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Abstract. Boundary identification in medical images plays a crucial
role in helping physicians in patient diagnosis. Manual identification of
object boundaries is a time-consuming task and is subject to operator
variability. Fully automatic procedures are still far from satisfactory in
most real situations. In this paper, we propose a boundary identification
method based on multiscale technique. Experimental results have shown
that the proposed method provides superior performance in medical im-
age segmentation.
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1 Introduction

Various medical imaging modalities such as the radiograph, computed tomog-
raphy (CT), and magnetic resonance (MR) imaging are widely used in routine
clinical practice. Boundary identification (BI) of deformed tissue plays a cru-
cial role in accurate patient diagnosis. For example, an MR brain image can
be segmented into different tissue classes, such as gray matter, white matter,
and cerebrospinal fluid. Unfortunately, manual BI methods are very time con-
suming and are often subjective in nature. Recently an edge-based MR image
segmentation method, mtrack [1], has been proposed. This algorithm provides a
reasonably good performance. However, the edge-based segmentation algorithm
has some limitations, such as sensitivity to noise and presence of gaps in detected
boundaries. Together, these effects degrade the quality of the detected bound-
aries. The discrete wavelet transform (DWT) has recently been shown to be a
powerful tool in multiscale edge detection. Marr and Hildreth [2] introduced the
concept of multiscale edge detection for detecting the boundaries of objects in
an image. Mallat and Zhong [3] showed that multiscale edge detection can be
implemented by smoothing a signal with a convolution kernel at various scales,
and detecting sharp variation points as edges. Tang et al. [4] studied the char-
acterization of edges with wavelet transform and Lipschitz exponents.

In this paper, we propose a multiscale boundary identification algorithm,
based on DWT, for better edge-based segmentation of MR images. The remain-
der of this paper is organized as follows. Section 2 briefly reviews the related
background work. Section 3 presents the proposed method developed based on
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the existing theory for multiscale edge detection and boundary identification.
Section 4 presents the performance evaluation of the proposed method. The
conclusions are presented in Section 5.

2 Review of Related Work

In this section, we present a brief review of the related background work.

2.1 mtrack Algorithm

The mtrack method [1] has been developed at the University of Alberta for
medical image segmentation, especially for MR images of the head. As shown in
Fig. 1, it includes three major modules: edge detection, edge feature extraction,
and edge tracing. The three modules are explained below.

Fig. 1. Block diagram of mtrack algorithm

1. Edge detection: In this module, the edge of an image is obtained using a Canny
edge detector. The detector is applied for six operator directions. Subpixel edge
resolution is obtained by linearly interpolating the zero crossings in the second
derivative of a Gaussian filtered image.
2. Edge Feature Extraction: Edge features are extracted from the detected edges.
For each edge point along the operator direction, the top and bottom intensity
points of that edge slope are obtained by examining the 1st and 2nd derivatives
curves. The coordinates of the subpixel edge points and the top and bottom
intensity on each side of the edge points are combined as four-dimensional edge
information.
3. Edge Tracing: A target tracking algorithm is used to link the edge points to
form an object boundary. The edge information is assumed to be position infor-
mation of a hypothetical object (target) that moves along the boundary. Target
tracking starts from a starting point, follows the path of the target (edge) until
no further edge point can be founded on the track or the starting point is revis-
ited. Thus, the boundary can be drawn by linking all the edge points that are
found in the path of the target, including the starting point.

The mtrack software can perform automatic tracking and can also manually
cut and link tracks to form the desired contours. However, some problems re-
main: First, the tracking performance depends on the starting point. Secondly,
it depends on the track direction. The tracking algorithm also involves the possi-
bility of self-intersection, the selection of appropriate parameter values, and the
possibility that a closed contour is not formed in all cases. The main limitation
of this algorithm is that it is sensitive to noise.
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2.2 Multiscale Edge Detection Technique

