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Abstract. In this paper, a square like attack on Camellia is presented,
by which 9-round 128-bit key Camellia without FL/FL−1 functions layer
and whitening is breakable with complexity of 286.9 encryptions and 266

data and 12-round 256-bit key Camellia without FL/FL−1 function layer
and whitening is breakable with the complexity of 2250.8 encryptions and
266 data. And we can also apply such method to block cipher having
XORing sBoxes in diffusion layer.
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1 Introduction

Camellia [1] is a symmetric key block cipher developed jointly in 2000 at NTT
and Mitsubishi Electric Corporation. It has the modified Feistel structure with
irregular rounds, which is called the FL/FL−1 functions layers. Camellia has
been accepted by ISO/IEC [11] as an international standard. It is also a winner
of NESSIE, CRYPTREC project and IETF [11].

Efficient methods analyzing Camellia include linear attack [13], differential
attack [13] truncated differential attack [6,8,14], impossible differential attack
[16,14], higher order differential attack [4,7], Collision attack [10,15] and square
attack [10,5,17]. The best attack on 128-bit key Camellia was linear attack
[13], which can attack 10-round Camellia without FL/FL−1 functions layer and
whitening with complexity of 2121. The best attack against 256-bit key Camellia
was impossible differential attack, which can attack 12-round Camellia without
FL/FL−1 functions layer and whitening with complexity of 2181.

In this paper, we improve the attacking results on Camellia. Our method
uses active set [2], which was first introduced in square attack [2,3], to build
the attack, however, the balanced byte is not core byte in our attack, special
properties on XORing of active sBoxes are applied to build the distinguisher, so
we call it square like attack. Such properties are first discovered and are in effect
on the ciphers with XORing in diffusion layer.

Brief description of Camellia is presented in section 2. In section 3, active
bytes transformations on Camellia are illustrated and some new properties are
demonstrated. Our basic attacking method is described in section 4. Section 5
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is its extension. The paper concludes with our most important results contrast
with other known results.

2 Description of the Camellia

Camellia has a 128-bit block size and supports 128-, 192- and 256-bit keys. Camel-
lia with a 128-bit key and 256-bit key is written as 128-Camellia, 256-Camellia.
The design of Camellia is based on the Feistel structure and its number of rounds
is 18 (128-bit key) or 24 (192-, 256-bit key). The FL/FL−1 functions layer is in-
serted in it every 6 rounds in order to thwart future unknown attacks. Before the
first round and after the last round, there are pre- and post-whitening layers.

We refer x(r), k(r) to the rth round output and rth round subkey, refer x
(r)
L

and x
(r)
R to the left, right half bytes of x(r), which implies x(r) = x

(r)
L ‖x

(r)
R . Let

PL‖PR and CL‖CR be the Plaintext and Ciphertext.
Let x(r,i) be the ith byte of x(r). The x

(r)
L is a 8-byte sequence, we have

x
(r)
L = (x(r,1)

L , . . . , x
(r,8)
L ). F function contains key-addition K-function, sBoxes

transformation S-function and diffusion function P -function, these functions are
described as follows. The figure illustration of F -function is Fig.1.

The key addition function is

K(x(r)
L , k(r+1))

def
= (x(r,1)

L ⊕ k(r+1,1), . . . , x
(r,8)
L ⊕ k(r+1,8)).

S-function contains 4 types of S-boxes s1, s2, s3, and s4. s2,s3,s4 are variations
of s1,

S(y1, . . . , y8)
def
= (s1(y1), s2(y2), s3(y3), s4(y4), s2(y5), s3(y6), s4(y7), s1(y8)).

The relation among the four sBoxes is that
s2(a) = s1(a) ≪1, s3(a) = s1(a) ≫1, s4(a) = s1(a ≪1).

Let P (z1, ..., z8)
def
= (z′1, ..., z

′
8). The P-function:{0, 1}64 �→ {0, 1}64 maps

(z1, ..., z8) to (z′1, ..., z
′
8). The P-function and its inverse function P−1 are

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

,

z1 = z′2 ⊕ z′3 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8
z2 = z′1 ⊕ z′3 ⊕ z′4 ⊕ z′5 ⊕ z′7 ⊕ z′8
z3 = z′1 ⊕ z′2 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′8
z4 = z′1 ⊕ z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′7
z5 = z′1 ⊕ z′2 ⊕ z′5 ⊕ z′7 ⊕ z′8
z6 = z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z7 = z′3 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7
z8 = z′1 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8

The R round Camellia without FL/FL−1 functions and pre-, post- whitening
function is written as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x
(0)
L ‖x

(0)
R = PL‖PR

x
(r)
L = x

(r−1)
R ⊕ K(S(P (x(r−1)

l ))),
x

(r)
R = x

(r−1)
L ,

CL‖CR = x
(R)
L ‖x

(R)
R .
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Fig. 1. Round function of Camellia-1
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The P -permutation, which is a linear transformation, can be move into pre-
vious round or post round. If pre-, post-whitening and FL/FL−1 are not taken
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Table 1. Round Keys.( We only give the first 14 rounds key.)

