to show that there exists a simulator S
that can simulate any adversary by internal execution of πNBAC.

Suppose simulator S runs as follows:

1. Upon receiving message (Exec, sid,P), internally run πNBAC with vote values
vi = votei and obtain decision values ri (i = 1, ..., n).

2. Equate φ and χi as follows:

φ =

{
0 (∃(ri|ri �=⊥)ri = 0),
1 (otherwise);

(7)

χi =

{
0 (ri =⊥),
1 (otherwise).

(8)

3. Send (Notice, sid, φ, χ) to the functionality in terms of the above φ and χi.

In the following, we prove that such a simulator can simulate any adversary
so that environment Z cannot distinguish FNBAC and πNBAC; i.e., the observ-
able output of FNBAC (resulti) and that of πNBAC (ri) are always consistent
(resulti = ri).

The proof is divided into the following two cases: Pi is not corrupted (case 1)
and Pi is corrupted (case 2).
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Case 1: Pi is not corrupted. If Pi is assumed not to be corrupted (Pi is correct),
i.e., Pi /∈ PC , it holds ri �=⊥ according to Termination property and χi = 1 is
given by Eqn. (8).

Under this assumption, ri must have the following values: ri = 1 if (∀(vj)vj =
1) ∩ (f = 1) according to C-Validity property, ri = 0 if ∃(vj)vj = 0 according to
A-Validity property; ri is undefined in other cases, i.e., if (∀(vj)vj = 1)∩ (f = 0),
however, it must be 0 or 1 according to the assumption (cf. Termination property).

Consequently, ri holds the following value in terms of vj(j = 1, ..., n) and f .

ri =

⎧⎪⎨
⎪⎩

1 (∀(vj)vj = 1 ∩ f = 1),
0 or 1 (∀(vj)vj = 1 ∩ f = 0),
0 (∃(vj)vj = 0).

(9)

In the first case, resulti has the following value according to Eqn. (2):

resulti =
n∏

j=1

votej = 1. (10)

It holds resulti = ri.
In the second case, Agreement property requires that ∀(rj |rj �=⊥)rj = ri.

Eqn. (7) gives φ = 0 if ∃(rj)rj = 0, or φ = 1 otherwise. Hence, it holds that
ri = φ. Since ∀(j)votej = vj = 1, resulti becomes:

resulti =
n∏

j=1

votej · φ = 1 · φ = φ. (11)

It also holds that resulti = ri in this case.
In the last case, it obviously holds that resulti = 0(= ri) since

∏n
j=1 votej = 0.

Therefore, it always holds that resulti = ri if Pi is not corrupted.

Case 2: Pi is corrupted. If Pi is assumed to be corrupted, Termination property
does not restrict ri not to become ⊥ (no decision) so that ri may take any value
of {0, 1, ⊥}.

If ri �=⊥, it holds that resulti = ri as shown in case 1. If ri =⊥, Eqn. (8) gives
χi = 0. Since χi = 0 and Pi is corrupted in this case, it becomes resulti =⊥
according to Eqn. (2); it holds that resulti = ri(=⊥).

Hence, simulator S can simulate any adversary so that environment Z can-
not distinguish FNBAC and πNBAC, and therefore πNBAC UC-securely realizes
FNBAC. �


4.3 Proving That Any Protocol UC-Realizing FNBAC Is πNBAC

Next, we prove that any protocol that UC-realizes FNBAC is πNBAC by proving
the following contrapositive lemma.

Lemma 2. A protocol that is not πNBAC cannot UC-realize FNBAC.

Proof. In the following, we show that no simulator can simulate adversaries
such that the environment cannot distinguish FNBAC and protocol π that does
not hold at least one of the NBAC properties.
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If π does not hold Agreement property. Assume that π does not hold Agreement
property and thus outputs decision values ri, rj where ri �= rj(ri �=⊥, rj �=⊥).

In order that π UC-securely realize FNBAC, there must exist a simulator such
that FNBAC outputs resulti, resultj where resulti �= resultj(i �= j).