In this paper, we use the multiscale edge detection technique proposed in [3]. We
present a brief review of Mallat’s edge detection technique in this section. The
schematic of multiscale edge detection is shown in Fig. 2. Consider a wavelet
function Ψs(x, y) at scale s. The 2-D wavelet-decomposed image f(x, y) at scale
s has two components: W 1

s (x, y) = f ∗ Ψ1
s (x, y) and W 2

s (x, y) = f ∗ Ψ2
s (x, y)

where Ψ1
s (x, y) and Ψ2

s (x, y) are, respectively, horizontal and vertical filters. At
each scale s, the modulus of the gradient vector is called the wavelet transform
modulus, and is defined as

Ms(x, y) =
√

|W 1
s (x, y)|2 + |W 2

s (x, y)|2. (1)

The angle of the wavelet gradient vector for each scale is given by

As(x, y) = arctan(W 2
s (x, y)/W 1

s (x, y)). (2)

Fig. 2. Block diagram of multiscale edge detection [3]

For a 2-D image, the wavelet transform modulus maxima (WTMM) are located
at points where the wavelet transform modulus is larger than its two neighbors
in one-dimensional neighborhoods along the angle direction. The local regularity
of a signal is characterized by the decay of the wavelet transform across scales
[3], and it can be measured in terms of Lipschitz exponent. For a signal f(x) ,
the Lipschitz exponent α satisfies the following:

|Ws(x)| ≤ Asα (3)

where Ws(x) are wavelet coefficients at scale s, and A is a positive constant.
Eq. (3) states that the modulus of the wavelet coefficients of a signal vary with
the scale s according to the Lipschitz regularity of that signal. The characteriza-
tion of edges by Lipschitz exponent and wavelet transform has been investigated
by Mallat et al. [3]. It has been shown that positive Lipschitz exponent α cor-
responds to edge structure (i.e. step edge) and negative Lipschitz exponent α
corresponds to Dirac structure (i.e. spike noise).

3 Proposed Method

In this section, we present the proposed multiscale BI method. The proposed
method is developed based on the classical wavelet theory for multiscale edge
detection and BI. It has been evaluated in the mtrack framework to see if the
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proposed method is useful for edge-based BI. The schematic of the integrated
method is shown in Fig. 3. A comparison between Fig. 3 and Fig. 1 reveals
that the proposed method replaces Canny edge detection with multiscale edge
detection, and adds multiscale boundary identification before edge tracing. The
two new modules in Fig. 3 are explained below.

Fig. 3. Block diagram of the proposed boundary identification algorithm

3.1 Multiscale Edge Detection

The multiscale edge detection algorithm proposed by Mallat et al. [3] was re-
viewed in section 2.2. In this paper, we use this algorithm to calculate multiscale
edges. The schematic of the proposed multiscale edge detection is shown in Fig.
4. A comparison between Fig. 4 and Fig. 2 reveals that the proposed multiscale
edge detection adds two new modules to improve the edge detection performance
after traditional edge detection technique. These new modules are explained in
the following discussion.

Fig. 4. Block diagram of proposed multiscale edge detection

We can determine the WTMM for each scale of a MR image. The WTMM
points at each decomposition level are shown in Fig. 5 as white pixels in the
binary image. It is shown in Fig. 5 that when the scale increases, the details and
the noise effect decrease quickly. As a result, the edge locations may change in
higher scales. We use the WTMM of the first scale s1 (i.e., the highest resolu-
tion) as the edge image. By looking at the WTMM at different scales, we find
that edges of higher significance (i.e., stronger edges) are more likely to be kept
by the wavelet transform across scales. Edges of lower significance (i.e., weaker
edges) are more likely to disappear at higher scales.

In theory, WTMM can be found along the gradient angle. But practically,
we found that only using one-dimensional neighborhood along the angle direc-
tion to decide an edge pixel is not sufficient, because a pixel can be part of
one edge in one angle direction and be part of another edge in another angle
direction. Therefore, we check all the eight pixels around one pixel in the centre
for four different directions to decide whether the centre pixel is a WTMM in
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(a) (b) (c) (d)

Fig. 5. WTMM at four scales: a) s1; b) s2; c) s3; d) s4

each direction. In order to achieve more accurate edge pixel location, subpixel
edge coordinates need to be obtained. We can interpolate the edge pixel that we
found in the WTMM process, and fit the pixel coordinates in a polynomial curve
to get subpixel resolution. If the pixel is the local maximum, then we record it
as an edge pixel in that direction.

