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Abstract. Identification of nonlinear static and dynamic systems plays
a key role in many engineering applications including communication,
control and instrumentation. Various adaptive models have been sug-
gested in the literature using ANN and Fuzzy logic based structures. In
this paper we employ an efficient and low complexity Functional Link
ANN (FLANN) model for identifying such nonlinear systems using GA
based learning of connective weights. In addition, pruning of connecting
paths is also simultaneously carried out using GA to reduce the network
architecture. Computer simulations on various static and dynamic sys-
tems indicate that there is more than 50% reduction in original model
FLANN structure with almost equivalent identification performance.

1 Introduction

The area of system identification is one of the most important areas in engi-
neering because of its applicability to a wide range of problems. Recently, Arti-
ficial Neural Networks (ANN) has emerged as a powerful learning technique to
perform complex tasks in highly nonlinear dynamic environments. At present,
most of the work on system identification using neural networks are based on
multilayer feedforward neural networks with backpropagation learning or more
efficient variations of this algorithm [1,2]. On the other hand the Functional link
ANN (FLANN) originally proposed by Pao [3] is a single layer structure with
functionally mapped inputs. The performance of FLANN for system identifi-
cation of nonlinear systems has been reported [4] in the literature. Patra and
Kot [5] have used Chebyschev expansions for nonlinear system identification and
have shown that the identification performance is better than that offered by the
multilayer ANN (MLANN) model. Evolutionary computation has been applied
to search optimal values of recursive least-square (RLS) algorithm used in the
system identification model [6].

While constructing an artificial neural network the designer is often faced with
the problem of choosing a network of the right size for the task to be carried
out. The advantage of using a reduced neural network is less costly and faster in
operation. However, a much reduced network cannot solve the required problem
while a fully ANN may lead to accurate solution. Choosing an appropriate ANN

A. Ghosh, R.K. De, and S.K. Pal (Eds.): PReMI 2007, LNCS 4815, pp. 244–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A GA-Based Pruning Strategy and Weight Update Algorithm 245

architecture of a learning task is then an important issue in training neural
networks. Giles and Omlin [7] have applied the pruning strategy for recurrent
networks. In this paper we have considered an adequately expanded FLANN
model for the identification of nonlinear plant and then used Genetic Algorithm
(GA) to train the filter weights as well to obtain the pruned input paths based on
their contributions. Procedure for simultaneous pruning and training of weights
have been carried out in subsequent sections to obtain a low complexity reduced
structure.

The rest of paper is organized as follows. In Section 2 the basics of adaptive
system identification is presented. Section 3 illustrates the proposed GA based
pruning and training method using FLANN structure. The performance of the
proposed model obtained from computer simulations are presented in Section 4.
We present some concluding remarks in Section 5.

2 Adaptive System Identification

The essential and principal property of an adaptive system is its time-varying,
self-adjusting performance. System identification concerns with the determina-
tion of a system, on the basis of input output data samples. The identifica-
tion task is to determine a suitable estimate of finite dimensional parameters
which completely characterize the plant. Depending upon input-output rela-
tion, the identification of systems can have two groups. In static identification
the output at any instant depends upon the input at that instant. The sys-
tem is essentially a memoryless one and mathematically it is represented as
y(n) = f [x(n)] where y(n) is the output at the nth instant corresponding to
the input x(n). In dynamic identification the output at any instant depends
upon the input at that instant as well as the past inputs and outputs. These
systems have memory to store past values and mathematically represented as
y(n) = f [x(n), x(n − 1), x(n − 2) · · · y(n − 1), y(n − 2), · · ·] where y(n) is the
output at the nth instant corresponding to the input x(n). A basic system iden-
tification structure is shown in figure 1. The impulse response of the linear seg-
ment of the plant is represented by h(n) which is followed by nonlinearity (NL)
associated with it. White Gaussian noise q(n) is added with nonlinear output
accounts for measurement noise. The desired output d(n) is compared with the
estimated output y(n) of the identifier to generate the error e(n) for updating
the weights of the model. The training of the filter weights is continued until
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Fig. 1. Block diagram of system identification structure
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the error becomes minimum and does not decrease further. At this stage the
correlation between input signal and error signal is minimum.

3 Proposed GA Based Pruning and Training Using
FLANN Structure

The FLANN based system identification is shown in figure 2. The FLANN is a
single layer network in which the hidden nodes are absent. Here each input pat-
tern is functionally expanded to generate a set of linearly independent functions.
The functional expansion is achieved using trigonometric, polynomial or expo-
nential functions. An N dimensional input pattern X =

[
x1 x2 · · · xN

]T . Thus
the functionally expanded patterns becomes X∗ =

[
1 x1 f1(x1) · · · xN f1(xN )

]

where all the terms in the square bracket represents enhanced patterns. Then
the improved patterns are used for pattern classification purpose.
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Fig. 2. FLANN based identification of nonlinear plants showing updating of weights
and pruning path

