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Abstract. Unbalanced Feistel schemes with expanding functions are
used to construct pseudo-random permutations from kn bits to kn bits
by using random functions from n bits to (k − 1)n bits. At each round,
all the bits except n bits are changed by using a function that depends
only on these n bits. Jutla [6] investigated such schemes, which he de-
notes by F d

k , where d is the number of rounds. In this paper, we describe
novel Known Plaintext Attacks (KPA) and Non-Adaptive Chosen Plain-
text Attacks (CPA-1) against these schemes. With these attacks we will
often be able to improve the results of Jutla.

Keywords: Unbalanced Feistel permutations, pseudo-random permuta-
tions, generic attacks on encryption schemes, Block ciphers.

1 Introduction

A Feistel scheme from {0, 1}l to {0, 1}l with d rounds is a permutation built from
round functions f1, . . . , fd. When these round functions are randomly chosen, we
obtain what is called a “Random Feistel Scheme”. The attacks on these “random
Feistel schemes” are called “generic attacks” since these attacks are valid for most
of the round functions f1, . . . , fd.

When l = 2n and when the fi functions are from {0, 1}n to {0, 1}n we obtain
the most classical Feistel schemes, also called “balanced” Feistel schemes. Since
the famous paper of Luby and Rackoff [10], many results have been obtained on
the security of such classical Feistel schemes (see [11] for an overview of these
results). When the number of rounds is lower than 5, we know attacks with less
than 2l(= 22n) operations: for 5 rounds, an attack in O(2n) operations is given in
[14] and for 3 or 4 rounds an attack in

√
2n is given in [1,12]. When the functions

are permutations, similar attacks for 5 rounds are given in [7,9]. Therefore, for
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security, at least 6 rounds are recommended, i.e. each bit will be changed at least
3 times.

When l = kn and when the round functions are from (k − 1)n bits to n
bits, we obtain what is called an “Unbalanced Feistel Scheme with contracting
functions”. In [11] some security proofs are given for such schemes when for
the first and the last rounds pairwise independent functions are used instead of
random contracting functions. At Asiacrypt 2006 [15] generic attacks on such
schemes have been studied.

When l = kn and when the rounds functions are from n bits to (k − 1)n
bits, we obtain what is called an “Unbalanced Feistel Scheme with expanding
functions”, also called “complete target heavy unbalanced Feistel networks” [16].
Generic attacks on Unbalanced Feistel Schemes with expanding functions is the
theme of this paper. One advantage of these schemes is that it requires much
less memory to store a random function of n bits to (k −1)n bits than a random
function of (k − 1)n bits to n bits. BEAR and LION [2] are two block ciphers
which employ both expanding and contracting unbalanced Feistel networks. The
AES-candidate MARS is also using a similar structure.

Attacks on Unbalanced Feistel Schemes with expanding functions have been
previously studied by Jutla [6]. We will often be able to improve his attacks
by attacking more rounds, or by using a smaller complexity. Moreover we will
generalize these attacks by analyzing KPA (Known Plaintext Attacks), not only
CPA-1 (non adaptive plaintext attacks) and by giving explicit formulas for the
complexities. We will not introduce adaptive attacks, or chosen plaintext and
chosen ciphertext attacks, since we have not found anything significantly better
than CPA-1.

The paper is organized as follows. First, we give our notation. Then we de-
scribe the different families of attacks we have studied. We will have three families
of attacks called “2-point attacks” (TWO), “rectangle attacks” (SQUARE, R1,
R2, R3, R4) and “Multi-Rectangle attacks”. In this paper, we will study in detail
TWO and rectangle attacks, but we will give only a few comment on “Multi-
Rectangle attacks” (Multi-Rectangle attacks are still under investigation). It can
be noticed that k = 2 is very different from k ≥ 3.

2 Notation

Our notation is very similar to [15]. An unbalanced Feistel scheme with ex-
panding functions F d

k is a Feistel scheme with d rounds. At each round j, we
denote by fj the round function from n bits to (k − 1)n bits. fj is defined as
fj = (f (1)

j , f
(2)
j , . . . , f

(k−1)
j ), where each function f

(l)
j is defined from {0, 1}n

to {0, 1}n. On some input [I1, I2, . . . , Ik] F d
k produces an output denoted by

[S1, S2, . . . , Sk] by going through d rounds. At round j, the first n bits of the
round entry are used as an input to the round function fj, which produces
(k − 1)n bits. Those bits are xored to the (k − 1)n last bits of the round en-
try and the result is rotated by n bits. We introduce the internal variable Xj: it
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is the n-bit value produced by round j, which will be the input of next round
function fj+1. For example, we have:

X1 = I2 ⊕ f
(1)
1 (I1)

X2 = I3 ⊕ f
(2)
1 (I1) ⊕ f

(1)
2 (X1)

X3 = I4 ⊕ f
(3)
1 (I1) ⊕ f

(2)
2 (X1) ⊕ f

(1)
3 (X2)

. . .