However, FNBAC always outputs resulti and resultj such that resulti =
resultj for any pair of i and j when resulti �=⊥ and resultj �=⊥, regardless
to the behavior of the simulator; i.e., FNBAC outputs either resulti = resultj =∏n

k=1 votek or resulti = resultj =
∏n

k=1 votek ·φ. Hence, under this assumption,
the outcome of π and FNBAC become inconsistent so the environment can easily
distinguish them.

If π does not hold Termination property. Assume that π does not hold Termi-
nation property and thus outputs ri =⊥ to Pi(/∈ PC).

FNBAC always gives resulti �=⊥ according to Eqn. (2) to Pi if Pi is not
corrupted. resulti and ri contradict each other and are thus distinguishable.

If π does not hold C-Validity property. Assume that π does not hold C-Validity
property and thus outputs ri = 0 to Pi despite ∀(vj)vj = 1 and f = 1.

Under this assumption, FNBAC outputs resulti =
∏n

j=1 votej = 1 to Pi,
according to Eqn. (2); it becomes resulti �= ri.

If π does not hold A-Validity property. Assume that π does not hold A-Validity
property and thus outputs ri = 1 despite ∃(vj)vj = 0.

According to Eqn. (2), FNBAC outputs resulti =
∏n

j=1 votej = 0 when
∃(vj)vj = 0 and therefore resulti �= ri under this assumption.

Consequently, an execution of π, which does not hold at least one of the
NBAC properties, is inevitably distinguishable from FNBAC running with any
simulator; a protocol that is not πNBAC cannot UC-securely realize FNBAC and
therefore any protocol that can UC-securely realize FNBAC is πNBAC. �


4.4 Equivalence of FNBAC to NBAC

As a corollary of Lemma 1 and Lemma 2, the following theorem can be stated:

Theorem 1. Some protocol π realizes FNBAC if and only if π is an NBAC
protocol (πNBAC).

The equivalence of FNBAC to NBAC is thus proved. �


5 Conclusion

We proposed a construction of ideal functionality of the non-blocking atomic
commitment, namely FNBAC, in the universal composability framework. To ex-
actly capture the NBAC properties by the functionality, we introduced a failure
detection oracle OFD, which is an ideal failure detector notifying the functional-
ity of the occurrence of failures caused by the adversary during protocol execu-
tion. We also confirmed that the proposed functionality is a proper functionality
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of NBAC by proving the equivalence of the FNBAC and the formalized NBAC
protocol πNBAC; i.e., a protocol UC-realizes FNBAC if and only if the protocol is
πNBAC.

Our construction of NBAC can be easily applied to design another agree-
ment problems. For example, the atomic commitment (AC) problem, the most
frequently-examined agreement problem in the distributed computing field, is
equivalent to NBAC without the Termination property; the equivalent function-
ality can be defined as follows:

Definition 5 (Ideal functionality of AC (FAC)). This functionality proceeds
as follows, running with participants P = {P1, P2, ..., Pn}, simulator S, and
failure detection oracle OFD:

1. (Same as Step 1 ∼ 3 of FNBAC, see Def. 3)
2. Upon receiving f from OFD, send (Result, sid, resulti) to Pi, where resulti

takes the following value:

resulti =

⎧⎪⎨
⎪⎩

⊥ (if χi = 0),∏n
j=1 votej (else if f = 1),∏n
j=1 votej · φ (otherwise).

(12)

resulti is the decision value that participant Pi receives. 0 and 1 represent
abort and commit, respectively. ⊥ indicates that Pi cannot decide (i.e., does
not terminate).

The only difference of FAC from FNBAC is the condition that resulti becomes ⊥;
this difference reflects the fact that only corrupted processes can become unable
to terminate in NBAC but any process can become unable to terminate in AC.
The proof of equivalence between an AC protocol and FAC is also similar to that
of NBAC and is thus trivial.

As mentioned in Sect. 1, these agreement protocols are useful in constructing
other higher-level (and more complicated) protocols such as fair exchange proto-
cols. The proposed functionality FNBAC and other functionalities derivable from
our FNBAC construction (e.g. FAC) will be beneficial in designing such compli-
cated protocols and in making it easier to formally prove their security, without
sacrificing any feasibility or realizability of the protocols in the real world.
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