128bit key 192-,256-bit key
subkey value subkey value

Pre-whitening kw(1) (kL ≪0)L Pre-whitening kw(1) (kL ≪0)L

kw(2) (kL ≪0)R kw(2) (kL ≪0)R

F (Round1) k(1) (kA ≪0)L F (Round1) k(1) (kB ≪0)L

F (Round2) k(2) (kA ≪0)R F (Round2) k(2) (kB ≪0)R

F (Round3) k(3) (kL ≪15)L F (Round3) k(3) (kR ≪15)L

F (Round4) k(4) (kL ≪15)R F (Round4) k(4) (kR ≪15)R

F (Round5) k(5) (kA ≪15)L F (Round5) k(5) (kA ≪15)L

F (Round6) k(6) (kA ≪15)R F (Round6) k(6) (kA ≪15)R

FL k(l1) (kA ≪30)L FL k(l1) (kR ≪30)L

FL−1 k(l2) (kA ≪30)R FL−1 k(l2) (kR ≪30)R

F (Round7) k(7) (kL ≪45)L F (Round7) k(7) (kB ≪30)L

F (Round8) k(8) (kL ≪45)R F (Round8) k(8) (kB ≪30)R

F (Round9) k(9) (kA ≪45)L F (Round9) k(9) (kL ≪45)L

F (Round10) k(10) (kL ≪60)R F (Round10) k(10) (kL ≪45)R

F (Round11) k(11) (kA ≪60)L F (Round11) k(11) (kA ≪45)L

F (Round12) k(12) (kA ≪60)R F (Round12) k(12) (kA ≪45)R

FL k(l3) (kL ≪77)L FL k(l3) (kL ≪60)L

FL−1 k(l4) (kL ≪77)R FL−1 k(l4) (kL ≪60)R

F (Round13) k(13) (kL ≪94)L F (Round13) k(13) (kR ≪60)L

F (Round14) k(14) (kL ≪94)R F (Round14) k(14) (kR ≪60)R

Round15∼Round18 Round15∼Round18
Postwhitening kw(3) (kA ≪111)L FL kl(5) (kA ≪77)L

kw(4) (kA ≪111)R FL−1 kl(6) (kA ≪77)R

Round19∼Round24
Postwhitening kw(3) (kB ≪111)L

kw(4) (kB ≪111)R

into consideration, two equivalence structures of Camellia called Camellia-3 and
Camellia-4 [10] are given as follows.

The Camellia-3 is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̃
(0)
L ‖x̃

(0)
R = PL‖P−1(PR)

x̃
(r)
L = x̃

(r−1)
R ⊕ S(x̃(r−1)

l ⊕ k(r)), r is odd
x̃

(r)
L = P (x̃(r−1)

R ⊕ S(P (x̃(r−1)
l ) ⊕ k(r))), r is even

x̃
(r)
R = x̃

(r−1)
L ,

CL‖CR = x̃R
L‖P (x̃R

R).

The Camellia-4 is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂
(0)
L ‖x̂

(0)
R = P−1(PL)‖PR

x̂
(r)
L = P (x̂(r−1)

R ⊕ S(P (x̂(r−1)
l ) ⊕ k(r))), r is odd

x̂
(r)
L = x̂

(r−1)
R ⊕ S(x̂(r−1)

l ⊕ k(r)), r is even
x̂

(r)
R = x̂

(r−1)
L ,

CL‖CR = P (x̂R
L)‖x̂R

R.
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The FL/FL−1 functions are shown in Fig.2, which are defined as follows:
({0, 1}64 × {0, 1}64 → {0, 1}64), (xL‖xR, klL‖klR) → yL‖yR. The FL function is

yR = ((xL ∩ klL) ≪1) ⊕ xR,
yL = (yR ∪ klR) ⊕ xL.

Fig.3 shows the key schedule of Camellia. Two 128-bit variables kL and kR

are defined as follows. For 128-bit keys, the 128-bit key k is used as kL and kR

is 0. For 256-bit keys, the left 128-bit of the key k is used as kL and the right
128-bit of k is used as kR. Two 128-bit variables kA and kB are generated from
kL and kR as shown in Fig.3, in which Σi(i = 1, . . . , 6) are constants used as
Key. The round keys are rotation of kA,kB,kL and kR, which is shown in Table2.

3 Basic Attacks on Camellia

3.1 Preliminaries

The concepts of square attack and Λ-set were introduced by Daemen et. al [2].
Let Γ -set be a 256 collection of state bytes α(i) = (α(i,1), . . . , α(i,n)), i ∈

[0..255], where α(i,j) is the jth byte of α(i). If the jth byte of elements in Γ are
different from one another,

α(i,j) 	= α(i′,j), ∀i, i′ ∈ [0..255], i 	= i′

the jth byte is called active byte. The jth byte is called fixed byte, if the jth
bytes are unchanged in Γ -set.

α(i,j) = α(i′,j), ∀i, i′ ∈ [0..255], i 	= i′

And if
∑

i∈[0..255] α
(i,j) = 0, then the jth byte is called balanced byte. To make

thing simple, we use λ, θ, δ, and γ to signify a byte and active byte is denoted
λ, fixed byte is denoted θ and balanced byte is denoted δ, other is denoted γ. A
Γ -set is called Θ-set, if all its bytes are fixed bytes. A Γ -set is called Λ-set, if all
its bytes are active bytes or fixed bytes.