The first round is represented on Figure 1 below:

I1

X1 = I2 ⊕ f
(1)
1 (I1)

f
(1)
1

I2

I3 ⊕ f
(2)
1 (I1) Ik ⊕ f

(k−1)
1 (I1)

f
(2)
1

I3 Ik

I1

f
(k)
1

Fig. 1. First Round of F d
k

After d rounds (d ≥ k + 1), the output [S1, S2, . . . , Sk] can be expressed by
using the introduced values Xj:

Sk = Xd−1

Sk−1 = Xd−2 ⊕ f
(k−1)
d (Xd−1)

Sk−2 = Xd−3 ⊕ f
(k−1)
d−1 (Xd−2) ⊕ f

(k−2)
d (Xd−1)

. . .

3 Overview of the Attacks

We investigated several attacks allowing to distinguish F d
k from a random per-

mutation. Depending on the values of k and d some attacks are more efficient
than others. All our attacks are using sets of plaintext/ciphertext pairs : the sets
can be simply couples (for attack TWO) or a rectangle structure with either four
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plaintext/ciphertext pairs (attack SQUARE) or more (attacks R1, R2, R3, and
R4). Depending on the number of rounds, it is possible to find some relations
between the input variables and output variables of the pairs of a set. Those
relations can appear at random or due to equalities of some internal variables
due to the structure of the Feistel scheme.

The TWO attack consists in using m plaintext/ciphertexts pairs and in count-
ing the number NF d

k
of couples of these pairs that satisfy the relations between

the input and output variables. We then compare NF d
k

with Nperm where Nperm

is the number of couples of pairs for a random permutation instead of F d
k . The

attack is successful, i.e. we are able to distinguish F d
k from a random permutation

if the difference |E(NF d
k
)−E(Nperm)| is much larger than the standard deviation

σperm and than the standard deviation σF d
k
, where E denotes the expectancy

function. In order to compute these values, we need to take into account the fact
that the structures obtained from the m plaintext/ciphertext tuples are not in-
dependent. However their mutual dependence is very small. To compute σperm

and σF d
k
, we will use this well-known formula as in [15] that we will call the

“Covariance Formula”:

V (
∑

xi) =
∑

i

V (xi) +
∑

i<j

[
E(xi, xj) − E(xi)E(xj)

]

where the xi are random variables.
In the attacks R1, R2, R3, and R4, we use a rectangle structure: we consider

ϕ plaintext/ciphertext pairs where ϕ is an even number and is the total number
of indexes of the rectangle. We will fix some conditions on the inputs of the ϕ
pairs. On the case of F d

k , those conditions will turn into conditions on the internal
state variables Xj due to the structure of the Feistel scheme. These conditions
will imply equations on the outputs. On the case of a random permutation,
equations on the outputs will only appear at random. By counting the sets of ϕ
pairs satisfying the conditions on inputs and outputs, we can distinguish between
F d

k and a random permutation, since in the case of F d
k the equations on the

outputs appear not only at random, but a part of them is due to the conditions
we set. However, those attacks are not always able to distinguish between F d

k

and a random permutation, since it requires some internal collision to appear
in the structure of the Feistel scheme. For some instances of F d

k the desired
collision will not exist and the attacks will fail. There exists a probability ε which
is a strictly positive constant independent of n such that rectangle structures
appear for F d

k . How to compute this probability can be found in the extended
version. Consequently, in order to verify that we are able to distinguish between
the family of F d

k permutations and the family of random permutations, we can
apply our attacks on several randomly chosen instances of F d

k or of random
permutation, count the number of instances were the attack is working and
compare this number for F d

k and for a random permutation. Attacks R1, R2,
R3, and R4 all share this principle but the conditions imposed on the plaintexts
and ciphertexts are different.

The SQUARE attack is a special case of attack R1, when ϕ = 4. In the next
sections, we will give more precise definitions of these attacks and examples for
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attack TWO and attack R1. Finally we will consider attacks with more than 2kn

computations, i.e. attacks against generators of pseudo-random permutations.
All the results are summarized in Section 9.

For a fixed value of k, attack TWO is very efficient for small values of d. When
d increases, first SQUARE, which is a variant of R1, then R1 will become the
best known attack. Then, when d increases again, R2, R3 or R4 will become the
best known attack. Finally, for very large d, TWO will become again the best
known attack.

4 Attack “TWO”

In this section, we describe a family of attacks called “TWO”. These attacks will
use correlations on pairs of plaintext/ciphertext. Therefore, they can be called
“2-point” attacks. When k = 2 i.e. on classical balanced Feistel Schemes, these
attacks give the best known generic attacks [14]. However these attacks have not
been studied in [6]. As we will see, TWO attacks are sometimes more efficient
than the attacks of [6] for example when the number of rounds is very small.

The principle of attack TWO is to concentrate on one of the equations linking
an output word Si with some of the internal variables X i. By fixing the first
n-bit blocks of the input I we fix the value of some of the internal variables
and a simple equality between the remaining input blocks and the output word
becomes true assuming that a collision on some of the internal variable occurs.
If the number of plaintext/ciphertext pairs is sufficiently large, this collision will
appear and the attack succeeds.

