
Cunning Ant System for Quadratic Assignment
Problem with Local Search and Parallelization

Shigeyoshi Tsutsui

Hannan University, Matsubara, Osaka 580-8502 Japan
tsutsui@hannan-u.ac.jp

Abstract. The previously proposed cunning ant system (cAS), a vari-
ant of the ACO algorithm, worked well on the TSP and the results showed
that the cAS could be one of the most promising ACO algorithms. In
this paper, we apply cAS to solving QAP. We focus our main attention
on the effects of applying local search and parallelization of the cAS.
Results show promising performance of cAS on QAP.

1 Introduction

In a previous paper [1,2], we have proposed a variant of the ACO algorithm
called the cunning Ant System (cAS) and evaluated it using TSP which is a
typical NP-hard optimization problem. The results showed that the cAS could
be one of the most promising ACO algorithms. In this paper, we apply cAS
to solving the quadratic assignment problem (QAP). The QAP is also an NP-
hard optimization problem and it is considered one of the hardest optimization
problems [3,4]. The QAP is also a good set of problems for testing the capabilities
of solving combinatorial optimization problems.

There are many studies on solving QAP with ACO showing better results
than with other meta-heuristics. These studies are summarized in [5]. Typi-
cal examples of ACO algorithms for the QAP are AS-QAP, MMAS-QAP, and
ANTS-QAP. Among these, it is reported that MMAS-QAP [3] is the best per-
forming algorithm [5].

We performed a preliminary study which applied cAS to solving QAP in [6].
In this paper, we apply cAS to solving QAP and compare the performance with
the performance of MMAS [3]. We also discuss an approach for parallelization
of the cAS for QAP.

In the remainder of this paper, Section 2 gives a brief overview of cAS when
it is applied in TSP. Then, Section 3 describes how the solutions with cAS for
the QAP are constructed. In Section 4, we provide an empirical analysis of the
cAS and compare the results with MMAS. In Section 5, we study the use of a
kind of parallelization of cAS, with the aim of achieving faster execution of the
algorithm in a network environment. Finally, Section 6 concludes this paper.

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 269–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

270 S. Tsutsui

2 A Brief Overview of cAS

cAS [1,2] introduced two important schemes. One is a scheme to use partial
solutions which we call cunning. The other is to use the colony model, dividing
colonies into units. Using partial solutions to seed solution construction in the
ACO can be found in [7,8,9] with other frameworks. The agent introduced in
cAS is called cunning ant (c-ant). The c-ant differs from traditional ants in its
manner of solution construction. It constructs a solution by borrowing a part
of existing solutions. The remainder of the solution is constructed based on
τij(t) probabilistically as usual. In a sense, since this agent in part appropriates
the work of others to construct a solution, we named the agent c-ant after the
metaphor of its cunning behavior. An agent from whom a partial solution has
been borrowed by a c-ant is called a donor ant (d-ant).

We use a colony model which consists of m units [1,2]. Each unit consists of
only one ant∗k,t (k = 1, 2, . . . , m). At iteration t in unit k, a new c-antk,t+1
creates a solution with the existing ant in the unit (i.e., ant∗k,t) as the d-antk,t.
Then, the newly generated c-antk,t+1 and d-antk,t are compared, and the better
one becomes the next ant∗k,t+1 of the unit. Thus, in this colony model, ant∗k,t,
the best individual of unit k, is always reserved.

Pheromone density τij(t) is then updated with ant∗k,t (k=1, 2, . . . , m) and
τij(t + 1) is obtained as:

τij(t + 1) = ρ · τij +
∑m

k=1
Δ∗τk

ij(t), (1)

Δ∗τk
ij(t) = 1/C∗

k,t : if (i, j) ∈ ant∗k,t, 0 : otherwise, (2)

where the parameter ρ (0≤ ρ < 1) is the trail persistence (thus, 1–ρ models the
evaporation), Δ∗τk

ij(t) is the amount of pheromone ant∗k,t puts on the edge it
has used in its tour, and C∗

k,t is the fitness of ant∗k,t.
In cAS, pheromone update is performed with m ant∗k,t (k=1,2,. . . , m) by Eq.