The following Theorem 1 is the most important properties of this paper and the
attack is based on which. Before that, let give some notions. Let Λ = {λ(i)} be a

one byte Λ-set , Θ = {θ(i)} be one byte Θ-set and θ(i) = θ. Let Countf(Λ,Θ)(γ)
def
=

#{γ|f(λ(i), θ(i)) = γ, λ(i) ∈ Λ, θ(i) ∈ Θ, i ∈ [0..255]}. The Countf(Λ,Θ)(γ) is the
count of γ, when the inputs changes trough the input sets Λ and Θ.

The S-box of Camellia has following properties.

Theorem 1. Let Λ = {λ(i)} be a Λ-set and Θ = {θ(i)} be Θ-set, in which
θ(i) = θ and λ(i), θ ∈ {0, 1}8. S-Boxes of Camellia have following properties

1. Countsι(Λ)(γ) = 1, ι ∈ {1, 2, 3, 4}, γ ∈ {0, 1}8;
2. Counts1(Λ)⊕s2(Λ)(γ) ∈ {0, 2}, γ ∈ {0, 1}8;
3. Counts1(Λ)⊕s3(Λ)(γ) ∈ {0, 2}, γ ∈ {0, 1}8;
4. Counts2(Λ)⊕s3(Λ)(γ) ∈ {0, 4}, γ ∈ {0, 1}8;
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5. Countsι(Λ)⊕sι(Λ⊕Θ)(γ) = {0, 2, 4}, ι ∈ {1, 2, 3, 4}, γ ∈ {0, 1}8;
6. Countsι(Λ)⊕sι(Λ⊕Θ1)⊕sκ(Λ)⊕sκ(Λ⊕Θ2)(γ) = {0, 2, 4, 6, 8, . . .}, ι, κ ∈

{1, 2, 3, 4}, ι 	= κ and γ ∈ {0, 1}8,

where Λ ⊕ Θ
def
= {λ(i) ⊕ θ(i)}.

The proof is omitted for we can check them directly. The item 1 is based on the
sBoxes are permutations and item 2,3,4 are based on the liner relation between
sBoxes s1, s2 and s3. Item 5 is ,in fact, the differential table of sBoxes.

3.2 5-Round Distinguishers

In this section, we build a 5-round distinguishers on Camellia-4. Let Θ
def
= {θ(i,1),

. . . , θ(i,8)} be a Θ-set. Let Λ0
def
= {λ

(i,1)
0 , θ

(i,2)
0 , . . . , θ

(i,8)
0 } be a Λ-set, in which the

first byte is a active byte. We select the plaintext set as {PL} = Θ and {PR} =

Λ0. Let F (Θ)
def
= {F (θ(i))}. Let Θ1 = {θ

(i,1)
1 , . . . , θ

(i,8)
1 } def

= P−1(Θ). Let Θ2 =

{θ
(i,1)
2 , . . . , θ

(i,8)
2 } def

= P (S(K(P (Θ1)))). Then, five round Camellia-4 has following
properties.

x̂
(0)
R = PR = (λ(i,1)

0 , θ
(i,2)
0 , . . . , θ

(i,8)
0 ),

x̂
(1)
R = P−1(PL) = (θ(i,1)

1 , . . . , θ
(i,8)
1 ),

x̂
(2)
R = P (S(K(P (x̂(1)

R )))) ⊕ x̂
(0)
R = (λ(i,1)

0 ⊕ θ
(i,1)
2 , θ

(i,2)
0 ⊕ θ

(i,2)
2 , . . . , θ

(i,8)
0 ⊕ θ

(i,8)
2 ),

x̂
(3)
R = S(K(x̂(2)

R )) ⊕ x̂
(1)
R

= (s1(λ
(i,1)
0 ⊕ θ

(i,1)
2 ⊕ k(2,1)) ⊕ θ

(i,1)
1 , s2(θ

(i,2)
0 ⊕ θ

(i,2)
2 ⊕ k(2,2)) ⊕ θ

(i,2)
1

, . . . , s1(θ
(i,8)
0 ⊕ θ

(i,8)
2 ⊕ k(2,8)) ⊕ θ

(i,8)
1 )

def
= (s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 , s2(θ

(i,2)
3 ) ⊕ θ

(i,2)
1 ), . . . , s1(θ

(i,8)
3 ) ⊕ θ

(i,8)
1 )

Let

λ̃
(i)
1

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{3,4,6,7,8}(s1(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

λ̃
(i)
2

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,4,5,7,8}(s2(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,2)

λ̃
(i)
3

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,3,5,6,8}(s3(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,3)

θ̃
(i)
4

def
= (⊕j∈{2,3,4,5,6,7}(s4(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,4)

λ̃
(i)
5

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,6,7,8}(s2(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

θ̃
(i)
6

def
= (⊕j∈{2,3,5,7,8}(s3(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,6)

θ̃
(i)
7

def
= (⊕j∈{3,4,5,6,8}(s4(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,7)