In order to illustrate attack TWO, we now present the attack against F d
k ,

k + 2 ≤ d ≤ 2k − 1. We will concentrate the attack on the equation:

S2k−d = Xk−1 ⊕
d−1⊕

i=k

f
(2k−i−1)
i+1 (X i)

The i-th pair is denoted by [I1(i), I2(i), . . . , Ik(i)] for the plaintext and by
[S1(i), S2(i), . . . , Sk(i)] for the ciphertext. We will count the number N of (i, j)
such that I1(i) = I1(j), I2(i) = I2(j), . . . , Ik−1(i) = Ik−1(j), Sk(i) = Sk(j),
Sk−1(i) = Sk−1(j), . . . , S2k−d+1(i) = S2k−d+1(j) and S2k−d(i) ⊕ S2k−d(j) =
Ik(i)⊕ Ik(j). For F d

k , this last equation is a consequence of the other equations,
i.e. of these k − 1 equations in I and d − k equations in S. Therefore, the attack
will succeed in KPA when m2 ≥ 2(d−1)n, i.e. when m ≥ 2

d−1
2 n. In CPA-1, we

will fix I1, I2, . . . , Ik to some values, and we will do this α times. The attack will
succeed with α = 2(d−k−2)n and the complexity in CPA-1 is α · 2n = 2(d−k−1)n.

5 “R1” Attack

5.1 Definition of R1

We now give a definition of attack R1. Let us consider ϕ plaintext/ciphertext
pairs. We first set the following conditions on the input variables:
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(I) =
{

I1(1) = I1(2), I1(3) = I1(4), I1(5) = I1(6), . . . , I1(ϕ − 1) = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

Conditions on the first block I1 are here to cancel the impact of function f1,
while conditions on other blocks are used to obtain differential equations on the
internal state variables. These equations will then propagate to other rounds
with some probability until they turn to equations on the outputs, which then
can be detected.

In order for the previous conditions to propagate with high probability, we
need some extra conditions on the internal state variables. We have d−2 internal
state variables X1, X2, . . . , Xd−2 and Xd−1 = Sk is an output variable.

Let a be an integer, 1 ≤ a ≤ d−1. We will choose a values of {1, 2, . . . , d−k}.
Let E be the set of these a values, and let F be the set of all integers i, 1 ≤ i ≤
d − 1 such that i /∈ E . We have |E| = a and |F| = d − a − 1. Let (X) be the set
of the following equalities:

(X) =
{

∀i ∈ E , X i(1) = X i(3) = . . . = X i(ϕ − 1)
∀i ∈ F , X i(1) = X i(2)

Between two different plaintext/ciphertext pairs i and j, i �= j, we can have at
most k−1 successive equalities on the variables I1, X1, X2, . . . , Xd−1. Otherwise
from k successive equalities we would get I1(i) = I1(j), I2(i) = I2(j), . . . , Ik(i) =
Ik(j), so the two messages would be the same. Therefore we must have: 	 d

k
 ≤
a ≤ d − 1 − 	d−1

k 
. For the same reason we must have {d − k} ∈ E since d − 1,
d − 2, . . ., d − k + 1 are in F .

From the conditions (I) and (X) and considering the equalities that we can
derive from them with probability one, we will have:

(S) =
{

∀i, 2 ≤ i ≤ k, Si(1) = Si(2), Si(3) = Si(4), . . . Si(ϕ − 1) = Si(ϕ)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)

Consequently the conditions (S) can appear by chance, or due to the condi-
tions (X).

Our KPA attack consists in counting the number N of rectangle sets of plain-
text/ciphertext pairs satisfying the conditions (I) and (S). The obtained num-
ber can be divided into two parts: either the conditions (I) and (S) appear
completely at random, or conditions (I) appear and conditions (S) are satisfied
because (X) happened.

Figure 2 illustrates one rectangle set of our attack. Plaintext/ciphertext pairs
are denoted by 1, 2, . . . , ϕ. Two points are joined by an edge if the values are
equal (for example I1(1) = I1(2)). We draw a solid edge if the equality appears
with probability 1

2n and a dotted line if the equality follows conditionally with
probability 1 from other imposed equalities.

5.2 “R1” Attack on F 7
3

Before studying the general properties of R1, we will illustrate this attack with
an example. We will now describe our “R1” attack on F 7

3 . As we will see, we
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2

1

I1 Xi, i ∈ F Xi, i ∈ F

Xi, i ∈ E Xi, i ∈ E

Xi, i ∈ E Xi, i ∈ E4

3

I1

6

5

I1

. . .

. . .