3 within [τmin, τmax] as in MMAS [3]. Here, τmax and τmin for cAS is defined as

τmax(t) =
1

1 − ρ
×

∑m

k=1

1
C∗

k,t

, (3)

τmin(t) =
τmax · (1 − n

√
pbest)

(n/2 − 1) · n
√

pbest
, (4)

where pbest is a control parameter introduced in MMAS [3].

3 Cunning Ant System for QAP

The QAP is a problem in which a set of facilities or units are assigned to a set of
locations and can be stated as a problem to find permutations which minimize

f(φ) =
n−1∑

i=0

n−1∑

j=0

aijbφ(i)φ(j), (5)

Cunning Ant System for Quadratic Assignment Problem 271

where A = (aij) and B = (bij) are two n × n matrices and φ is a permutation
of {0, 1, . . . , n–1}. Matrix A is a distance matrix between locations i and j, and
B is the flow between facilities r and s. Thus, the goal of the QAP is to place
the facilities on locations in such a way that the sum of the products between
flows and distances are minimized.

3.1 The c-ant for QAP

section 3

location 0

21403

section 2

section 1 section 4

section 0location 4

location 3

location 1

location 2

0 1 2 3 4

243

d-ant

c-ant

values based on ij(t)

Fig. 1. c-ant and d-ant in QAP

The c-ant in QAP acts in a slightly differ-
ent manner than a c-ant in TSP. In TSP,
pheromone trails τ ij(t) are defined on each
edge between city i and j. On the other hand,
the pheromone trails τ ij(t) in the QAP ap-
plication correspond to the desirability of as-
signing a facility i to a location j [3]. In this
paper, we use this approach for cAS on QAP.
Fig. 1 shows how the c-ant acts in QAP.

In this example, the c-ant borrows part of
the node values at location 0, 2, and 4. The
c-ant constructs the remainder of the node
values for location 1 and 3 according to the
following probability:

pij(t) =
τij(t)∑

k∈N(i) τik
, (6)

where N(i) is the set of still unassigned facilities. Using c-ant in this way, we
can prevent premature stagnation the of search, because only a part of the nodes
in a string are newly generated, and this can prevent over exploitation caused
by strong positive feedback to τij(t) as we observed in cAS in [1,2]. The colony
model of cAS for QAP is the same as was used in [1,2] for TSP.

3.2 Sampling Methods

Let us represent the number of nodes that are constructed based on τ ij(t), by
ls. Then, lc, the number of nodes of partial solution, which c-ant borrows from
d-ant, is lc = n–ls. Following cAS in TSP, we use the control parameter γ which
define E(ls) (the average of ls) by E(ls) = n×γ and use the following probability
density function fs(l) used in [1,2] as

fs(l) =

⎧
⎨

⎩

1−γ
nγ

(
1 − l

n

) 1−2γ
γ for 0 < γ ≤ 0.5,

γ
n(1−γ)

(
l
n

) 2γ−1
1−γ for 0.5 < γ < 1.

(7)

In cAS for TSP, nodes in continuous positions of d-ant are copied to c-ant,
because the partial solutions of d-ant are represented by nodes in continuous
positions. However, in QAP there is no such constraint and it is not necessary

272 S. Tsutsui

for nodes, which are copied from d-ant or sampled according to τ ij(t), to be
in continuous positions. Thus, in creating a new c-ant in QAP, nodes at some
positions are copied and others are sampled with a random sequence of positions
as follows: The number of nodes to be sampled ls is generated by Eq. 7 with
a given γ value. Then we copy the number of nodes, lc = n–ls, from d-ant at
random positions and sample the number of remaining nodes, ls, according to
Eq. 6 with random sequence.

4 Experiments

QAP test instances in QAPLIB [10] can be classified into i) randomly generated
instances, ii) grid-based distance matrix, iii) real-life instances, and iv) real-life-
like instances [11,3]. In this section, we evaluate cAS on the QAP using QAPLIB
instances which were used in [3] and compare the performance with MMAS.