λ̃
(i)
8

def
= s1(λ

(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{4,5,6,7}(s1(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,8)

,

then,

x̂
(4,1)
R = s1(λ̃1) ⊕ s3(λ̃3) ⊕ s4(θ̃4) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,1)
2 ⊕ λ

(i,1)
2

x̂
(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,2)
2
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x̂
(4,3)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s3(λ̃3) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s1(λ̃8) ⊕ θ

(i,3)
2

x̂
(4,4)
R = s2(λ̃2) ⊕ s3(λ̃3) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(i,4)
2

x̂
(4,5)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,5)
2

x̂
(4,6)
R = s2(λ̃2) ⊕ s3(λ̃3) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ

(i,6)
2

x̂
(4,7)
R = s3(λ̃3) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s1(λ̃8) ⊕ θ

(i,7)
2

x̂
(4,8)
R = s1(λ̃1) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(i,8)
2 .

Let us consider some properties of x̂
(4)
R and x̂

(5)
R .

Since x̂
(4,8)
R = s1(λ̃1) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s3(θ̃6) ⊕ s4(θ̃7) ⊕ θ

(2,8)
2 and x̂

(5,8)
R =

s1(x̂
(4,8)
R ⊕ k(5,8)), we have

Count{x̂
(4,8)
R }(γ) ∈ {0, 2}, if λ̃1 = λ̃5, (1)

Count{x̂
(5,8)
R }(γ) ∈ {0, 2}, if λ̃1 = λ̃5, (2)

To make λ̃1 = λ̃5, we have,

λ̃1 = λ̃5

⇔ s1(λ
(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{3,4,6,7,8}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

= s1(λ
(i,1)
0 ⊕ θ

(i,1)
3 ) ⊕ θ

(i,1)
1 ⊕ (⊕j∈{2,6,7,8}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

⇔ (⊕j∈{3,4,6,7,8}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1)

= (⊕j∈{2,6,7,8}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

⇔ (⊕j∈{3,4}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1) = (⊕j∈{2}(sι(θ

(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,5)

So, λ̃1 = λ̃5 requires,

(⊕j∈{2,3,4}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,1) ⊕ k(4,5) = 0 (3)

Let Θ‖Λ
def
= {θ(i)‖λ(i)}. Let 256 Λ-set be

(Θ‖Λ0)ι = ({θ(i,1), . . . , θ(i,8), λ
(i,1)
0 , θ

(i,2)
0 , . . . , θ

(i,8)
0 })ι, ι ∈ [0..255]

in which, λ
(i,1)
0 is active byte, other bytes are fixed bytes, θ

(i,2)
0 ( or θ

(i,3)
0 , θ

(i,4)
0 )

is different for different ι and other bytes are unchanged for all ι ∈ [0..255].
In five round Camellia-4, if we select plaintext set as ({PL‖PR})ι = (Θ‖Λ0)ι,

then existing one ι makes λ̃1 = λ̃5. For, when Θ is unchanged, the left part of
Eq.3 is only influenced by sι(θ

(i,j)
3 ), j ∈ {2, 3, 4}. And sι(θ

(i,j)
3 ) is only influenced

by θ
(i,j)
0 , where j ∈ {2, 3, 4}. Then we find a 5-round distinguisher on Camellia-4.

There are some more 5-round distinguishers as follows.
For, x̂

(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ(2,2),

Count{x̂
(4,2)
R }(γ) ∈ {0, 2, 4}, if λ̃1 = λ̃8 or λ̃2 = λ̃5. (4)

Count{x̂
(5,2)
R }(γ) ∈ {0, 2, 4}, if λ̃1 = λ̃8 or λ̃2 = λ̃5. (5)
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If λ̃2 = λ̃5, then we have

λ̃2 = λ̃5 ⇔ (⊕j∈{4,5,6}(sι(θ
(i,j)
3 ) ⊕ θ

(i,j)
1 )) ⊕ k(4,2) ⊕ k(4,5) = 0,

For λ̃1 = λ̃8, we have

λ̃1 = λ̃8 ⇔
⊕

j∈{3,5,8} sι(θ
(i,j)
2 ⊕ k(2,j)) ⊕ θ

(i,j)
1 ) ⊕ k(4,1) ⊕ k(4,5) = 0.

In five round Camellia-4, if we select plaintext set as ({PL‖PR})ι = (Θ‖Λ0)ι,
in which if θ

(i,4)
0 ( or θ

(i,5)
0 , θ

(i,6)
0 ) is different for different ι, then existing one

ι makes λ̃2 = λ̃5 and if θ
(i,3)
0 ( or θ

(i,5)
0 , θ

(i,8)
0 ) is different for different ι, then

existing one ι makes λ̃1 = λ̃8.
Now, let us reconsider,

x̂
(4,2)
R = s1(λ̃1) ⊕ s2(λ̃2) ⊕ s4(θ̃4) ⊕ s2(λ̃5) ⊕ s4(θ̃7) ⊕ s1(λ̃8) ⊕ θ(2,2),

If we have λ̃1 = λ̃2 ∧ λ̃5 = λ̃8 or λ̃1 = λ̃5 ∧ λ̃2 = λ̃8, then we have

Count{x̂
(4,2)
R }(γ) ∈ {0, 2, 4, 6, 8, . . .},

Count{x̂
(5,2)
R }(γ) ∈ {0, 2, 4, 6, 8, . . .}.