I1

ϕ

ϕ − 1

Fig. 2. Attack R1 on F d
k

will obtain here a complexity in O(22n) in CPA-1 and in O(2
5n
2 ) in KPA. This

is better than the O(23n) of the TWO attacks. In [6], Jutla shows that he can
obtain on F d

k attacks with complexity less than O(2kn) when d ≤ 3k − 3. For
d = 3, this gives attacks up to only 6 rounds, unlike here where we will reach 7
rounds with the complexity less than 23n. We have F 7

3 [I1, I2, I3] = [S1, S2, S3].
Let i1, i2, i3, i4, i5, i6 be six indexes of messages (so these values are between

1 and m). We will denote by [I1(α), I2(α), I3(α)] the plaintext of message iα,
and by [S1(α), S2(α), S3(α)] the ciphertext of message iα. (i.e. for simplicity we
use the notation I1(α) and S1(α) instead of I1(iα) and S1(iα), 1 ≤ α ≤ 6). The
idea of the attack is to count the number N of indexes (i1, i2, i3, i4, i5, i6) such
that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(1) = I1(2) and I1(3) = I1(4) and I1(5) = I1(6)
I2(1) ⊕ I2(2) = I2(3) ⊕ I2(4) = I2(5) ⊕ I2(6)
I3(1) ⊕ I3(2) = I3(3) ⊕ I3(4) = I3(5) ⊕ I3(6)

and
S3(1) = S3(2) and S3(3) = S3(4) and S3(5) = S3(6)
S2(1) = S2(2) and S2(3) = S2(4) and S2(5) = S2(6)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = S1(5) ⊕ S1(6)

We will call the 7 first equations the “input equations” and we will call the 8
last equations the “output equations”.

KPA. If the messages are randomly chosen, for a random permutation we will
have E(Nperm) � m6

215n . For a F 7
3 permutation we will have about 2 times more

solutions since the 8 output equations can occur at random, or due to the fol-
lowing 8 internal equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1(1) = X1(3) = X1(5)
X2(1) = X2(2)
X3(1) = X3(2)
X4(1) = X4(3) = X4(5)
X5(1) = X5(2)
X6(1) = X6(2)
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We get the following conditions on the internal variables:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X2(1) = X2(2) givesX2(3) = X2(4) andX2(5) = X2(6)
X3(1) = X3(2) givesX3(3) = X2(4) andX3(5) = X3(6)
X4(1) = X4(3) = X4(5) givesX4(2) = X4(4) = X4(6)
X5(1) = X5(2) givesX5(3) = X5(4) andX5(5) = X5(6)
X6(1) = X6(2) givesX6(3) = X6(4) andX6(5) = X6(6)

Now since S3 = X6, S2 = X5 ⊕ f
(2)
7 (X6) and S1 = X4 ⊕ f

(2)
6 (X5) ⊕ f

(1)
7 (X6),

we get the 8 output equations written above. Therefore, in KPA, for a F 7
3 per-

mutation, the expectancy of NF 7
3

is larger than for a random permutation by a

value of about m6

215n (since we have 8 equations in X and 7 in I), i.e. we expect
to have about 2 times more solutions for N : E(N ) � 2m6

215n for F 7
3 . So we will be

able to distinguish with a high probability F 7
3 from a random permutation by

counting N when N �= 0 with a high probability, i.e. when m6 ≥ O(215n), or
m ≥ O(2

5n
2 ). We have found here a KPA with O(2

5n
2 ) complexity and O(2

5n
2 )

messages. This is better than the O(23n) complexity of the attack TWO, and it
shows that we can attack 7 rounds, not only 6 with a complexity less than 23n.

CPA-1. We can transform this KPA in CPA-1. We will choose only 3 fixed
different values c1, c2, c3 for I1: m

3 plaintexts will have I1 = c1, m
3 plaintexts will

have I1 = c2, and m
3 plaintexts will have I1 = c3. We will generate all (or almost

all) possible messages [I1, I2, I3] with such I1. Therefore, m = 3 · 22n. We can
derive from these m messages 2m4

27 tuples (i1, i2, i3, i4, i5, i6) satisfying our 7 input
equations. For a random permutation we will have E(Nperm) � 2m4

27·28n (since we
have 8 output equations). For a permutation F 7

3 , we will have E(NF 7
3
) � 4m4

27·28n ,
i.e. about 2 times more solutions, since the 8 output equations can occur at
random, or due to 8 internal equations in X as we have seen. So this CPA-
1 will succeed when N �= 0 with a high probability, i.e. when m4 ≥ O(28n),
or m ≥ O(22n). Here we have m � 3 · 22n, the probability of success is not
negligible. Moreover if it fails for some values (c1, c2, c3) for I1, we can start
again with another (c1, c2, c3). Therefore this CPA-1 is in O(22n) complexity
and O(22n) messages. (This is better than the O(23n) we have found with the
TWO attack).