4.1 Performance of cAS on QAP Without Local Search

Here, we see the performance of cAS without local search using relativlely small
instances showned in Table 1. The comparison with MMAS was performed on
the same number of solution constructions Emax = n×800,000. For number of
units (or ants for MMAS) m = n×4 is used. ρ value of 0.9 and pbest value of
0.005 are used for both cAS and MMAS. 25 runs were performed.

Table 1 summarizes the results. The values in the table represent the deviation
from the optimum value by Error (%) ((f(φ)− best)/best×100). The results of
cAS are with γ value of 0.3. The code for MMAS is implemented by us and tuned
for the appropriate use of global best and iteration best in the pheromone update
so as to get the smallest values of Error. We got the smallest value when the
global best was applied every 5 iterations to the pheromone update in MMAS.
The pts strategy [3] in MMAS was also tuned.

Table 1. Results without local search. Error(%)
is average over 25 independent runs.

MMAS+pts MMAS

tai20a 1.006 2.996 3.140

tai25a 1.566 3.217 3.380

tai30a 1.843 3.004 2.758

tai35a 2.194 3.690 3.600

ii nug30 0.455 1.675 1.962

kra30a 1.147 3.963 4.014

kra30b 0.447 2.736 2.836

tai20b 0.000 0.348 0.388

tai25b 0.003 1.753 2.385

tai30b 0.066 2.274 2.279

tai35b 0.252 2.453 2.472

MMAS

i

iii

iv

c AS

(=0.3)

QAP

instance

The values in bold-face show
the best performance for each
instance. From this table, we
can see that cAS has good
performance.

4.2 The Effect of γ Values

Table 1 shows Error for γ =
0.3. Fig. 2 shows the variations
of Error for various γ values
on tai30aCnug30Ckra30b, and
tai30b. Here, γ values were var-
ied starting from 0.1 to 0.9 with
step 0.1. From this figure, we
can see the effectiveness of us-
ing c-ant ; i.e., with the smaller values of γ (in the range of [0.1, 0.5]), the better
values in Error are observed as was the case with cAS on TSP in [1,2].

Cunning Ant System for Quadratic Assignment Problem 273

4.3 Analysis of the Convergence Process of cAS

3
3 3 3 3 3

3 3

3

H
H

H H H H H

H

H
J

J

J J
J

J J

J

J

B B B B
B

B

B

B

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

E
rr

or
(%

)

3 tai30a

H nug30

J kra30a

B tai30b

Fig. 2. Change of Error of cAS with-
out local search for various γ

As we discussed in Section 2 and Subsection
4.2, the cunning action can be expected to
prevent premature stagnation the of search,
because only a part of the nodes in a solu-
tion are newly generated, and this prevent
over exploitation caused by strong positive
feedback to τij(t). In this subsection, we an-
alyze the convergence process using Entropy
of pheromone density τ ij(t) to measure the
diversity of the system.

Definition of entropy of pheromone density. We define I(t), entropy of
pheromone density τ ij(t), as follows:

I(t) = − 1
n

n−1∑

i=0

n−1∑

j=0

pij(t) log pij(t), (8)

where pij(t) is defined as

pij(t) =
τij(t)

n−1∑
j=0

τij(t)
. (9)

The upper bound of I(t) is obtained when all elements of τ ij(t) have the same
values as found during the initialization stage (t=0). This value is calculated as

I = log(n). (10)

To calculate the lower bound of I(t), let’s consider an extreme case in which all
strings have the same set of node values and pheromones have been distributed
across the set. If this iteration continues for a long time, all elements of τij(t)
converge to τmin or τmax. The lower bound of the entropy I(t) is obtained in
these situations and can be calculated as Eq. 11 as follows:

I = log(r + n − 1) − r log(r)
r + n − 1

(11)

where r=τmax/τmin. In the following analysis, we use the normalized entropy
IN (t) which is defined with I(t), I, and I as

IN (t) =
I(t) − I

I − I
(12)

Then, IN (t) takes values in [0.0, 1.0].