Similarly, when the Λ-set Λ0 is selected as {θ
(0,1)
0 , λ

(0,2)
0 , θ

(0,3)
0 , . . . , θ

(0,8)
0 },

{θ
(0,1)
0 , θ

(0,2)
0 , λ

(0,3)
0 , θ

(0,4)
0 , . . . , θ

(0,8)
0 } or {θ

(0,1)
0 , θ

(0,2)
0 , θ

(0,3)
0 , λ

(0,4)
0 , θ

(0,5)
0 , . . . ,

θ
(0,8)
0 }, we can get similar properties, these properties are summarized in

Table 2.

4 The Square Like Attack

In this section, we construct the attacks on Camellia without pre-, post- whiten-
ing and FL/FL−1 functions.

The 6-round Square like attack uses the property of that, in Camellia-4 if the
1st byte of {PR} is active byte and (λ̃1 = λ̃5) then, Count{x̂

(5,8)
R }(γ) ∈ {0, 2}.

This attack can be described by the following steps.

Step1. Select 256 Λ-set Λι = {λ
(i,1)
ι , θ

(i,2)
ι , . . . , θ

(i,8)
ι }, ι ∈ [0..255], in which

λ
(i,1)
ι = λ

(i,1)
ι′ , θ

(i,j)
ι = θ

(i,j)
ι′ , j ∈ {2, 3, 5, 6, 7, 8} and θ

(i,4)
ι 	= θ

(i,4)
ι′ , ∀ι 	= ι′,

and a Θ-set Θ. The 256 Plaintext sets are ({PL‖PR})ι = (Θ‖Λι). Then get
the ciphertext sets ({CL‖CR})ι and record them.

Step 2. For each ({CL‖CR})ι, Guess k(6,8), then check Count{x
(5,8)
R }(γ) ∈ {0, 2}

being satisfied or not by Eq(6).

x̂
(5,8)
R = s1(x̂

(6,8)
R ⊕ k(5,8)) (6)

In this 6-round attack, the time that step 1 takes is 216 6-round encryptions
takeing. Since Eq.(6) has 1 additions, 1 substitutions, getting x̂

(6)
R from CR takes

5 addition, and 6-round Camellia has 44 × 6 additions, 8 × 6 substitutions, then
the time of each guessing key in step 2 takes almost 1

48 times 6 round encryption.
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Table 2. Relation between active byte and special properties on its fifth round outputs,
in which {PL} = {θ(i,1), . . . , θ(i,8)}

P laintext − set Count{Byte}(γ) ∈ Set if (Condition)
{PR} Byte Set Condition

x̂
(5,8)
R {0, 2} λ̃1 = λ̃5

{λ(i,1), θ(i,2), . . . , θ(i,8)} {0, 2, 4} λ̃1 = λ̃8 ∨ λ̃2 = λ̃5

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃1 = λ̃2 ∧ λ̃5 = λ̃8) or

(λ̃1 = λ̃5 ∧ λ̃2 = λ̃8)
x̂

(5,4)
R {1} λ̃2 = λ̃5

x̂
(5,5)
R {1} λ̃1 = λ̃8

x̂
(5,5)
R {0, 4} λ̃2 = λ̃3

{θ(i,1), λ(i,2), θ(i,3), . . . , θ(i,8)} {0, 2, 4} λ̃2 = λ̃5 ∨ λ̃3 = λ̃6

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃2 = λ̃3 ∧ λ̃5 = λ̃6) or

(λ̃2 = λ̃6 ∧ λ̃3 = λ̃5)
x̂

(5,1)
R {1} λ̃3 = λ̃6

x̂
(5,6)
R {1} λ̃2 = λ̃5

Pseudo Random Function
{θ(i,1), θ(i,2), λ(i,3), θ(i,4), . . . , θ(i,8)} {0, 2, 4} λ̃3 = λ̃6 ∨ λ̃4 = λ̃7

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃3 = λ̃4 ∧ λ̃6 = λ̃7) or

(λ̃3 = λ̃7 ∧ λ̃4 = λ̃6)
x̂

(5,2)
R {1} λ̃4 = λ̃7

x̂
(5,7)
R {1} λ̃3 = λ̃6

Pseudo Random Function
{θ(i,1), . . . , θ(i,3), λ(i,4), θ(i,5), . . . , θ(i,8)} {0, 2, 4} λ̃4 = λ̃7 ∨ λ̃1 = λ̃8

x̂
(5,2)
R {0, 2, 4, 6, . . .} (λ̃1 = λ̃4 ∧ λ̃7 = λ̃8) or

(λ̃1 = λ̃7 ∧ λ̃4 = λ̃8)
x̂

(5,3)
R {1} λ̃1 = λ̃8

x̂
(5,8)
R {1} λ̃4 = λ̃7

In step 2, Eq.(6) repeats 28 times for 28 guessed key. The probability of wrong key

passing the checking is 28 ×
(

256
128

)