5.3 Properties of R1

We now describe the general properties of R1. We will denote by nI the number
of equalities in (I), and by nS the number of equalities in (S). Similarly, we will
denote by nX the number of equalities in (X). Therefore nX is the number of
independent equalities in the X i variables needed in order to get (S) from (I)
(in the previous example presented in Section 5.2, we have nI = 7, nS = 8 and
nX = 8). In this attack R1 we have:

⎧
⎨

⎩

nI = kϕ
2 − k + 1

nS = kϕ
2 − 1

nX = a(ϕ
2 − 2) + d − 1
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The idea of R1 is to minimize the total number nI + nX of needed equations in
I and X . When this criteria is dominant, R1 will be the best attack.

The value N is expected to be larger for a F d
k than for a random permutation

due to the fact that (S) can come from random reasons or from (X) in F d
k .

Therefore, it is natural, in order to get necessary and sufficient condition of
success for R1, to evaluate the expectancy and the standard deviation of N in
the case of F d

k and in the case of random permutations. This can be done (by
using the covariance formula as in [15] or by using approximation as in [6]) and
we have found that each time that R1 was better than TWO, we had nX ≤ nS .
However, when nX ≤ nS we can easily obtain sufficient condition of success
for R1 without computing the standard deviations, since when nX ≤ nS we will
have for most permutations about 2 times more (or more) solutions with F d

k than
with this random permutation. Therefore, a sufficient condition of success for R1
when nX ≤ nS is to have that (X) and (I) can be satisfied with a non-negligible
probability. A sufficient condition for this is to have:

In KPA
Condition 1: nX ≤ nS .
Condition 2: mϕ ≥ 2n(nI+nX ).
Condition 3: m2 ≥ 2(d−a)n.
Condition 4: m3 ≥ 2dn and more generally ∀i, 0 ≤ i ≤ ϕ

2 −1, m3+i ≥ 2(d+ia)n.
Condition 5: m4 ≥ 2(d+k)n.
(Conditions 2, 3, 4, 5 are necessary. Conditions 1, 2, 3, 4, 5 are sufficient for

success. Condition 1 is not necessary, but the computation of σ(N ) shows that
R1 is not better than TWO when nX > nS .)

Condition 2 comes from the fact that we have about mϕ rectangles with ϕ
points, and the probability that (I) and (X) are satisfied on one rectangle is

1
2n(nI+nX ) .

Condition 3 comes from the fact that between points 1 and 2 we have |F|
equations in X i, and one equation in I1. Therefore in KPA we must have m2 ≥
2(|F|+1)n = 2(d−a)n.

Condition 4 comes from the fact that between points 1, 2 and 3 we have
d − 1 equations in X i, and one equation in I1. Therefore we must have m3 ≥
2dn. Similarly between the points 1, 2, 3, 5, we must have: m4 ≥ 2(d+a)n. And
similarly between the points 1, 2, 3, 5, 7, . . ., (ϕ − 1), we must have: m

ϕ
2 +1 ≥

2(d+a( ϕ
2 −2))n.

Condition 5 comes from the fact that between points 1, 2, 3, 4, we have d − 1
equations in X i, 2 equations in I1 and (k − 1) in I2, I3, . . ., Ik−1.

It is easy to see that the conditions on any points are consequences of these
5 conditions. Moreover, if m ≥ 2an (we will often, but not always, choose a like
this), condition 4 can be changed with only m3 ≥ 2dn.

CPA-1. In CPA-1 the sufficient conditions when m ≤ 2(k−1)n are:
Condition 1: nX ≤ nS .
Condition 2: m( ϕ

2 +1) ≥ 2n·nX .
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Condition 3: m2 ≥ 2(d−a−1)n.
Condition 4 and Condition 5: m3 ≥ 2(d−1)n.
From these conditions we can compute the best parameters a and ϕ for any

d and k, when d and k are fixed.

Remark. If we choose nX < nS (instead of nX ≤ nS), the attacks are slightly
less efficient but more spectacular since with a non-negligible probability (I)
and (S) are satisfied with F d

k and not with random permutations. Moreover
with nX < nS it is still possible (with R2) to attack 3k−1 rounds with less than
2kn complexity.

6 “R2”, “R3”, “R4” Attacks for Any k ≥ 3 with d ≥ k

R2, R3, and R4 attacks are very similar to attack R1 but the conditions on the
variables are not the same.

6.1 R2 Attacks

In the R2 attack, we will choose a values of {1, 2, . . . , d − k}. Let E be the set
of these a values, and let F be the set of all integers i, 1 ≤ i ≤ d − 1 such that
i /∈ E . We have |E| = a, |F| = d − a − 1, and F contains all the k − 1 values i,
d − k + 1 ≤ i ≤ d − 1. For R2 we have:

(I) =

⎧
⎨

⎩

I1(1) = I1(3) = I1(5) = . . . = I1(ϕ − 1)
I1(2) = I1(4) = I1(6) = . . . = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

(X) =
{

∀i ∈ E , X i(1) = X i(3) = . . . = X i(ϕ − 1)
∀i ∈ F , X i(1) = X i(2)

(S) =
{

∀i, 2 ≤ i ≤ k, Si(1) = Si(2), Si(3) = Si(4), . . . , Si(ϕ − 1) = Si(ϕ)
S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)

The equations (X) have been chosen such that (S) is just a consequence
of (I) and (X). Our attacks consist in counting the number N of rectangle
sets of plaintext/ciphertext pairs satisfying the conditions (I) and (S). Figure 3
illustrates the equations for R2.