274 S. Tsutsui

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

N
o

rm
al

iz
ed

 e
n

tr
o

p
y

No. of iterations

0.1

0.3

0.5

0.7

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

N
o

rm
al

iz
ed

 e
n

tr
o

p
y

No. of iterations

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.03

0.1

1

10

30

1
0

0

1
0
0
0

1
0
0
0
0

1
0

0
0
0
0

2
0

0
0
0
0

E
rr

or
(%

)

No. of iterations

0.1

0.3

0.5

0.7

0.9

0.03

0.1

1

10

30

1
0

0

1
0
0
0

1
0
0
0
0

1
0

0
0
0
0

2
0

0
0
0
0

E
rr

or
(%

)

No. of iterations

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

(a) tai25b

(b) tai30b

0.002

0.01

0.1

1

10

20

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

E
rr

or
(%

)

No. of iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

N
o

rm
al

iz
ed

 e
n

tr
o

p
y

No. of iterations

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

Fig. 3. Convergence processes of tai25b and
tai30b without local search

Analysis of the convergence
process. Here we show the
convergence processes for tai25b
and tai30b in Fig. 3. In the fig-
ure, the left shows the change in
Error (%) and the right shows
the change in IN (t). Values in
the figure show averaged val-
ues over 25 independent runs.
On tai25 with γ values of 0.5,
0.7, and 0.9 in (a), we can
see that IN converges around
80000, 40000, and 20000 itera-
tions, respectively. These iter-
ations coincide with the itera-
tions where stagnations in Error
occur. With γ value of 0.3, the
value of IN gradually decreases
and the search continues with
less stagnation. With γ value of
0.1, IN keeps larger values un-
til the end of run, resulting in
slow convergence in Error. Sim-
ilar results for tai30b are observed, although their values in detail are different
from tai25b.

From this convergence process analysis using the entropy measure, we can
see the effectiveness of the cunning scheme with smaller values of γ. That is,
on average, taking the rate of (1–γ) partial solution from existing solutions, and
having the rate of γ partial solution being generated anew from the pheromone
density can maintain diversity of the system, resulting in good balance between
exploration and exploitation in the search. However, with extreme smaller values
of γ, i.e., γ ≤0.1, the search processes becomes much slower, though the diversity
of pheromone density can be maintained.

4.4 Performance of cAS with Local Search

Here we study cAS with a local search on QAP. In [3], MMAS is combined with
two local searches, i.e., Robust Taboo search algorithm (Ro-TS) developed by
Taillard [11] and 2OPT. In this paper, we combined cAS with Ro-TS (cAS-TS)
and compare the results with results described in [3].

Parameter settings and the methods of applying cAS with Ro-TS (cAs-TS)
are the same as were used for MMAS with To-TS (MMAS-TS) in [3] as follows:
m value of 5, ρ value of 0.8, and pbest value of 0.005. 250 times, short Ro-TS
runs of length 4n were applied. This setting was designed in [3] so that the
computational time is the same as the Ro-TS carried out alone in which 1000×n
iterations was allowed. We used the Ro-TS code which is available at [12], though

Cunning Ant System for Quadratic Assignment Problem 275

the code, which is originally written in C, was rewritten in Java since our cAS
code is written in Java.

Table 2. Results of cAS in Error (%) with local
search. Results except for cAS are average over 10
runs.