×
(

256
2

)

×
(

254
2

)

× . . .×
(

2
2

)

×(128!)−1×

128! × 256−256 = 28 × 256!256!
2128256256128!128! ≈ 282π256256256256256e128e128

21282π128e256e256256256128128128128 =
2−119(2

e )256, so only right key can pass step 2, then the 6-round attack’s com-
plexity is 216(1 + 28 × 1

48 ) ≈ 218.4. The selected Plaintexts are 216.
7-round attack adds one round at the beginning, uses the structure of Camellia-

3 and selects the input sets to make ({x̃
(1)
L ‖x̃

(1)
R })ι = (Θ‖Λι). The selected 256

plaintext sets are

({PL})ι = Λι = {λ
(i,1)
ι , θ

(i,2)
ι , . . . , θ

(i,8)
ι },

({PR})ι ={P−1(s1(λ
(i,1)
ι ⊕k(1,1)), θ(i,2)

ι , θ
(i,3)
ι , s4(θ

(i,4)
ι ⊕k(1,4)), θ(i,5)

ι , . . . , θ
(i,8)
ι )}.

We have {x̃
(0)
R }i = {s1(λ

(i,1)
ι ⊕ k(1,1)), θ(i,2)

ι , θ
(i,3)
ι , s4(θ

(i,4)
ι ⊕ k(1,4)), θ(i,5)

ι , . . . ,

θ
(i,8)
ι }ι. Then, k(1,1), k(1,4) and k(7,8) are guessing key bytes.
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This 7-round attack selects 232 plaintext and the attacking complexity is 216×
216(1 + 28 × 1

56 ) ≈ 234.5. The chosen plaintext are 232.
The 8-round attack is similar to 7-round attack, just adds one round at the

end and guesses the 8th round key bytes to get the x̃
(7,8)
R . Getting x̃

(7,8)
R from

x̃
(8)
R needs five 8th round key bytes k(8,1), k(8,4), k(8,5), k(8,6), k(8,7) and needs

11 addition and 6 S-box transformation, which equals 1/8 8-round encryption.
Then, the complexity of this attack is 232 × (1 + 240 × (1

8 + 28 × 1
64 )) ≈ 274. The

chosen plaintexts are 232.
In 9-round attack, we add one round at the beginning and use the structure

of Camellia-4, where the selected special plaintexts should satisfy the properties
of that ({x̂

(2)
L ‖x̂

(2)
R })ι = (Θ‖Λι). So the plaintext are,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(1)
L

P
(2)
L

P
(3)
L

P
(4)
L

P
(5)
L

P
(6)
L

P
(7)
L

P
(8)
L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ι

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,1)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,1)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1))

s4(θ
(i,4)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1))

θ
(i,6)
ι

s4(θ
(i,4)
ι ⊕ k(2,4))

s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ι

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(1)
R

P
(2)
R

P
(3)
R

P
(4)
R

P
(5)
R

P
(6)
R

P
(7)
R

P
(8)
R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ι

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,1))

s2(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,2))

s3(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ k(1,3))

s4(s4(θ
(i,4)
ι ⊕ k(2,4)) ⊕ k(1,4))

s2(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ k(1,5))

θ
(i,6)
ι

s4(s4(θ
(i,4)
ι ⊕ k(2,4)) ⊕ k(1,7))

s1(s1(λ
(i,1)
ι ⊕ k(2,1)) ⊕ s4(θ

(i,4)
ι ⊕ k(2,4)) ⊕ k(1,8))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ι

,

The complexity of this attack is 288 × (1 + 240 × (1
9 + 28 × 1

72 )) ≈ 2129.8.
In 128-Camellia, part of the 9th round key bits are included in k(1) and k(2).

Then, in step 2, we check Count{x
(7,4)
R }(γ) = 1 being hold or not, the guessing key

bytes are k(1,1), k(1,2), k(1,3), k(1,4), k(1,5), k(1,7), k(1,8), k(2,1), k(2,4), k(8,4), k(9,2),
k(9,3), k(9,4), k(9,5), k(9,6), k(9,7). The 28 bits of 9th round key are included in
first and second rounds guessing. The complexity of this 9-round attack becomes
288 × (1 + 212(1

8 + 28 × 1
72 )) ≈ 2102.2. The chosen plaintexts are 288.

In 256-Camellia, the chosen plaintexts are same as attack on 128-Camellia.
Since k(7)‖k(8) = k(1)‖k

(2)
≪30, the complexity of 7-round attack becomes 232 ×

(1 + 1 × 1
56 ) ≈ 232, in which the guessing key bytes are k(1,1), k(1,2), k(7,8). Key

bits of k(7,8) are included in key bits of k(1,1) and k(1,2).
In these basic attacks, we select 256 Λ-set Λι that requires θ

(i,4)
ι 	= θ

(i,4)
ι′

to guarantee the existence of λ̃1 = λ̃5. However, to guarantee the Θ-set Θ is
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Fig. 4. Basic Attack on 6,7,8, and 9 round Camellia

unchanged, 7-round attack requires guessing 1 more key byte and 9-round attack
requires guessing 3 more key bytes. In next section, we avert these key guessing.