Between two different plaintext/ciphertext pairs i and j, i �= j, we can have
at most k−1 successive equalities on the variables I1, X1, . . ., Xd−1. Therefore,
for R2, we have 	d−1

k 
 ≤ a ≤ d − 1 − 	 d
k 
, and

⎧
⎨

⎩

nI = kϕ
2 + ϕ

2 − k − 1
nS = kϕ

2 − 1
nX = a(ϕ

2 − 2) + d − 1
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2

1
I1

Xi, i ∈ F

I1

Xi, i ∈ E

Xi, i ∈ E

4

3
I1

Xi, i ∈ F

I1

Xi, i ∈ E

Xi, i ∈ E

6

5

Xi, i ∈ F

ϕ

ϕ − 1

Fig. 3. Attack R2 on F d
k

As we have explained for R1, sufficient conditions of success for R2 in KPA
are the following 5 conditions:

Condition 1: nX ≤ nS .
Condition 2: mϕ ≥ 2n(nI+nX ).
Condition 3: m3 ≥ 2dn.
Condition 4: m2 ≥ 2(d−a−1)n.
Condition 5: m4 ≥ 2(d+k)n.

Example for R2. In the R2 attack on F 8
3 , we have: ϕ = 8, a = 2, nI = 12,

nS = 11 and nX = 11. Details are in the extended version of the paper.

6.2 R3 Attack

In the R3 attack, we set the following conditions on the input variables:

(I) =
{

I1(1) = I1(2), I1(3) = I1(4), I1(5) = I1(6), . . . , I1(ϕ − 1) = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

Then the conditions on the internal variables (with |E| = d − a − 1 and |F| = a
and if d − k + 2 ≤ i ≤ d − 1 then i ∈ F) are:

(X) =
{

∀i ∈ E , X i(1) = X i(2)
∀i ∈ F , X i(1) = X i(3) = . . . = X i(ϕ − 1)

Finally, the conditions on the output variables are given by:

(S) =

⎧
⎪⎪⎨

⎪⎪⎩

S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)
S2(1) ⊕ S2(2) = S2(3) ⊕ S2(4) = . . . = S2(ϕ − 1) ⊕ S2(ϕ)
∀i, 3 ≤ i ≤ k, S1(1) = S1(3) = S1(5) = . . . = S1(ϕ − 1)
∀i, 3 ≤ i ≤ k, S1(2) = S1(4) = S1(6) = . . . = S1(ϕ)

Then, the R3 attack proceeds exactly the same as R1 and R2 attacks.

6.3 R4 Attack

In the R4 attack, we have the following conditions on the input, internal and
output variables:
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(I) =

⎧
⎨

⎩

I1(1) = I1(3) = I1(5) = . . . = I1(ϕ − 1)
I1(2) = I1(4) = I1(6) = . . . = I1(ϕ)
∀i, 2 ≤ i ≤ k, Ii(1) ⊕ Ii(2) = Ii(3) ⊕ Ii(4) = . . . = Ii(ϕ − 1) ⊕ Ii(ϕ)

(X) =
{

∀i ∈ E , X i(1) = X i(2)
∀i ∈ F , X i(1) = X i(3) = . . . = X i(ϕ − 1)

(with |E| = d − a − 1 and |F| = a and if d − k + 3 ≤ i ≤ d − 1 then i ∈ F)

(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S1(1) ⊕ S1(2) = S1(3) ⊕ S1(4) = . . . = S1(ϕ − 1) ⊕ S1(ϕ)
S2(1) ⊕ S2(2) = S2(3) ⊕ S2(4) = . . . = S2(ϕ − 1) ⊕ S2(ϕ)
S3(1) ⊕ S3(2) = S3(3) ⊕ S3(4) = . . . = S3(ϕ − 1) ⊕ S3(ϕ)
∀i, 4 ≤ i ≤ k, S1(1) = S1(3) = S1(5) = . . . = S1(ϕ − 1)
∀i, 4 ≤ i ≤ k, S1(2) = S1(4) = S1(6) = . . . = S1(ϕ)

Example for R4. We will now present how to attack F 3k−1
k when k ≥ 5

with a complexity less than 2kn. This example is interesting since 3k − 1 is the
maximum number of rounds that we can attack with a complexity lower than
2kn (for d = 3k the complexity of the best known attacks become O(2kn) and
for d ≥ 3k + 1 we need more than O(2kn) computations). It is also interesting
since in [6] Jutla was able to attack only 3k − 3 rounds with a complexity less
than 2kn. We will present only the main ideas. We will use the attack R4 with
a = k − 1, i.e. between 1 and 3 we have these k − 1 equations: Xd−1, Xd−2, . . .,
Xd−k+3, plus Xk and X2k.