(=0.4) (=0.8)

tai35a 0.582 0.572 0.715 1.128 1.762 0.698 0.589

tai40a 0.726 0.793 0.794 1.509 1.989 0.884 0.990

tai50a 1.051 1.190 1.060 1.795 2.800 1.049 1.125

tai60a 1.059 1.289 1.137 1.882 3.070 1.159 1.203

tai80a 0.740 1.029 0.836 1.402 2.689 0.796 0.900

sko42 0.005 0.008 0.032 0.051 0.076 0.003 0.025

sko49 0.044 0.062 0.068 0.115 0.141 0.040 0.076

sko56 0.055 0.065 0.075 0.098 0.101 0.060 0.088

sko64 0.077 0.035 0.071 0.099 0.129 0.092 0.071

sko72 0.126 0.091 0.090 0.172 0.277 0.143 0.146

sko81 0.105 0.105 0.062 0.124 0.144 0.136 0.136

sko90 0.104 0.168 0.114 0.140 0.231 0.196 0.128

ste36a 0.139 0.118 0.061 0.126 n.a. n.a. 0.155

ste36b 0 0 0 0 n.a. n.a. 0.081

tai35b 0.098 0 0.051 0 0.026 0.107 0.064

tai40b 0.403 0 0.402 0 0.000 0.211 0.531

tai50b 0.183 0.113 0.172 0.009 0.192 0.214 0.342

tai60b 0.280 0.091 0.005 0.005 0.048 0.291 0.417

tai80b 0.716 0.445 0.591 0.266 0.667 0.829 1.031

tai100b 0.263 0.155 0.230 0.114 n.a. n.a. 0.512

i

ii

iii

iv

MMAS-

2OPT

HAS-

QAP
GH Ro-TSQAP

c AS-TS MMAS-

TS

Table 2 summarizes the re-
sults. For comparison, we show
results of other algorithms, i.e.,
MMAS-TS, MMAS-2OPT, GH
(Gentic Hybrid), HAS (Hy-
brid Ant System), and Ro-TS.
These are taken from [3]. Re-
sults of cAS-TS is for γ=0.4
and 0.8. First, we compare
cAS-TS with MMAS-TS. In
this comparison, we showed
the better values in bold-face,
and showed the best perform-
ing values in bold-face with an
under line.

For instances in class i),
cAS-TS performed better than
MMAS-TS and and was the
best performer. Here note that
cAS-TS with γ = 0.4 showed
better performance than cAS-
TS with γ = 0.8. For instances
in class ii), cAS-TS showed bet-
ter performance than MMAS-TS except for with sko72 and sko81. Note here that
GH showed the best values among all algorithms, but the performance differences
between GH and cAS-TS were very small.

For instances in class iii), MMAS-TS performe better than cAS-TS on ste36a,
and Error=0 on ste36b for both cAS-TS and MMAS-TS. For instances in class
iv), with all instances except tai60b, cAS-TS showed better Error values than
MMAS-TS. Note here that for all instances in this class, MMAS-2OPT has the
best Error values among the algorithms.

In comparison between cAS-TS and MMAS-TS, cAS-TS outperforms MMAS-
TS on 15 instances and MMAS-TS outperforms cAS-TS on 4 instances. Thus,
cAS-TS has relatively better performance than MMAS-TS. However, the per-
formance differences between cAS-TS and MMAS-TS were not as large as those
we saw in Table 1 where no local search is applied. This is because the effect of
local searches become more dominant.

5 Parallelization of cAS (p-cAS)

Parallelization of evolutionary algorithms including ACO is a well-known and
popular approach [13,14,15]. There are two main reasons for using parallelization:
(i) given a fixed time to search, to increase the quality of the solutions found

276 S. Tsutsui

within that time; (ii) given a fixed solution quality, to reduce the time to find
a solution not worse than that quality [15]. In this study, we ran a parallel
cAS (p-cAS) exploiting the second reason, i.e., aiming to reduce the time to find
solutions which are of the same quality as those found with a single processor.

All of our code for evolutionary computation research are written in Java,
including ACO algorithms. Java has many classes of programming for network
environments. Typical examples are RMI and Jini [16]. In our implementation
of p-cAS, we used Java applet scheme to send the program to client computers.
This enables us to use all computers in the network which have a web browser
with Java runtime. Communication between the server and clients is performed
by exchanging objects with the Serializable interface. The server program runs
as a Java application.