5 Improvements on the Attack

5.1 Basic Improvement

In 6-round attack, if we select {PL}ι = Θι and {PR}ι = Λι, in which the first
byte of Λι is active byte and other bytes of Λι and Θι are random selected fixed
bytes, then, for each Θι and Λι, the probability of λ̃i = λ̃j , i 	= j is

∑255
i=0

1
256

1
256 =

1
256 . And the probability of non appearance of λ̃i = λ̃j is 255

256 , for given i, j ∈
{1, . . . , 8}. And when the attacker selects t plaintext sets, the non appearance
of λ̃i = λ̃j is (255

256 )t. We can improve the attack in following way.

Step1. Set ι = 1.
Step2. Select a Λ-set Λι and a Θ-set Θι, in which λ

(i,1)
ι is a active byte and other

bytes are random selected fixed bytes. Set the Plaintext sets as {PL‖PR}ι =
Θι‖Λι and get the ciphertext sets as {CL‖CR}ι.
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Step 3. Guess k(6,8), gets x̂
(5,8)
R by Eq(6), checks Count{x̂

(5,8)
R }(γ) ∈ {0, 2} being

satisfied or not. If Count{x̂
(5,8)
R }(γ) > 2 or #{Count{x

(5,8)
R }(γ) = 1} > 128,

then selects a new key. If the exist a key k(6,8) pass the checking, then it is
a correct key. Or else ι = ι + 1 and goto step 2.

In this 6-round attack, the time that step 2 takes is 28 6-round encryptions
takeing. For each guessing key step 3 takes almost 1

48 times 6 round encryption.
In step 2, Eq.(6) repeats 28 times. The probability of wrong key passing the
checking is 2−119(2

e )256 ≈ 2−232, so only right key can pass step 2. And when
ι = 210, the probability appearance of λ̃1 = λ̃5 is 0.99. Then the 6-round attack’s
complexity is 218(1 + 28 × 1

48 ) ≈ 220.4. The selected Plaintexts are 218.
The 7,8,9-round128-bitCamellia attacks use same structure asprevious section.

In 7-roundattack, the guessing key bytes are k(1,1)andk(7,8). In 8-roundattack, the
guessing key bytes are k(1,1), k(7,8), k(8,1), k(8,4), k(8,5), k(8,6),k(8,7). In 9-round at-
tack, the guessing key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8), k(2,1), k(8,8), k(9,1),
k(9,4), k(9,5), k(9,6), k(9,7), in which the 13 bits of 9th round key is included in 1st
guess round key. The chosen plaintexts for 7,8 and 9 rounds are 226, 226 and 266,
respectively. The complexities are 226 × (1 + 28 × 1

56 ) = 228.5, 226 × (1 + 240(1
8 +

28 × 1
64 )) ≈ 268 and 266 × (1 + 227(1

9 + 28 × 1
72 )) ≈ 294.9, respectively.

In 9-round attack, if we select the ciphertext similar as previous discussion
on plaintext and check the Count{x̃

(2,5)
R }(γ) = 1 being satisfied or not, then

the guessing round key bytes are k(9,1), k(9,2), k(9,4), k(9,7), k(9,8), k(8,4),k(2,5),
k(1,1), k(1,2), k(1,6), k(1,7), k(1,8). Then, the complexity of attack becomes 266 ×
(1 + 221(1

9 + 23 × 1
72 )) ≈ 284.8.

5.2 Improvement on 256-Bit Camellia

In 7,8,9 and 10-round attacks on 256-Camellia the chosen plaintext are same as
above section. However, the 7th round key is same as first round key and 8th
round key is same as 2nd round key, then in 7-round attack, the guessing round
key bytes are k(1,1) and k(7,5), in which 6 bits of k(7,5) are included in k(1,1). In
8-round attack, the guessing round key bytes are k(1,1), k(7,5), k(8,1), k(8,2), k(8,6),
k(8,7), and k(8,8). In 9-round attack, the guessing round key bytes are k(1,1), k(1,2),
k(1,3), k(1,5), k(1,8), k(2,1), k(8,5), k(9,1), k(9,2), k(9,6), k(9,7), and k(9,8). In 10-round
attack, the guessing round key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8), k(2,1),
k(8,5), k(9,1), k(9,2), k(9,6), k(9,7), k(9,8) and k(10). Since 6 bits of k(8,5) are included
in k(2,1), the selected plaintext for 7,8,9 and 10-round attacks are 226, 226, 266

and 266, respectively. The complexities are 226 × (1 + 22 × 1
56 ) ≈ 226, 226 ×

(1 + 240 × (1
8 + 22 × 1

64 ) ≈ 263, 266 × (1 + 240 × (1
9 + 22 × 1

72 ) ≈ 2103.4 and
266 × (1 + 264 × ( 1

10 + (240 × ( 1
10 + 22 × 1

80 )))) ≈ 2167.3, respectively.
In 11-round attack, we add one round at the end of 10-round and check the

output x
(7,8)
R . Then the attacking key bytes are k(1,1), k(1,2), k(1,3), k(1,5), k(1,8),

k(2,1),k(8,8), k(9,1), k(9,4), k(9,5), k(9,6), k(9,7), k(10) and k(11).
In key schedule of Camellia, if kB is given, then kA ⊕ kR can be gotten by

direct computation. So if kB and (kR)L are given, then (kA)L is known and if kB
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Table 3. The Summary of known attacks on Camellia