Remark. With R2 (but not with R1) we can also attack F 3k−1
k (with ϕ = 2k+2

and a = k − 1) with a complexity less than 2kn, but the complexity of R4 will
be slightly better.

In R4 with a = k − 1, we have:
⎧
⎨

⎩

nI = kϕ
2 + ϕ

2 − k − 1
nS = kϕ − 3ϕ

2 − 2k + 3
nX = kϕ

2 + d − 2k − ϕ
2 + 1

Therefore when d = 3k−1, we have nX = kϕ
2 +k− ϕ

2 . nX ≤ nS gives ϕ ≥ 6+ 6
k−2 .

For k ≥ 5, this means ϕ ≥ 8 (ϕ is always even). Now if we look at all the 5
conditions for the complexity, these conditions give: m ≥ 2(k− 1

8 )n in KPA, and
m ≥ 2(k− 1

2 )n in CPA-1. These complexities are less than 2kn as claimed.

7 Experimental Results

We have implemented the CPA-1 attacks SQUARE and R1 against F 6
3 , F 7

3 , and
F 8

3 . The attack against F 6
3 uses 4 points and 2

5n
3 plaintexts, the attack against

F 7
3 uses 6 points and 22n plaintexts, and the attack against F 8

3 uses 8 points and
22.5n plaintexts. Our experiments confirm our ability to distinguish between F 6

3
or F 7

3 or F 8
3 and a random permutation. Our experiments were done as follows:
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– choose randomly an instance of F 6
3 or F 7

3 or F 8
3

– choose randomly a permutation: for this we use classical balanced Feistel
scheme with a large number of rounds (more than 20)

– launch the attack in CPA-1
– count the number of structures satisfying the input and output relations for

the F 6
3 or F 7

3 or F 8
3 permutation and for the permutation

– if this number is higher or equal to a fixed threshold (generally 1 or 2),
declare the function to be a F 6

3 or F 7
3 or F 8

3 permutation and otherwise a
random permutation

All these procedures are iterated a large number of time (at least 1000 times) to
evaluate the effectiveness of our distinguisher. We give the percentage of success,
i.e. the number of F 6

3 or F 7
3 or F 8

3 that have been correctly distinguished and
the percentage of false alarm, i.e. the number of random permutation that have
incorrectly been declared as F 6

3 or F 7
3 or F 8

3 .

Table 1. Experimental results for CPA-1 attacks

scheme n threshold Percentage of success of the attack Percentage of false alarm
F 6

3 8 2 54% 4%
F 7

3 6 1 33% 1%
F 8

3 6 1 38% 1%

We give some details in the F 7
3 case: here are the numbers of rectangles sets

for 100 instances of F 7
3 .

2, 0, 25, 1, 0, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 12, 1, 4, 1,

0, 1, 4, 18, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 1, 13, 0, 1, 6, 0,

0, 0, 33, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 3, 36, 1, 14, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0

The corresponding numbers for 100 random permutations are composed of 99
zero and a single one. This clearly shows that we can distinguish between the
two cases.

Our experiments show that the distinguisher on F 6
3 is more efficient than the

one on F 7
3 and than the one on F 8

3 . But in all case they confirm our ability to
distinguish.

8 Attack by the Signature

It can be proved that all the permutations F d
k have an even signature. The

proof of this result is quite similar to the proof in the case of a symmetric
Feistel scheme [13]. Therefore, by computing the signature of F d

k we are able
to distinguish F d

k from a random permutation with a non-negligible probability
and O(2kn) computations if all the 2kn plaintext/ciphertext are known. However
if we do not have access to the complex codebook of size 2kn, or if we want to
distinguish F d

k from a random permutation with an even signature, this “attack”
obviously fails.
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9 Summary of the Results on F d
k , k ≥ 3, on TWO,

SQUARE and Rectangle Attacks

The following table shows the results we have obtained with our different attacks.

Table 2. Results on F d
k for k = 3, on TWO, SQUARE and Rectangle attacks (i.e. with-

out Multi-rectangle attacks). CAUTION: Multi-Rectangle attacks may have sometimes
better complexities.

KPA CPA-1
F 1

3 1 1
F 2

3 2
n
2 , TWO 2

F 3
3 2n, TWO 2

F 4
3 2

3
2 n, TWO 2

n
2 , TWO

F 5
3 22n, TWO 2n, TWO

F 6
3 2

9
4 n, SQUARE 2

5
3 n, SQUARE

F 7
3 2

5
2 n, M1, ϕ = 6 22n, M1, ϕ = 6

F 8
3 2

23
8 n, R2, ϕ = 8 2

5
2 n, R2, ϕ = 8

F 9
3 23n, R2, ϕ ≥ 10 23n, R2, ϕ ≥ 10

F 10
3 27n, TWO 27n, TWO

F 11
3 28n, TWO 28n, TWO

F d
3 , d ≥ 10 2(d−6+� d

3 �)n, TWO 2(d−6+� d
3 �)n, TWO

10 Multi-rectangle Attacks

An interesting problem is to design better attacks than 2-point attacks, or
rectangle attacks. We have tried attacks with different geometries of equations
(hexagons instead of rectangles, multi-dimensional cubes instead of 2-dimension
rectangles, etc...). So far the best new attacks that we have found are “Multi-
Rectangle attacks”, i.e. attacks where some “rectangles” in I equations are linked
with S equations. We will present here only two examples. More details are given
in the extended version of this paper. These new attacks are very promising
asymptotically (i.e. when n becomes large) but their efficiency from a practical
point of view and the design optimality are still under investigation.