In this Section a new algorithm for simultaneous training and pruning of
weights using binary coded genetic algorithm (BGA) is proposed. Such a choice
has led to effective pruning of branch and updating of weights. The pruning
strategy is based on the idea of successive elimination of less productive paths
(functional expansions) and elimination of weights from the FLANN architec-
ture. As a result, many branches (functional expansions) are pruned and the
overall architecture of the FLANN based model is reduced which in turn re-
duces the corresponding computational cost associated with the proposed model
without sacrificing the performance. Various steps involved in this algorithm are
dealt in this section.
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Step 1-Initialization in GA: A population of M chromosomes is selected in GA
in which each chromosome constitutes TE(L + 1) number of random binary
bits where the first TE number of bits are called Pruning bits (P ) and the
remaining bits represent the weights associated with various branches (functional
expansions) of the FLANN model. Again (T − 1) represents the order the filter
and E represents the number of expansions specified for each input to the filter.

A pruning bit (p) from the set P indicates the presence or absence of expansion
branch which ultimately signifies the usefulness of a feature extracted from the
time series. In other words a binary 1 will indicate that the corresponding branch
contributes and thus establishes a physical connection where as a 0-bit indicates
that the effect of that path is insignificant and hence can be neglected. The
remaining TEL bits represent the TE weight values of the model each containing
L bits.

Step 2-Generation of Input Training Data: K ≥ (500) number of signal samples
is generated. In the present case two different types of signals are generated to
identify the static and feed forward dynamic plants.

i. To identify a feed forward dynamic plant, a zero mean signal which is uni-
formly distributed between ±0.5 is generated.

ii. To identify a static system, a uniformly distributed signal is generated
within ±1.

Each of the input samples are passed through the unknown plant (static and feed
forward dynamic plant) and K such outputs are obtained. The plant output is
then added with the measurement noise (white uniform noise) of known strength,
there by producing k number of desired signals. Thus the training data are
produced to train the network.

Step 3-Decoding: Each chromosome in GA constitutes random binary bits. So
these chromosomes need to be converted to decimal values lying between some
ranges to compute the fitness function. The equation that converts the binary
coded chromosome in to real numbers is given by

RV = Rmin +
{
(Rmax − Rmin)/(2L − 1)

}
× DV (1)

Where Rmin, Rmax, RV and DV represent the minimum range, maximum range,
decimal and decoded value of an L bit coding scheme representation. The first
L number of bits is not decoded since they represent pruning bits.

Step 4-To Compute the Estimated Output: At nth instant the estimated output
of the neuron can be computed as

y(n) =
T∑

i=1

E∑

j=1

ϕij(n) × Wm
ij (n) × Pm

ij (n) + bm(n) (2)

where ϕij(n) represents jth expansion of the ith signal sample at the nth instant.
Wm

ij (n) and Pm
ij (n) represent the jth expansion weight and jth pruning weight
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of the ith signal sample for mth chromosome at kth instant. Again bm(n) corre-
sponds to the bias value fed to the neuron for mth chromosome at nth instant.

Step 5-Calculation of Cost Function: Each of the desired output is compared
with corresponding estimated output and K errors are produced. The Mean-
square-error (MSE) corresponding to mth chromosome is determined by using
the relation (3). This is repeated for M times (i.e. for all the possible solutions).

MSE(m) =
K∑

k=1

e2
k/K (3)

Step 6-Operations of GA: Here the GA is used to minimize the MSE. The
crossover, mutation and selection operators are carried out sequentially to select
the best M individuals which will be treated as parents in the next generation.

Step 7-Stopping Criteria: The training procedure will be ceased when the MSE
settles to a desirable level. At this moment all the chromosomes attain the same
genes. Then each gene in the chromosome represents an estimated weight.

4 Simulation Study

Extensive simulation studies are carried out with several examples from static as
well as feed forward dynamic systems. The performance of the proposed Pruned
FLANN model is compared with that of basic FLANN structure. For this the
algorithm used in Sections 3 is used in the simulation.

4.1 Static Systems

Here different nonlinear static systems are chosen to examine the approximation
capabilities of the basic FLANN and proposed Pruned FLANN models. In all
the simulation studies reported in this section a single layer FLANN structure
having one input node and one neuron is considered. Each input pattern is ex-
panded using trigonometric polynomials i.e. by using cos(nπu) and sin(nπu), for
n = 0, 1, 2, · · · , 6. In addition a bias is also fed to the output. In the simulation
work the data used are K = 500, M = 40, N = 15, L = 30, probability of
crossover = 0.7 and probability of mutation = 0.1. Besides that the Rmax and
Rmin values are judiciously chosen to attain satisfactory results. Three nonlinear
static plants considered for this study are as follows:

Example-1: f1(x) = x3 + 0.3x2 − 0.4x

Example-2: f2(x) = 0.6 sin(πx) + 0.3 sin(3πx) + 0.1sin(5πx)

Example-3: f3(x) = (4x3 − 1.2x2 − 3x + 1.2)/(0.4x5 + 0.8x4 − 1.2x3 + 0.2x2 − 3)
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(a) Example-1
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(b) Example-2
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(c) Example-3
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(d) Example-1
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(e) Example-2
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Fig. 3. Comparisons of output response; (a)–(c) for static systems of Example 1–3 and
(d)–(f) for dynamic systems of Examples 1–3

At any nth instant, the output of the ANN model y(n) and the output of the
system d(n) is compared to produce error e(n) which is then utilized to update
the weights of the model. The LMS algorithm is used to adapt the weights
of basic FLANN model where as a proposed GA based algorithm is employed
for simultaneous adaptation of weights and pruning of the branches. The basic
FLANN model is trained for 20000 iterations where as the proposed FLANN
model is trained for only 60 generations. Finally the weights of the ANN are
stored for testing purpose. The responses of both the networks are compared
during testing operation and shown in figures 3(a), 3(b), and 3(c).