Round FL/ Method Data Time Time Notes
FL−1 128-bit 256-bit

6 N/Y SLA 218 220.4 220.4 This Paper
6 N/Y SA 211.7 2112 2112 [5]
8 No TDC 283.6 255.6 263 [8]
8 No SLA 226 268 263 This Paper
8 Yes ISA 248 298 282 [10]
8 Yes SA 248 — 2116 [17]
9 No SLA 266 284.8 2103.4 This Paper
9 No VSA 288 290 2122 [10]
9 No DC 2105 2105 2105 [13]
9 No CA 2113.6 2121 2175.6 [15]
9 Yes ISA 248 2122 2146 [10]
9 No BA 2123.9 — 2169.9 [10]
9 No HODC 221 — 2188 [4]
9 Yes SA 260.5 — 2202 [17]
10 No LA 2120 2121 2121 [13]
10 No DC 2105 — 2165.7 [13]
10 No SLA 266 — 2167.3 This Paper
10 No ICA 214 — 2207.4 [10]
10 Yes ISA 248 — 2210 [10]
10 No CA 214 — 2239.9 [15]
10 No RA 2126.5 — 2240.9 [15]
10 No HODC 221 — 2254.7 [4]
11 No LA 2120 — 2181.5 [13]
11 No SLA 266 — 2211.6 This Paper
11 No DC 2105 — 2231.5 [13]
11 No VSA 288 — 2250 [10]
11 N/Y HODC 293 — 2255.6 [4]
12 No IPDC 2120 — 2181 [16]
12 No LA 2120 — 2245.4 [13]
12 No SLA 266 — 2249.6 This Paper

Note 1. BA: Boomerang Attack; CA: Collision Attack; DC: Differential Attack;
HODC: High Order Differential Attack; ICA: Improved Collision Attack; IPDC: Im-
possible Differential Attack; LA: Linear Attack; RA: Rectangle Attack; SA: Square
Attack; TDC: Truncated Differential Attack; VSA: Variant Square Attack;

and (kR)R are given, then (kA)R is known. In 192-and 256-Camellia, the third
round key is (kR)L and the 11th round key is (kA)L. The first two round keys
are (kB)L and (kB)R.

To improve the attack,we use chosen ciphertext attack, in which we select the ci-
phertext set {CL‖CR}ι same as the plaintext {PL‖PR}ι in 11-round chosen plain-
text attack. Then, the attacking key bytes become k(11,1), k(11,2), k(11,3), k(11,5),
k(11,8), k(10,1),k(4,8), k(3,1), k(3,4), k(3,5), k(3,6), k(3,7), k(2) and k(1). From k(2),k(1),
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k(11) and k12, we can get k(3) and k(4). In fact, 24 bits of k(3,1), k(3,4), k(3,5), k(3,6),
k(3,7) can be get from k(2),k(1) and key bytes k(11,1), k(11,2), k(11,3), k(11,5) and
k(11,8). Then the chosen ciphertext in 11-round attack is 266 and the complexity
is 266 × (1 + 264 × ( 1

11 + 264 × ( 1
11 + 216 × ( 1

11 + 28 × 1
88 )))) ≈ 2211.6.

12-round attack adds one round at the beginning of 11-round selected plain-
text attack and uses select ciphertext attack. So the selected ciphertext is same as
11-round chosen ciphertext attack and the guessing key bytes are k(12,1),k(12,2),
k(12,3), k(12,5),k(12,8), k(11,1),k(5,8), k(4,1), k(4,4), k(4,5),k(4,6), k(4,7),k(3), k(2) and
k(1). The k(5) is same as part of k(11) and k12. From k(2), k(1), k(12,1),k(12,2),
k(12,3), k(12,5),k(12,8) and k(11, 1), we can get 46 bits of k(4,1), k(4,4), k(4,5),k(4,6),
k(4,7) and k(3). k(5) can be get from k(1),k(2) and k(3). Then, the 12-round attack
requires 266 ciphertext and the complexity is 266 × (1 + 264 × ( 1

12 + 264 × ( 1
12 +

243 × ( 1
12 + 216 × ( 1

12 + 1 × 1
96 ))))) ≈ 2249.6.

5.3 The Influences of FL/FL−1 Function

If FL/FL−1 layer is included, the properties of XORing of sBoxes can not pass
the FL/FL−1 layer, so the attack is possible only by adding the rounds at the
end of 6-round basic attack and guessing more key bytes of FL/FL−1 layer. Then
the attack is only possible for 7-round 128-Camellia and 9-round 256-Camellia.

6 Conclusions

The Square like attack is possible for the XORing of active Sboxes has some
special properties. The rotation of key schedule of Camellia influence the security
of Camellia. Table.3 gives a summary of known attacks on Camellia.
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