Example 1. With a 2-rectangle attack (as in Figure 4 below), it seems that
we can attack F 18

6 with a complexity strictly less than 26n. Therefore this at-
tack is expected to be better than rectangle attacks. However we have to use 2
rectangles of about 2 × 20 points. Consequently we will have a large constant in
the complexity and therefore such a theoretical attack might be of no practical
interest.

Example 2. It seems that we can attack F d
k when d ≤ k2 +k with a complexity

less than O(2kn) with a Multi-Rectangle attack when k is fixed (with a huge
coefficient depending of k and not of n in the O).This attacks is based on arrays
of k + 1 dimensional hypercubes. This attack is still under investigation.
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Table 3. Results on F d
k for k > 3, on TWO, SQUARE and Rectangle attacks (i.e. with-

out Multi-rectangle attacks). CAUTION: Multi-Rectangle attacks may have sometimes
better complexities.

KPA CPA-1
F 1

k 1 1
F 2

k 2
n
2 , TWO 2

F 3
k 2n, TWO 2

F d
k , 2 ≤ d ≤ k 2

d−1
2 n,TWO 2

F k+1
k 2

k
2 n, TWO 2

n
2 , TWO

F k+2
k 2

k+1
2 n, TWO and SQUARE 2n, TWO

F k+3
k 2

2k+3
4 n, SQUARE 22n,TWO or 2

k+2
3 n, SQUARE

F d
k , k + 2 ≤ d ≤ 2k 2

d+k
4 n, SQUARE 2(d−k−1)n,TWO or 2

d−1
3 n, SQUARE

F 2k
k 2

3k
4 n, SQUARE 2

2k−1
3 n,SQUARE

...
...

...
F 3k−1

k 2(k− 1
8 )n, R3 k = 4, R4 k ≥ 5 2(k− 1

2 )n, R2 k = 4, R4 k ≥ 5
F 3k

k 2kn, R2 2kn, R2
F d

k , 3k ≤ d ≤ k2 2(d−2k)n, R2 2(d−2k)n, R2

1 3 17 19

2 4 18 20

21 23 37 39

22 24 38 40

X1, X7

I1

X2, X3, X4, X5, X6

X8, X9, X10, X11, X12

. . .

X1, X7

X1, X7

I1

X2, X3, X4, X5, X6

X8, X9, X10, X11, X12

. . .

X1, X7

X13, X14, X15, X16, X17

X13 X13 X13

Fig. 4. Example of a multi-rectangle attack on F 18
6
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Multi-Rectangle attacks are also of interest for less rounds, for example in
order to attack F 2k

k with a smaller complexity than rectangle attacks.

11 Conclusion

In [6], Jutla has introduced “Rectangle attacks” against unbalanced Feistel
schemes. To improve the attacks of Jutla, we have first made a systematic analy-
sis of the different ways to optimize the parameters. We have obtained like this 5
different kinds of “rectangle attacks” that we have called SQUARE, R1, R2, R3
and R4. By computing the optimal parameters, we have shown that we can at-
tack 3k−1 rounds in KPA instead of 3k−3 in CPA-1 for Jutla with a complexity
strictly lower than 2kn with these “Rectangle attacks” (This was confirmed with
experimental simulations). Moreover, we have also described two other families
of attacks that we have called TWO ( for 2-point attacks) and “Multi-Rectangle
attacks”. We have shown that sometimes TWO attacks are the best, and some-
times it is SQUARE, R1, R2, R3, R4 or Multi-Rectangle attacks, depending
of the choices of d and k. For example, for very small values of d, TWO at-
tacks are the best. Multi-Rectangle attacks seem to be very promising from a
theoretical point of view. For example, we may attack much more than 3k − 1
rounds with a complexity strictly lower than 2kn, and we may attack F 2k

k with
a complexity better than with rectangle attacks. However the precise properties
of Multi-Rectangle attacks are not yet known since these attacks are still under
investigation.

In conclusion, there are much more possibilities for generic attacks on unbal-
anced Feistel schemes with expanding functions than with other Feistel schemes
(classical or with contracting functions). So these constructions must be designed
with great care and with sufficiently many rounds. However, if sufficiently many
rounds are used, these schemes are very interesting since the memory needed to
store the functions is much smaller compared with other generic Feistel schemes.

More examples and more simulations can be found in the extended version of
this paper.
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