5.1 Load Sharing p-cAS on QAP

Table 3. Comptational time of cAS with Ro-TS
in millisecond

QAP
sampling

with ij

applying

Ro-TS

updating

of ij
other

TOTAL

(ms)
tia40b 3.8 6833.8 1.3 12.3 6851.2

(%) 0.1% 99.7% 0.0% 0.2% 100.0%
tia50b 4.9 13465.8 2.3 13.3 13486.2

(%) 0.0% 99.8% 0.0% 0.1% 100.0%
tia60b 7.0 23448.7 3.0 15.7 23474.4

(%) 0.0% 99.9% 0.0% 0.1% 100.0%
tia80b 10.6 56688.7 5.9 19.9 56725.0

(%) 0.0% 99.9% 0.0% 0.0% 100.0%
tia100b 14.8 114411.7 9.0 21.4 114456.9

(%) 0.0% 100.0% 0.0% 0.0% 100.0%

In the ACO framework, the
most popular parallel architec-
ture is the island model in which
multiple sub-colonies are run
in parallel on distributed com-
puters exchanging information
among them periodically [15].
The main priority of the island
model is placed on improving
the solution quality. In contrast,
our main priority is to reduce
computational time using the
load sharing model (load shar-
ing p-cAS).

Table 3 shows the computation times on QAP in cAS with Ro-TS which were
performed in Section 4.4. The machine we used had two Opteron 280 (2.4GHz,
Socket940) processors with 2GB main memory. The OS was 32-bit WindowsXP.
Java2 (j2sdk1.4.2 13) was installed. From this table, we can see that more than
99% of computation time is used for Ro-TS. Therefore we distribute the calcu-
lation for local search over computers in the network. Fig. 4 shows the functions
of the server and clients. When we use m ants, local searches for m ants are
distributed over the server and m–1 clients.

Experimental conditions for the load sharing p-cAS in this research are as fol-
lows: We used two Opteron-based machines, say machine A and machine B, each
which has the structure described above and thus each machine has 4 processing
units. The machines A and B are connected via a 1000BASE-T switching hub.
We assigned server functions to machine A and client functions to machine B. In
machine A, we installed an Apache [17] http server. We assigned four clients so
that the logical experimental conditions are the same as the experiments in Sec-
tion 5 with a single machine. To do so, we ran 4 independent browser processes
to access the server. The experiments were performed with 25 independent runs

Cunning Ant System for Quadratic Assignment Problem 277

and the time to complete the computation was measured. We used γ value of 0.8.
With this scheme, among 5 ants, local search for one ant is performed by serverma-
chine A, and local searches for the other 4 ants are performed by client machine B.

sampling based on

ij with cunning, i=1,2,…, m

apply Ro-TS to
1,tmant

send to client i,
i=1,2,…, m-1

1,tiant

compare and

for each i and obtain next

by setting t=i+1

i=1, 2, …, m

apply Ro-TS to 1,1 tant

receive 1,1 tant

send to server 1,1 tantreceive from client i,
i=1,2,…, m-1

1,tiant

1

m-1

*
,tiant

1,tiant

*
,tiant

update ij

1,- tiantc

Client 1, …, m-1Server

Fig. 4. Structure of load sharing p-cAS

Fig. 5 summarizes
the results on the com-
putation time. The re-
sults are averaged over
25 runs. Here, gain in-
dicates (run time of
cAS) / (run time of
p-cAS). If there is no
communication over-
head, gain should be
five. However, as we
can see in Fig. 5 there is
a communication over-
head between the
server and clients. Due
to this overhead, the
gain is smaller than 1
for tai40b and tai50b,
and is 1 for tai60b. On the other hand, gain is 1.8, 2.9, and 4.1 for tai80b,
tai100b, and tai150b, respectively. This is because the communication overhead
for larger problems becomes relatively smaller compared with the time required
for the local search. To illustrate this, we also showed Tcomm., the total time
used by the server for communication between the server and the client.