The results of identification of f1(·), f2(·) and f3(·) are shown figures 3(a)–
3(c). In the figures the actual system output, basic FLANN output and pruned
FLANN output are marked as ”Desired”, ”FLANN” and ”Pruned FLANN”
respectively. From these figures, it may be observed that the identification per-
formance of the FLANN model with all the examples is quite satisfactory. For

Table 1. Comparison of computational complexities between a basic FLANN and a
Pruned FLANN model for Static Systems

Ex. No.

Number of operations Number of weightsAdditions Multiplications
Prunned Prunned Prunned

FLANN FLANN FLANN FLANN FLANN FLANN
Ex-1 14 3 14 3 15 4
Ex-2 14 2 14 3 15 3
Ex-3 14 5 14 5 15 6
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the Pruned FLANN structure, quite close agreement between the system output
and the model output is observed. In fact, the modeling error of the pruned
FLANN structure is found to be comparable with that of the basic FLANN
structure for all the three nonlinear static structures considered. Table 1 illus-
trates the total computational complexity involved in both the architectures to
identify the same system.

4.2 Dynamic Systems

In the following the simulation studies of nonlinear dynamic feed forward sys-
tems has been carried out with the help of several examples. In each example,
one particular model of the unknown system is considered. In this simulation
a single layer FLANN structure having one input node and one neuron is con-
sidered. Each input pattern is expanded using the direct input as well as the
trigonometric polynomials i.e. by using u, cos(nπu) and sin(nπu), for n = 1.
In this case the bias is removed. In the simulation work we have considered
K = 500, M = 40, N = 9, L = 20, probability of crossover = 0.7 and probabil-
ity of mutation = 0.03. Besides that the Rmax and Rmin values are judiciously
chosen to attain satisfactory results. The three nonlinear dynamic feed forward
plants considered for this study are as follows:

Example-1:
i. Parameter of the linear system of the plant

[
0.2600 0.9300 0.2600

]

ii. Nonlinearity associated with the plant yn(k) = yk + 0.2y2
k − 0.1y3

k

Example-2:
i. Parameter of the linear system of the plant

[
0.3040 0.9029 0.3410

]

ii. Nonlinearity associated with the plant yn(k) = tanh(yk)

Example-3:
i. Parameter of the linear system of the plant

[
0.3410 0.8760 0.3410

]

ii. Nonlinearity associated with the plant yn(k) = yk − 0.9y3
k + 0.2y2

k − 0.1y3
k

The basic FLANN model is trained for 2000 iterations where as the proposed
FLANN is trained for only 60 generations. While training, a white uniform noise
of strength −30dB is added to actual system response to assess the performance
of two different models under noisy condition. Then the weights of the ANN
are stored for testing. Finally the testing of the networks model is undertaken
by presenting a zero mean white random signal to the identified model. Per-
formance comparison between the FLANN and pruned FLANN structure in
terms of estimated output of the unknown plant has been carried out. The re-
sponses of both the networks are compared during testing operation and shown in
figures 3(d), 3(e), and 3(f).

The results of identification of all the examples are shown in figures 3(d)–
3(f). In the figures the actual system output, basic FLANN output and pruned
FLANN output are marked as ”Desired”, ”FLANN” and ”Pruned FLANN”
respectively. From the simulation results, it may be seen that the model output
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Table 2. Comparison of computational complexities between a basic FLANN and a
pruned FLANN model for Dynamic Systems

Ex. No.

Number of operations Number of weightsAdditions Multiplications
Prunned Prunned Prunned

FLANN FLANN FLANN FLANN FLANN FLANN
Ex-1 8 3 9 4 9 4
Ex-2 8 2 9 3 9 3
Ex-3 8 2 9 3 9 3

responses closely agree with those of plant output for both the FLANN and
the pruned FLANN based structures. Comparison of computational complexities
between the conventional FLANN and the pruned FLANN is provided in Table 2.
From Tables 1 and 2 it is evident that for all the identification performance cases
studied, the computational load on the pruned FLANN is much lower than that
of FLANN model.

5 Conclusions

The present paper has proposed simultaneous weight updating and pruning of
FLANN identification models using GA. Computer simulation studies on static
and dynamic nonlinear plants demonstrate that there is more than 50% active
paths are pruned keeping response matching identical with those obtaining from
conventional FLANN identification models.
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