3.2 Multiscale Boundary Identification

The schematic of the multiscale boundary identification is shown in Fig. 6. We
present each module in the following sections.

Fig. 6. Block diagram of multiscale boundary identification

2-D WTMM Chain: After we obtain the WTMM for each scale, we need
to chain those maxima across scales to indicate where the true edge is. If it
is the true edge, it should not disappear during the wavelet decay. We start
the WTMM chaining process from the highest scale down to the lowest scale.
We need to link the maxima points between two adjacent scales and record the
WTMM chain.

We do a four-level decomposition and have four scales with WTMM found for
each scale. We start at the highest scale (i.e., scale s4 ), and for each maxima
pixel, we search in the previous scale (i.e., scale s3 ) within a small region. Then
a qualification test is performed to check if there is one maxima pixel among all
these pixels in the window that has strongest connection to the considered pixel.
We link these two maxima pixels together. It is possible that we may find two
pixels in scale j that could connect to the same maxima pixel in scale j − 1 .
However, we would like to have a one-to-one match to the lower scale maxima
pixel for this chaining process. In order to prevent this competing situation, an
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optimization method [5] is used to optimally perform one-to-one maxima pixel
matching. A WTMM chaining record is maintained, in which a higher score is
assigned to a stronger edge pixel that survives along the wavelet decay, whereas
a lower score is assigned to a weaker edge pixel. We define our 2-D WTMM
chaining record by ’Scale Depth’, as it demonstrates how deep the WTMM pixel
is connected through scales.

Lipschitz Regularity Analysis: The Lipschitz exponent can be used to dis-
tinguish step and spike edges. However, the Lipschitz exponent is controlled by
the log of wavelet modulus across scales. Therefore, we have used the wavelet
modulus across scales to identify the boundaries.

Edge Quality Analysis: In order to increase the robustness of the detected
edges, we carry out an edge quality test. Here, the amplitude and slope infor-
mation of the WTMM chain through scales are used to give the strength of each
point. A fuzzy logic system is used to determine if a detected edge is a strong
edge or a weak edge.

4 Experimental Setup and Results

The performance of the proposed technique has been evaluated using the MR
images obtained from Montreal Neurological Institute (MNI) [6]. The data is
obtained as 1mm slice thickness, with pixels per slice, and 8 bits per pixel reso-
lution. The slices are oriented in the transverse plane. There are total 181 slices.
We have used the MNI data with 1%, 3%, 5%, 7% and 9% noise, and 0%, 20%
non-uniformity to evaluate performance. We use MNI slice 95 with 3% of noise
and 20% of non-uniformity to show an example of evaluation. The comparisons of
MR image edge tracing results are presented to demonstrate that the multiscale
boundary identification method improves the edge tracing performance.

4.1 Evaluation Criteria

To evaluate the performance, we compare the detected boundary with the true
boundary. Let (m, n) represent coordinate of a point, and b(m, n) is the boundary
image, i.e., b(m, n) = 1 if (m, n) is a true boundary point. Let the output tracked
boundary image be denoted by t(m, n). t(m, n) = 1 represents the detected
boundary points. We define three criteria as follows:

(1) The total number of track points NTP on the detected boundary image is
obtained as:NTP =

∑

m,n
t(m, n).

(2) The total number of good points NGP on the detected boundary image is
obtained as:NGP =

∑

m,n
t(m, n).b(m, n).

(3) The track point ratio R is defined as: R = NGP /NTP .
Ideally, track point ratio R should be 1. However, because the edge tracing
algorithm can trace on false boundary points, R is normally less than 1. The
higher track point ratio corresponds to the better tracing result. Therefore, we
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Table 1. Four evaluation methods. MED: Multiscale Edge Detection; ET: Edge Trac-
ing; MBI: Multiscale Boundary Identification, EFE: Edge Feature Extraction.