6 Conclusions

tai40b tai50b tai60b tai80b tai100b tai150b

0

100

200

300

400

500

0

1

2

3

4

5

T
im

e
in

 s
ec

on
d

ga
in

0.4

0.7

1.0

1.8

2.9

4.1
cAS

p-cAS

Tcomm.

gain

Tcomm.

Fig. 5. Structure of load sharing p-cAS

In this paper, we applied cAS
to solving the QAP and com-
pared it agaist MMAS. The re-
sults showed cAS has promising
performance. We analyzed the
convergence process and the re-
sults showed that the cunning
scheme is effective in maintain-
ing diversity of pheromone den-
sity. An implementation for a
simple load sharing parallel cAS
(p-cAS) is also shown and a
meaningful speedup of computation in the network environment was observed.
However, the following study subjects remain for future work: combining cAS
with other local search, such as 2OPT; study on other types of p-cAS such as the

278 S. Tsutsui

island model; improving the server and client programs to reduce communication
overhead.

Acknowledgements

This research is partially supported by the Ministry of Education, Culture,
Sports, Science and Technology of Japan under Grant-in-Aid for Scientific Re-
search number 19500199.

References
1. Tsutsui, S.: cas: Ant colony optimization with cunning ants. In: Proc. of the 9th

Int. Conf. on Parallel Problem Solving from Nature (PPSN IX), pp. 162–171 (2006)
2. Tsutsui, S.: Ant colony optimization with cunning ant. Transactions of the

Japanese Society for Artificial Intelligence 22(1), 29–36 (2007)
3. Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Sys-

tems 16(9), 889–914 (2000)
4. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the

ACM 23, 555–565 (1976)
5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Massachusetts (2004)
6. Tsutsui, S., Liu, L.: Solving quadratic assignment problems with the cunning ant

system. In: Proc. of the 2007 CEC (to appear)
7. Acan, A.: An external memory implementation in ant colony optimization. In:

Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T.
(eds.) ANTS 2004. LNCS, vol. 3172, pp. 73–84. Springer, Heidelberg (2004)

8. Acan, A.: An external partial permutations memory for ant colony optimization. In:
Proc. of the 5th European Conf. on Evolutionary Computation in Combinatorial
Optimization, pp. 1–11 (2005)

9. Wiesemann, W., Stützle, T.: An experimental study for the the quadratic assign-
ment problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A.,
Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 179–190. Springer,
Heidelberg (2006)

10. QAPLIB-A Quadratic Assignment Problem Library, http://www.opt.math.tu-
graz.ac.at/qaplib/

11. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

12. Taillard, E.: Robust tabu search implementation, http://mistic.heig-vd.ch/
taillard/

13. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithm. Kluwer Acad-
emic Publishers, Boston (2000)

14. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking gas: Gas with search space division
schemes. Evolutionary Computation 5(1), 61–80 (1997)

15. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization
for the traveling salesman problems. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
224–234. Springer, Heidelberg (2006)

16. Sun Microsystems, Inc.: Java 2 Platform, Standard Edition, v1.4.2 at API Speci-
fication, http://java.sun.com/j2se/1.4.2/docs/api/

17. Apache Software Foundation: Apache HTTP server project, http://httpd.
apache.org/

protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.opt.math.tu-graz.ac.at/qaplib/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.opt.math.tu-graz.ac.at/qaplib/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://mistic.heig-vd.ch/taillard/
protect protect protect edef OT1{OT1}let enc@update
elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://mistic.heig-vd.ch/taillard/
http://java.sun.com/j2se/1.4.2/docs/api/
http://httpd.apache.org/
http://httpd.apache.org/

	Cunning Ant System for Quadratic Assignment Problem with Local Search and Parallelization
	Introduction
	A Brief Overview of cAS
	Cunning Ant System for QAP
	The $c-ant$ for QAP
	Sampling Methods

	Experiments
	Performance of cAS on QAP Without Local Search
	The Effect of $gamma$ Values
	Analysis of the Convergence Process of cAS
	Performance of cAS with Local Search

	Parallelization of cAS (p-cAS)
	Load Sharing p-cAS on QAP

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