Method 1 MED+ET
Method 2 MED+MBI+ET
Method 3 MED+EFE+ET
Method 4 MED+EFE/MBI+ET

use the track point ratio R to represent the performance of the output boundary
image obtained. For each input image, four different testing methods for the
edge tracing algorithm are used for the evaluation comparison. Table 1 shows
the modules of the four methods. We have tested all four methods to evaluate
the degree of improvement obtained using the multiscale boundary identification
method. Note that Method 4 is the proposed BI method shown in Fig. 3.

4.2 Performance

Fig. 7 shows a gray/white boundary tracking result by four methods. The four
methods use the same edge image obtained from multiscale edge detection, and
the starting point chosen for edge tracing is in the same location of the edge
image. It is observed that Methods 3 and 4 provide much better performance
compared to Methods 1 and 2. Between Fig. 7 (c) and (d), we observe that
the small boundaries tracked in the left-bottom quarter in Fig. 7 (d) are more
accurate than in Fig. 7 (c). Therefore, Method 4 is better than Method 3.

(a) (b) (c) (d)

Fig. 7. Gray/white boundary tracks for test MR image. (a) Method 1; (b) Method 2;
(c) Method 3; (d) Method 4.

Table 2 lists the statistical results of 30 tracks of test image for each method.
The mean (μ), median (η), and standard deviation (σ) for NGP ,NTP , and R
are calculated. It is again observed that Method 4 provides the best edge trac-
ing result than others. Also note that the standard deviation in the last row is
the lowest among others (σR of Method 4 is five times less than Method 3). This
means that the edge tracing using Method 4 is less dependent of the choice of the
starting point. The performance evaluation is carried out with 1%, 3%, 5%, 7%
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Table 2. Statistical results of 30 tracks

Method NGP NTP R
ηGP μGP σGP ηTP μTP σTP ηR μR σR

1 201 209.4 132.8 2032.5 1813.2 821.4 0.126 0.155 0.141
2 158.5 137.9 68.6 590 533.2 217.7 0.255 0.283 0.127
3 1024 1007.8 449.1 1623 1352.4 580.4 0.745 0.704 0.103
4 1234.5 1144.6 249.3 1609.5 1500.4 308.9 0.765 0.759 0.025

Table 3. R of MNI data slice 95 with 20% non-uniformity

Noise Level Method3 Method4
ηR μR σR ηR μR σR

1% 0.836 0.823 0.029 0.817 0.819 0.011
3% 0.745 0.704 0.103 0.765 0.759 0.025
5% 0.356 0.360 0.144 0.581 0.573 0.049
7% 0.255 0.260 0.117 0.430 0.419 0.047
9% 0.238 0.224 0.095 0.305 0.303 0.068

and 9% of noise levels, and 0%, 20% non-uniformity levels in the synthetic MNI
data. Table 3 lists the track point ratio of Method 3 and Method 4 on various
noise levels (1%, 3%, 5%, 7% and 9%) with 20% non-uniformity. It is observed
that as the noise level increases, the track point ratio of both methods decreases.
At each noise level, Method 4 performs better than Method 3, as it has higher μR

and ηR values and less σR value, which means the edge tracing by Method 4 is
more accurate and less dependent on the starting point. The same trend has also
been seen for 0% non-uniformity. As seen in the experiments, the edge tracing
using Method 4 performs better than Method 3. This means that the multiscale
boundary identification added into the edge tracing algorithm more accurately
tracks the gray/white boundary in the synthetic MR images. Using edge quality
from multiscale boundary identification, makes the edge tracing less sensitive to
noise, reduces tracing of false edges, and most importantly, the edge tracing is less
dependent on the choice of starting point. More simulation results with different
data sets (i.e. real MR images) provide a similar trend in the performance [7].

5 Conclusion

In this paper, we propose a robust multiscale boundary identification technique
for medical images. We enhance the traditional wavelet-based edge detection
technique by obtaining directional edges with subpixel resolution. For multiscale
boundary identification, we obtain the scale depth of the edge through WTMM
chain. We further separate the true edge from noise by Lipschitz analysis, and we
obtain the quality for each edge point by fuzzy logic. Experiments results show
that the boundary identification preformed by multiscale edge quality analysis
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improves the accuracy of the edge tracing significantly, and the tracking is less
dependent on the choice of starting point.
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